Amorphous oxide semiconductor thin film transistors (TFTs) are essential for next-generation high-resolution displays due to their superior electrical properties, stability, and compatibility with flexible substrates. This paper reports a novel TFT architecture featuring a trench-structured oxide semiconductor layer of varying thickness and a corresponding fabrication process, offering excellent current-driving capabilities, switching characteristics, and wafer-scale producibility compared to planar-structured TFTs and previous trench-structured TFTs (TS-TFTs). Our approach forms trenches through micropatterning the first oxide semiconductor layer deposited on the substrate, followed by the deposition of the second oxide semiconductor layer using an atomic layer deposition supercycle method. This process introduces a trench structure, comprising a micropatterned double-layer oxide semiconductor with a thin active segment and thick amplifier segments, between source and drain electrodes. This configuration allows for precise dimensional control of the active segment, facilitating an optimized TFT architecture design. The developed TS-TFTs exhibit excellent electrical properties, including a field-effect mobility of 87.84 cm2·V−1·s−1, a subthreshold swing of 0.074 V·dec−1, near-zero threshold voltage, negligible hysteresis, and a threshold voltage shift of 0.4 V under positive bias stress over 3600 s. Furthermore, an electrical performance analysis of 16 TS-TFTs fabricated on a 4-inch wafer shows that their transfer curves are almost coincident, demonstrating the feasibility of the proposed fabrication process for wafer-scale production.
Liu, Z. J.; Lin, C. H.; Hyun, B. R.; Sher, C. W.; Lv, Z. J.; Luo, B. Q.; Jiang, F. L.; Wu, T.; Ho, C. H.; Kuo, H. C. et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci. Appl. 2020, 9, 83.
Su, Y.; Geng, D.; Chen, Q.; Ji, H. S.; Li, M.; Shang, G. L.; Liu, L. B.; Duan, X. L.; Chuai, X. C.; Huang, S. J. et al. Novel TFT-Based emission driver in high performance AMOLED display applications. Org. Electron. 2021, 93, 106160.
Joo, W. J.; Kyoung, J.; Esfandyarpour, M.; Lee, S. H.; Koo, H.; Song, S. J.; Kwon, Y. N.; Song, S. H.; Bae, J. C.; Jo, A. et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science 2020, 370, 459–463.
Striakhilev, D.; Park, B. K.; Tang, S. J. Metal oxide semiconductor thin-film transistor backplanes for displays and imaging. MRS Bull. 2021, 46, 1063–1070.
Um, J. G.; Jeong, D. Y.; Jung, Y.; Moon, J. K.; Jung, Y. H.; Kim, S.; Kim, S. H.; Lee, J. S.; Jang, J. Active-matrix GaN µ-LED display using oxide thin-film transistor backplane and flip chip LED bonding. Adv. Electron. Mater. 2019, 5, 1800617.
In, H. J.; Oh, K. H.; Lee, I.; Ryu, D. H.; Choi, S. M.; Kim, K. N.; Kim, H. D.; Kwon, O. K. An advanced external compensation system for active matrix organic light-emitting diode displays with poly-Si thin-film transistor backplane. IEEE Trans. Electron Devices 2010, 57, 3012–3019.
Liu, M. Y.; Kim, H.; Wang, X. Y.; Song, H. W.; No, K.; Lee, S. Carrier density-tunable work function buffer at the channel/metallization interface for amorphous oxide thin-film transistors. ACS Appl. Electron. Mater. 2021, 3, 2703–2711.
Ding, S. J.; Wu, X. H. Superior atomic layer deposition technology for amorphous oxide semiconductor thin-film transistor memory devices. Chem. Mater. 2020, 32, 1343–1357.
Samanta, S.; Han, K. Z.; Sun, C.; Wang, C. K.; Kumar, A.; Thean, A. V. Y.; Gong, X. Amorphous InGaZnO thin-film transistors with sub-10-nm channel thickness and ultrascaled channel length. IEEE Trans. Electron Devices 2021, 68, 1050–1056.
Taouririt, T. E.; Meftah, A.; Sengouga, N.; Adaika, M.; Chala, S.; Meftah, A. Effects of high- k gate dielectrics on the electrical performance and reliability of an amorphous indium-tin-zinc-oxide thin film transistor (a-ITZO TFT): An analytical survey. Nanoscale 2019, 11, 23459–23474.
