PDF (21.6 MB)
Collect
Submit Manuscript
Research Article | Open Access

Laser direct writing of flexible multifunctional airflow sensors on the Kevlar fabric

Wei Wang1,3 ()Zi-Qing Chen2Yong-Qi Li2Yu-Long Wang2Mei-Chen Liu1Yun-Bo Ruan3Yang Zhang4Shu-Juan Liu2 ()Qiang Zhao1,2 ()
College of Electronic and Optical Engineering and College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
Zhe Jiang Topsun Logistic Control CO., LTD., Yuhuan 317600, China
Department of Rehabilitation Medicine, School of Acupuncture-Moxibustion and Tuina and School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
Show Author Information

Graphical Abstract

View original image Download original image
The flexible multifunctional fire-resistant airflow sensor based on Kevlar fabric is reported here. With the help of simple direct laser writing method, the twice-vertical laser-induced-graphene is introduced to sense airflow direction and velocity from both two-dimensional (2D) and three-dimensional (3D) space in the presence of fire, implying the possibility of application in fire rescue. And the airflow sensor can be further extended to a multi-function platform including sensing glucose for subsequent rescue.

Abstract

The growing interest in flexible devices has emerged as a global trend due to their advantages in flexibility, lightweight structure, and wearability, addressing the limitations of traditional devices. While wearable airflow sensors have been previously reported, the development of flexible fabric-based airflow sensors capable of functioning in environments with open flames—critical for fire rescue operations—has yet to be explored, largely due to the poor fire resistance of conventional fabrics. In this work, we first present a flexible, wearable, and multifunctional airflow sensor with excellent fire-resistant properties, fabricated through a simple direct laser writing process. This sensor maintains airflow detection capabilities even in the presence of open flames. Typically, the fabrication of fabric-based sensors involves complex procedures such as carbon materials doping or vapor-phase deposition, leading to lengthy preparation cycles and high costs. Furthermore, fabric-based devices are inherently prone to flammability. To address these challenges, we introduce twice-vertical laser-induced graphene (TVLIG) as a sensitive and reliable component for fire-resistant airflow sensors. The resulting TVLIG/Kevlar fabric can be integrated into various garments, particularly protective suits, to form sensitive and fire-resistant airflow sensors capable of detecting airflow velocity and direction in both two-dimensional (2D) and three-dimensional (3D) spaces during fire incidents. Additionally, the TVLIG patterns can be expanded to multifunctional platforms, such as glucose detection for injured individuals, offering further applications in rescue operations. This functional expansion reduces the burden on rescue personnel and streamlines device preparation. With its outstanding sensing capabilities, fire resistance, and expandability, the developed flexible airflow sensor shows great potential for various real-world rescue scenarios, promising advancements in wearable sensing technology for rescue engineering.

Electronic Supplementary Material

Video
7062_Movie S1.mp4
7062_Movie S2.mp4
Download File(s)
7062_ESM.pdf (540.1 KB)

References

[1]

Zhang, D. D.; Ren, Y. X.; Barbot, A.; Seichepine, F.; Lo, B.; Ma, Z. C.; Yang, G. Z. Fabrication and optical manipulation of micro-robots for biomedical applications. Matter 2022, 5, 3135–3160.

[2]

Yu, H.; Yang, X. N.; Lian, Y. L.; Wang, M. Y.; Liu, Y. M.; Li, Z.; Jiang, Y. D.; Gou, J. An integrated flexible multifunctional wearable electronic device for personal health monitoring and thermal management. Sens. Actuators A: Phys. 2021, 318, 112514.

[3]

Wang, Z. Y.; Bu, M. M.; Xiu, K. H.; Sun, J. Y.; Hu, N.; Zhao, L. B.; Gao, L. X.; Kong, F. Z.; Zhu, H.; Song, J. et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in Parkinsonian and hemiplegic patients. Nano Energy 2022, 104, 107978.

[4]

Hu, Y. G.; Zhao, T.; Zhu, P. L.; Zhang, Y.; Liang, X. W.; Sun, R.; Wong, C. P. A low-cost, printable, and stretchable strain sensor based on highly conductive elastic composites with tunable sensitivity for human motion monitoring. Nano Res. 2018, 11, 1938–1955.

