PDF (12.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

Regulation of graphdiyne-based nanozymes with enhanced oxidase-like activity by cobalt and nitrogen codoping

Jiali Liu1,2,§Xiaoli Wang3,4,§Yongfu Lian2Xue Wang1,4Xiuxiu Wang1,4Xingfa Gao3()Baoyun Sun1()Xihong Guo1()
CAS Key Laboratory for Biomedical Effects of Nanomaterial & Nanosafety, Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049, China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, China
Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China

§ Jiali Liu and Xiaoli Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The oxidase-like activities of graphdiyne-based nanozymes can be greatly enhanced by Co and N codoping, since the surface of Co-N-GDY is favorable for oxygen adsorption and activation.

Abstract

The development of nanozymes with excellent intrinsic oxidase-like activity and specificity has received increasing interest. Graphdiyne (GDY) could be a promising choice for designing nanozymes with enhanced oxidase (OXD)-like activity due to its unique structure and properties. Herein, Co-N-GDY with high OXD activity but no peroxidase (POD) activity was synthesized by codoping of cobalt (Co) and nitrogen (N) into GDY and compared with other GDY-based nanozymes (including GDY, Co-GDY, and N-GDY). Upon analyzing the doping effect of Co and N on the OXD-like and POD-like activities, we found that the combination of Co and N in GDY played a significant role in enhancing the OXD-like activity, and even reversed the POD-like activity of N-GDY to OXD-like activity of Co-N-GDY. The electrochemical experiment and the theoretical calculations provided an explanation for the mechanism and showed that the activity was closely linked to the reduction ability of O2 or H2O2 on the nanozyme substrates, which was determined by the rate-determining step of the catalytic reaction.

Electronic Supplementary Material

Download File(s)
7063_ESM.pdf (4.1 MB)

References

[1]

Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.

[2]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[3]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[4]

Su, L.; Qin, S. N.; Xie, Z. J.; Wang, L.; Khan, K.; Tareen, A. K.; Li, D. F.; Zhang, H. Multi-enzyme activity nanozymes for biosensing and disease treatment. Coord. Chem. Rev. 2022, 473, 214784.

[5]

Wang, Y.; Chen, C.; Zhang, D. Sulfur-doping tuning oxygen vacancies in ultrathin 2D Ni–V mixed metal oxides for exceptional oxidase mimic and antibacterial applications. J. Mater. Chem. C 2021, 9, 15445–15451.

[6]

Yang, K. L.; Xiu, W. J.; Li, Y. Q.; Wang, D.; Wen, Q. R.; Yuwen, L. H.; Li, X.; Yin, Z. W.; Liang, B.; Wang, L. H. NIR-responsive MoS2–Cu2WS4 nanosheets for catalytic/photothermal therapy of methicillin-resistant Staphylococcus aureus infections. Nanoscale 2022, 14, 9796–9805.

[7]

Zhang, T. T.; Liu, Y.; Pi, J. C.; Lu, N. N.; Zhang, R. S.; Chen, W. J.; Zhang, Z. Q.; Xing, D. M. A novel artificial peroxisome candidate based on nanozyme with excellent catalytic performance for biosensing. Biosens. Bioelectron. 2022, 196, 113686.

[8]

Wu, S. L.; Wu, W. W.; Zhu, X. Y.; Li, M. H.; Zhao, J. G.; Dong, S. J. Atomically dispersed hierarchically ordered porous Fe–N–C single-atom nanozymes for dyes degradation. Nano Res. 2023, 16, 10840–10847.

[9]

Huang, L.; Niu, Y. S.; Li, R. G.; Liu, H. Z.; Wang, Y.; Xu, G. F.; Li, Y.; Xu, Y. H. VO x quantum dots with multienzyme-mimic activities and the application in constructing a three-dimensional (3D) coordinate system for accurate discrimination of the hydrogen peroxide over a broad concentration range. Anal. Chem. 2019, 91, 5753–5761.

[10]

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

[11]

Liu, X.; Yan, L.; Ren, H.; Cai, Y. Y.; Liu, C. Y.; Zeng, L. X.; Guo, J.; Liu, A. H. Facile synthesis of magnetic hierarchical flower-like Co3O4 spheres: Mechanism, excellent tetra-enzyme mimics and their colorimetric biosensing applications. Biosens. Bioelectron. 2020, 165, 112342.