Ma, Q. G.; Wang, H. H.; Zhou, L. F.; Fan, J. L.; Liao, C. W.; Guo, X. J.; Zhang, S. D. Robust gate driver on array based on amorphous IGZO thin-film transistor for large size high-resolution liquid crystal displays. IEEE J. Electron Devices Soc. 2019, 7, 717–721.
Yim, J. R.; Jung, S. Y.; Yeon, H. W.; Kwon, J. Y.; Lee, Y. J.; Lee, J. H.; Joo, Y. C. Effects of metal electrode on the electrical performance of amorphous In–Ga–Zn–O thin film transistor. Jpn. J. Appl. Phys. 2012, 51, 011401.
Choi, S.; Jang, J.; Kang, H.; Baeck, J. H.; Bae, J. U.; Park, K. S.; Yoon, S. Y.; Kang, I. B.; Kim, D. M.; Choi, S. J. et al. Systematic decomposition of the positive bias stress instability in self-aligned coplanar InGaZnO thin-film transistors. IEEE Electron Device Lett. 2017, 38, 580–583.
Han, K. L.; Ok, K. C.; Cho, H. S.; Oh, S.; Park, J. S. Effect of hydrogen on the device performance and stability characteristics of amorphous InGaZnO thin-film transistors with a SiO2/SiN x /SiO2 buffer. Appl. Phys. Lett. 2017, 111, 063502.
Kim, Y. K.; Ahn, C. H.; Yun, M. G.; Cho, S. W.; Kang, W. J.; Cho, H. K. Periodically pulsed wet annealing approach for low-temperature processable amorphous InGaZnO thin film transistors with high electrical performance and ultrathin thickness. Sci. Rep. 2016, 6, 26287.
Nathan, A.; Lee, S.; Jeon, S.; Robertson, J. Amorphous oxide semiconductor TFTs for displays and imaging. J. Disp. Technol. 2014, 10, 917–927.
Geng, D.; Chen, Y. F.; Mativenga, M.; Jang, J. Touch sensor array with integrated drivers and comparator using a-IGZO TFTs. IEEE Electron Device Lett. 2017, 38, 391–394.
Kimura, M.; Sumida, R.; Kurasaki, A.; Imai, T.; Takishita, Y.; Nakashima, Y. Amorphous metal oxide semiconductor thin film, analog memristor, and autonomous local learning for neuromorphic systems. Sci. Rep. 2021, 11, 580.
Germs, W. C.; Adriaans, W. H.; Tripathi, A. K.; Roelofs, W. S. C.; Cobb, B.; Janssen, R. A. J.; Gelinck, G. H.; Kemerink, M. Charge transport in amorphous InGaZnO thin-film transistors. Phys. Rev. B 2012, 86, 155319.
Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.
Conley, J. F. Instabilities in amorphous oxide semiconductor thin-film transistors. IEEE Trans. Device Mater. Reliab. 2010, 10, 460–475.
Kamiya, T.; Hosono, H. Material characteristics and applications of transparent amorphous oxide semiconductors. NPG Asia Mater. 2010, 2, 15–22.
Zan, H. W.; Yeh, C. C.; Meng, H. F.; Tsai, C. C.; Chen, L. H. Achieving high field-effect mobility in amorphous indium-gallium-zinc oxide by capping a strong reduction layer. Adv. Mater. 2012, 24, 3509–3514.
Chen, C. D.; Yang, B. R.; Li, G. T.; Zhou, H.; Huang, B. L.; Wu, Q.; Zhan, R. Z.; Noh, Y. Y.; Minari, T.; Zhang, S. D. et al. Analysis of ultrahigh apparent mobility in oxide field-effect transistors. Adv. Sci. 2019, 6, 1801189.
Lee, S.; Song, Y.; Park, H.; Zaslavsky, A.; Paine, D. C. Channel scaling and field-effect mobility extraction in amorphous InZnO thin film transistors. Solid-State Electron. 2017, 135, 94–99.
Lee, J.; Kim, D.; Lee, S.; Cho, J.; Park, H.; Jang, J. High field effect mobility, amorphous In–Ga–Sn–O thin-film transistor with no effect of negative bias illumination stress. IEEE Electron Device Lett. 2019, 40, 1443–1446.