[5]

Ma, Z. C.; Zhang, Y. L.; Han, B.; Hu, X. Y.; Li, C. H.; Chen, Q. D.; Sun, H. B. Femtosecond laser programmed artificial musculoskeletal systems. Nat. Commun. 2020, 11, 4536.

[6]

Wang, Z. Y.; Ma, Z. T.; Sun, J. Y.; Yan, Y. H.; Bu, M. M.; Huo, Y. M.; Li, Y. F.; Hu, N. Recent advances in natural functional biopolymers and their applications of electronic skins and flexible strain sensors. Polymers 2021, 13, 813.

[7]

Yi, L. Y.; Hou, B.; Liu, X. G. Optical integration in wearable, implantable and swallowable healthcare devices. ACS Nano 2023, 17, 19491–19501.

[8]

Li, S. B.; Li, M.; Chen, L.; Xu, X. H.; Cui, A. Y.; Zhou, X.; Jiang, K.; Shang, L. Y.; Li, Y. W.; Zhang, J. Z. et al. Ultra-stable, endurable, and flexible Sb2Te x Se3− x phase change devices for memory application and wearable electronics. ACS Appl. Mater. Interfaces 2022, 14, 45600–45610.

[9]

Sun, J. Y.; Xiu, K. H.; Wang, Z. Y.; Hu, N.; Zhao, L. B.; Zhu, H.; Kong, F. Z.; Xiao, J. L.; Cheng, L. J.; Bi, X. Y. Multifunctional wearable humidity and pressure sensors based on biocompatible graphene/bacterial cellulose bioaerogel for wireless monitoring and early warning of sleep apnea syndrome. Nano Energy 2023, 108, 108215.

[10]

Mathai, A. R. P.; Stalin, T.; Alvarado, P. V. Y. Flexible fiber inductive coils for soft robots and wearable devices. IEEE Rob. Autom. Lett. 2022, 7, 5711–5718.

[11]

Wang, W.; Zhang, Y. L.; Han, B.; Ma, J. N.; Wang, J. N.; Han, D. D.; Ma, Z. C.; Sun, H. B. A complementary strategy for producing moisture and alkane dual-responsive actuators based on graphene oxide and PDMS bimorph. Sens. Actuators B: Chem. 2019, 290, 133–139.

[12]

Wang, W.; Zhang, Y.; Zhang, Y. L.; Zhang, J. R.; Sun, X. C.; Han, D. D.; Sun, H. B. Multicoating nanoarchitectonics for facile preparation of multi-responsive paper actuators. ACS Appl. Mater. Interfaces 2022, 14, 27242–27250.

[13]

Xin, C.; Ren, Z. G.; Zhang, L. R.; Yang, L.; Wang, D. W.; Hu, Y. L.; Li, J. W.; Chu, J. R.; Zhang, L.; Wu, D. Light-triggered multi-joint microactuator fabricated by two-in-one femtosecond laser writing. Nat. Commun. 2023, 14, 4273.

[14]

Nakajima, T.; Fujio, Y.; Sugahara, T.; Tsuchiya, T. Flexible ceramic film sensors for free-form devices. Sensors 2022, 22, 1996.

[15]

Huo, Y. M.; Bu, M. M.; Ma, Z. T.; Sun, J. Y.; Yan, Y. H.; Xiu, K.; Wang, Z. Y.; Hu, N.; Li, Y. F. Flexible, non-contact and multifunctional humidity sensors based on two-dimensional phytic acid doped co-metal organic frameworks nanosheets. J. Colloid Interface Sci. 2022, 607, 2010–2018.

[16]

Yin, F. F.; Guo, Y. J.; Li, H.; Yue, W. J.; Zhang, C. W.; Chen, D.; Geng, W.; Li, Y.; Gao, S.; Shen, G. Z. A waterproof and breathable cotton/rGO/CNT composite for constructing a layer-by-layer structured multifunctional flexible sensor. Nano Res. 2022, 15, 9341–9351.

[17]

Zhou, L.; Thomas, R. A.; Yuan, L.; Bahrami, D. Experimental study of improving a mine ventilation network model using continuously monitored airflow. Min., Metall. Explor. 2022, 39, 887–895.

[18]

Sung, W. T.; Chen, K. Y.; Hsu, Y. C. Design a breeze sensor system based on electric field via two-elemental direction. Expert Syst. Appl. 2011, 38, 5584–5590.

[19]

Huang, L. B.; Liu, Y.; Li, G.; Song, Y.; Su, J. J.; Cheng, L.; Guo, W. H.; Zhao, G. G.; Shen, H. C.; Yan, Z. et al. Ultrasensitive, fast-responsive, directional airflow sensing by bioinspired suspended graphene fibers. Nano Lett. 2023, 23, 597–605.

[20]

Fei, F.; Zhou, S. L.; Mai, J. D.; Li, W. J. Development of an indoor airflow energy harvesting system for building environment monitoring. Energies 2014, 7, 2985–3003.

[21]

Luo, Y.; Miao, Y. P.; Wang, H. M.; Dong, K.; Hou, L.; Xu, Y. Y.; Chen, W. C.; Zhang, Y.; Zhang, Y. Y.; Fan, W. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole) fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field. Nano Res. 2023, 16, 7600–7608.

[22]

Takahashi, H.; Nakai, A.; Shimoyama, I. Waterproof airflow sensor for seabird bio-logging using a highly sensitive differential pressure sensor and nano-hole array. Sens. Actuators A: Phys. 2018, 281, 243–249.

[23]

Haneda, K.; Matsudaira, K.; Noda, R.; Nakata, T.; Suzuki, S.; Liu, H.; Takahashi, H. Compact sphere-shaped airflow vector sensor based on mems differential pressure sensors. Sensors 2022, 22, 1087.

[24]

Song, Y. H.; Chen, L.; Yang, Q. Q.; Liu, G.; Yu, Q. W.; Xie, X. Y.; Chen, C.; Liu, J.; Chao, G. Q.; Chen, X. et al. Graphene-based flexible sensors for respiratory and airflow monitoring. ACS Appl. Nano Mater. 2023, 6, 8937–8944.

[25]

Jiang, Q. Y.; Li, R.; Wang, F.; Shi, X. F.; Chen, F. X.; Huang, Y.; Wang, B. S.; Zhang, W. S.; Wu, X. K.; Wei, F.; et al. Ultrasensitive airflow sensors based on suspended carbon nanotube networks. Adv. Mater. 2022, 34, 2107062.

[26]

Rao, Y. F.; Yuan, M.; Gao, B.; Li, H.; Yu, J. B.; Chen, X. P. Laser-scribed phosphorus-doped graphene derived from Kevlar textile for enhanced wearable micro-supercapacitor. J. Colloid Interface Sci. 2023, 630, 586–594.

[27]

Wang, H. M.; Wang, H. M.; Wang, Y. L.; Su, X. Y.; Wang, C. Y.; Zhang, M. C.; Jian, M. Q.; Xia, K. L.; Liang, X. P.; Lu, H. J. et al. Laser writing of janus graphene/Kevlar textile for intelligent protective clothing. ACS Nano 2020, 14, 3219–3226.

[28]

Xu, K. C.; Cai, Z. M.; Luo, H. Y.; Lin, X. Y.; Yang, G.; Xie, H. B.; Ko, S. H.; Yang, H. Y. An in-situ hybrid laser-induced integrated sensor system with antioxidative copper. Int. J. Extreme Manuf. 2024, 6, 065501.

[29]

Yu, H. Y.; Gai, M. X.; Liu, L.; Chen, F. R.; Bian, J.; Huang, Y. Laser-induced direct graphene patterning: From formation mechanism to flexible applications. Soft Sci. 2023, 3, 4.

[30]

Xu, K. C.; Li, Q.; Lu, Y. Y.; Luo, H. Y.; Jian, Y. H.; Li, D. W.; Kong, D. P.; Wang, R. H.; Tan, J. B.; Cai, Z. M. et al. Laser direct writing of flexible thermal flow sensors. Nano Lett. 2023, 23, 10317–10325.

[31]

Chen, H. X.; Qian, M. D.; Yu, K.; Liu, Y. F. Low threshold microlasers based on organic-conjugated polymers. Front. Chem. 2021, 9, 807605.

[32]

Wang, W.; Chen, Z. Q.; Lin, B.; Liu, M. C.; Zhang, Y.; Liu, S. J.; Li, Y.; Zhao, Q. Two-photon polymerization-based 3D micro-scaffolds toward biomedical devices. Chem. Eng. J. 2024, 493, 152469.

[33]

Wang, H.; Zhang, Y. L.; Wang, W.; Ding, H.; Sun, H. B. On-chip laser processing for the development of multifunctional microfluidic chips. Laser Photonics Rev. 2017, 11, 1600116.

[34]

Wang, W.; Han, B.; Zhang, Y.; Li, Q.; Zhang, Y. L.; Han, D. D.; Sun, H. B. Laser-induced graphene tapes as origami and stick-on labels for photothermal manipulation via marangoni effect. Adv. Funct. Mater. 2021, 31, 2006179.

[35]

Wang, W.; Liu, Y. Q.; Liu, Y.; Han, B.; Wang, H.; Han, D. D.; Wang, J. N.; Zhang, Y. L.; Sun, H. B. Direct laser writing of superhydrophobic PDMS elastomers for controllable manipulation via marangoni effect. Adv. Funct. Mater. 2017, 27, 1702946.

[36]

Li, C.; Zhao, J. H.; Yang, Y.; Chen, Q. D.; Chen, Z. G.; Sun, H. B. Sub-bandgap photo-response of chromium hyperdoped black silicon photodetector fabricated by femtosecond laser pulses. IEEE Sensors J. 2021, 21, 25695–25702.

[37]

Yong, J. L.; Li, X. L.; Hu, Y. D.; Wang, Y. M.; Peng, Y. B.; Chen, Z. R.; Zhang, Y. C.; Zhu, S. W.; Wang, C. W.; Wu, D. Portable triboelectric electrostatic tweezer for external manipulation of droplets within a closed femtosecond laser-treated superhydrophobic system. Nano Lett. 2024, 24, 7116–7124.

[38]

Xia, S.; Wang, M.; Gao, G. H. Preparation and application of graphene-based wearable sensors. Nano Res. 2022, 15, 9850–9865.

[39]

Lu, Y. Y.; Yang, G.; Wang, S. Q.; Zhang, Y. Q.; Jian, Y. H.; He, L.; Yu, T.; Luo, H. Y.; Kong, D. P.; Xianyu, Y. L. et al. Stretchable graphene-hydrogel interfaces for wearable and implantable bioelectronics. Nat. Electron. 2023, 7, 51–65.

[40]

Ma, Z. Q.; Khoo, B. L. Recent advances in laser-induced-graphene-based soft skin electronics for intelligent healthcare. Soft Sci. 2024, 4, 26.

[41]

Wang, H. M.; Li, S.; Wang, Y. L.; Wang, H. M.; Shen, X. Y.; Zhang, M. C.; Lu, H. J.; He, M. S.; Zhang, Y. Y. Bioinspired fluffy fabric with in situ grown carbon nanotubes for ultrasensitive wearable airflow sensor. Adv. Mater. 2020, 32, 1908214.

[42]

Li, M. W.; Zhang, T.; Wang, P. C.; Li, M. H.; Wang, J. Q.; Liu, Z. W. Temperature characteristics of a pressure sensor based on BN/graphene/BN heterostructure. Sensors 2019, 19, 2223.

[43]

Han, S. Q.; Zhou, S. Y.; Mei, L. Y.; Guo, M. L.; Zhang, H. Y.; Li, Q. N.; Zhang, S.; Niu, Y. K.; Zhuang, Y.; Geng, W. P. et al. Nanoelectromechanical temperature sensor based on piezoresistive properties of suspended graphene film. Nanomaterials 2023, 13, 1103.

[44]

Liu, D. Q.; Chen, S. Y.; Lu, Z. T.; Ma, N.; Sun, Y. Q. Temperature sensor based on temperature and frequency dependence of graphene impedance. J. Phys. D: Appl. Phys. 2019, 52, 075102.

Nano Research
Article number: 94907062
Cite this article:
Wang W, Chen Z-Q, Li Y-Q, et al. Laser direct writing of flexible multifunctional airflow sensors on the Kevlar fabric. Nano Research, 2025, 18(1): 94907062. https://doi.org/10.26599/NR.2025.94907062
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return