[12]

Liu, S.; Bai, Q.; Jiang, Y. J.; Gao, Y. H.; Chen, Z.; Shang, L. M.; Zhang, S. Y.; Yu, L. R.; Yang, D. Q.; Sui, N. et al. Multienzyme-like nanozyme encapsulated ocular microneedles for keratitis treatment. Small 2024, 20, 2308403.

[13]

Fan, H. Z.; Zhang, R. F.; Fan, K. L.; Gao, L. Z.; Yan, X. Y. Exploring the specificity of nanozymes. ACS Nano 2024, 18, 2533–2540.

[14]

Wang, Y.; Du, R. L.; Lee, L. Y. S.; Wong, K. Y. Rational design and structural engineering of heterogeneous single-atom nanozyme for biosensing. Biosens. Bioelectron. 2022, 216, 114662.

[15]

Zhu, Y.; Yan, J.; Liu, J.; Chen, H. Y.; Gui, J. L.; Wu, C. Y.; Zhu, X. H.; Yin, P.; Liu, M. L.; Zhang, Y. Y. et al. Multi-mimic activities of Co3O4 nanopolyhedrons and application in regulating the content of intracellular hydrogen peroxide/oxygen. ACS Appl. Nano Mater. 2022, 5, 15102–15114.

[16]

Ma, W. J.; Xue, Y. F.; Guo, S. Y.; Jiang, Y. N.; Wu, F.; Yu, P.; Mao, L. Q. Graphdiyne oxide: A new carbon nanozyme. Chem. Commun. 2020, 56, 5115–5118.

[17]

Xu, C.; Ma, W. J.; Wang, H. Z.; Shao, L. H.; Li, W. Q.; Yu, P.; Mao, L. Q. Graphdiyne oxide substrate-enhanced peroxidase-mimicking performance of Ru nanoparticles with physiological pH preference. Nano Res. 2024, 17, 1123–1131.

[18]

Zhu, Z. L.; Luo, H. Y.; Wang, T.; Zhang, C. H.; Liang, M. M.; Yang, D. Q.; Liu, M. H.; Yu, W. W.; Bai, Q.; Wang, L. N. et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold-silver nanocage heterostructures for antimicrobial applications. Chem. Mater. 2022, 34, 1356–1368.

[19]

Ahmed, S. R.; Cardoso, A. G.; Cobas, H. V.; Das, P.; Chen, A. C.; Srinivasan, S.; Rajabzadeh, A. R. Graphdiyne quantum dots for H2O2 and dopamine detection. ACS Appl. Nano Mater. 2023, 6, 8434–8443.

[20]

Bai, Q.; Zhang, J. C.; Yu, Y. X.; Zhang, C. H.; Jiang, Y. J.; Yang, D. Q.; Liu, M. H.; Wang, L. N.; Du, F. L.; Sui, N. et al. Piezoelectric activatable nanozyme-based skin patch for rapid wound disinfection. ACS Appl. Mater. Interfaces 2022, 14, 26455–26468.

[21]

Wei, G.; Liu, S. J.; Peng, Y. K.; Wei, H. On the specificity of nanozymes: A perspective. Chin. J. Chem. 2024, 42, 1515–1522.

[22]

Zhang, S. F.; Ruan, H. Y.; Xin, Q.; Mu, X. Y.; Wang, H.; Zhang, X. D. Modulation of the biocatalytic activity and selectivity of CeO2 nanozymes via atomic doping engineering. Nanoscale 2023, 15, 4408–4419.

[23]

Xu, G. P.; Liu, K. H.; Jia, B. Q.; Dong, Z. Z.; Zhang, C. M.; Liu, X. D.; Qu, Y. Y.; Li, W. F.; Zhao, M. W.; Zhou, H. T. et al. Electron lock manipulates the catalytic selectivity of nanozyme. ACS Nano 2024, 18, 3814–3825.

[24]

Bi, X. L.; Bai, Q.; Wang, L. N.; Du, F. L.; Liu, M. H.; Yu, W. W.; Li, S. H.; Li, J. Q.; Zhu, Z. L.; Sui, N. et al. Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Res. 2022, 15, 1446–1454.

[25]

Zhang, C. H.; Chen, L.; Bai, Q.; Wang, L. N.; Li, S. H.; Sui, N.; Yang, D. Q.; Zhu, Z. L. Nonmetal graphdiyne nanozyme-based ferroptosis-apoptosis strategy for colon cancer therapy. ACS Appl. Mater. Interfaces 2022, 14, 27720–27732.

[26]

Zhang, J. C.; Bai, Q.; Bi, X. L.; Zhang, C. H.; Shi, M. Y.; Yu, W. W.; Du, F. L.; Wang, L. N.; Wang, Z. B.; Zhu, Z. L. et al. Piezoelectric enhanced peroxidase-like activity of metal-free sulfur doped graphdiyne nanosheets for efficient water pollutant degradation and bacterial disinfection. Nano Today 2022, 43, 101429.

[27]

Wang, D. M.; Liao, Y.; Yan, H. L.; Zhu, S.; Liu, Y. P.; Li, J.; Wang, X.; Guo, X. H.; Gu, Z. J.; Sun, B. Y. In situ formed Z-scheme graphdiyne heterojunction realizes NIR-photocatalytic oxygen evolution and selective radiosensitization for hypoxic tumors. ACS Nano 2022, 16, 21186–21198.

[28]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[29]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[30]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[31]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[32]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[33]

Monkhorst, H. J.; Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[34]

Evarestov, R. A.; Smirnov, V. P. Modification of the Monkhorst-Pack special points meshes in the Brillouin zone for density functional theory and Hartree–Fock calculations. Phys. Rev. B 2004, 70, 233101.

[35]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[36]

Wang, X.; Yang, Z.; Si, W.; Shen, X.; Li, X.; Li, R.; Lv, Q.; Wang, N.; Huang, C. Cobalt-nitrogen-doped graphdiyne as an efficient bifunctional catalyst for oxygen reduction and hydrogen evolution reactions. Carbon 2019, 147, 9–18.

[37]

Wang, T.; Bai, Q.; Zhu, Z. L.; Xiao, H. L.; Jiang, F. Y.; Du, F. L.; Yu, W. W.; Liu, M. H.; Sui, N. Graphdiyne-supported palladium-iron nanosheets: A dual-functional peroxidase mimetic nanozyme for glutathione detection and antibacterial application. Chem. Eng. J. 2021, 413, 127537.

[38]

Liu, R. J.; Liu, H. B.; Li, Y. L.; Yi, Y. P.; Shang, X. K.; Zhang, S. S.; Yu, X. L.; Zhang, S. J.; Cao, H. B.; Zhang, G. J. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions. Nanoscale 2014, 6, 11336–11343.

[39]

Bao, H. H.; Wang, L.; Li, C.; Luo, J. Structural characterization and identification of graphdiyne and graphdiyne-based materials. ACS Appl. Mater. Interfaces 2019, 11, 2717–2729.

[40]

Zhao, Y. S.; Wan, J. W.; Yao, H. Y.; Zhang, L. J.; Lin, K. F.; Wang, L.; Yang, N. L.; Liu, D. B.; Song, L.; Zhu, J. et al. Few-layer graphdiyne doped with sp-hybridized nitrogen atoms at acetylenic sites for oxygen reduction electrocatalysis. Nat. Chem. 2018, 10, 924–931.

[41]

Zhang, C.; Zhang, H. K.; Wan, X.; Xie, Y.; Bentel, M. J.; Yu, Z. J.; Chen, Z. G.; He, J. A.; Li, J. L.; Xiang, X. Z. et al. Nitrogen-doped graphdiyne nanotubes for metal-free activation of peroxymonosulfate and enhanced degradation of recalcitrant heterocyclic contaminants. ACS EST Engg. 2023, 3, 969–980.

[42]

Lu, X. Y.; Gao, S. S.; Lin, H.; Tian, H.; Xu, D. L.; Shi, J. L. Bridging oxidase catalysis and oxygen reduction electrocatalysis by model single-atom catalysts. Natl. Sci. Rev. 2022, 9, nwac022.

[43]

Luo, M. C.; Koper, M. T. M. A kinetic descriptor for the electrolyte effect on the oxygen reduction kinetics on Pt(111). Nat. Catal. 2022, 5, 615–623.

[44]

Batchelor-McAuley, C. Defining the onset potential. Curr. Opin. Electrochem. 2023, 37, 101176.

[45]

Shen, X. M.; Wang, Z. Z.; Gao, X. J.; Gao, X. F. Reaction mechanisms and kinetics of nanozymes: Insights from theory and computation. Adv. Mater. 2024, 36, 2211151

Nano Research
Article number: 94907063
Cite this article:
Liu J, Wang X, Lian Y, et al. Regulation of graphdiyne-based nanozymes with enhanced oxidase-like activity by cobalt and nitrogen codoping. Nano Research, 2025, 18(1): 94907063. https://doi.org/10.26599/NR.2025.94907063
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return