Jang, K.; Raja, J.; Kim, J.; Lee, Y.; Kim, D.; Yi, J. High field-effect mobility amorphous InSnZnO thin-film transistors with low carrier concentration and oxygen vacancy. Electron. Lett. 2013, 49, 1030–1031.
Cho, M. H.; Seol, H.; Yang, H.; Yun, P. S.; Bae, J. U.; Park, K. S.; Jeong, J. K. High-performance amorphous indium gallium zinc oxide thin-film transistors fabricated by atomic layer deposition. IEEE Electron Device Lett. 2018, 39, 688–691.
Nakata, M.; Tsuji, H.; Sato, H.; Nakajima, Y.; Fujisaki, Y.; Takei, T.; Yamamoto, T.; Fujikake, H. Influence of oxide semiconductor thickness on thin-film transistor characteristics. Jpn. J. Appl. Phys. 2013, 52, 03BB04.
Hwang, C. S.; Park, S. H. K.; Cheong, W. S.; Shin, J.; Yang, S.; Byun, C.; Ryu, M. K.; Cho, D. H.; Yoon, S. M.; Chung, S. M. et al. P-8: Effects of active thickness in oxide semiconductor TFTs. SID Int. Symp. Dig. Tech. Pap. 2009, 40, 1107–1109.
Ye, P. D.; Wilk, G. D.; Yang, B.; Kwo, J.; Gossmann, H. J. L.; Hong, M.; Ng, K. K.; Bude, J. Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition. Appl. Phys. Lett. 2004, 84, 434–436.
Im, Y.; Cho, S. I.; Kim, J.; Woo, N.; Ko, J. B.; Park, S. H. K. Buffer layer engineering of indium oxide based trench TFT for ultra high current driving. IEEE Electron Device Lett. 2023, 44, 1849–1852.
Kim, D. H.; Lee, K. H.; Lee, S. H.; Kim, J.; Yang, J.; Kim, J.; Cho, S. I.; Ji, K. H.; Hwang, C. S.; Park, S. H. K. Trench-structured high-current-driving aluminum-doped indium-tin-zinc oxide semiconductor thin-film transistor. IEEE Electron Device Lett. 2022, 43, 1677–1680.
Kim, J.; Kim, D. H.; Cho, S. I.; Lee, S. H.; Jeong, W.; Park, S. H. K. Channel-shortening effect suppression of a high-mobility self-aligned oxide TFT using trench structure. IEEE Electron Device Lett. 2021, 42, 1798–1801.
Fortunato, E.; Barquinha, P.; Martins, R. Oxide semiconductor thin-film transistors: A review of recent advances. Adv. Mater. 2012, 24, 2945–2986.
Park, J. S.; Maeng, W. J.; Kim, H. S.; Park, J. S. Review of recent developments in amorphous oxide semiconductor thin-film transistor devices. Thin Solid Films 2012, 520, 1679–1693.
Lee, S.; Kim, M.; Mun, G.; Ko, J.; Yeom, H. I.; Lee, G. H.; Shong, B.; Park, S. H. K. Effects of al precursors on the characteristics of indium-aluminum oxide semiconductor grown by plasma-enhanced atomic layer deposition. ACS Appl. Mater. Interfaces 2021, 13, 40134–40144.
Cho, S. I.; Woo, N.; Jeong, H. J.; Park, S. H. K. Inserting interfacial layer for atomic-scaled hydrogen control to enhance electrical properties of InZnO TFTs. IEEE Electron Device Lett. 2023, 44, 650–653.
Woo, N.; Cho, S. I.; Park, S. H. K. Optimal aluminum doping method in PEALD for designing outstandingly stable InAlZnO TFT. Adv. Mater. Interfaces 2023, 10, 2300128.
Ko, J. B.; Lee, S. H.; Park, K. W.; Park, S. H. K. Interface tailoring through the supply of optimized oxygen and hydrogen to semiconductors for highly stable top-gate-structured high-mobility oxide thin-film transistors. RSC Adv. 2019, 9, 36293–36300.
Ko, J. B.; Cho, S. I.; Park, S. H. K. Engineering a subnanometer interface tailoring layer for precise hydrogen incorporation and defect passivation for high-end oxide thin-film transistors. ACS Appl. Mater. Interfaces 2023, 15, 47799–47809.
Jeon, S.; Lee, K. H.; