Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The development of nanozymes with excellent intrinsic oxidase-like activity and specificity has received increasing interest. Graphdiyne (GDY) could be a promising choice for designing nanozymes with enhanced OXD-like activity due to its unique structure and properties. Herein, Co-N-GDY with high oxidase (OXD) activity but no peroxidase (POD) activity was synthesized by codoping of cobalt (Co) and nitrogen (N) into GDY and compared with other GDY-based nanozymes (including GDY, Co-GDY, and N-GDY). Upon analyzing the doping effect of Co and N on the OXD-like and POD-like activities, we found that the combination of Co and N in GDY played a significant role in enhancing the OXD-like activity, even reversed the POD-like activity of N-GDY to OXD-like activity of Co-N-GDY. The electrochemical experiment and the theoretical calculations provided an explanation for the mechanism and showed that the activity was closely linked to the reduction ability of O2 or H2O2 on the nanozyme substrates, which was determined by the rate-determining step of the catalytic reaction.
166
Views
14
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
© The author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made.
See https://creativecommons.org/licenses/by/4.0/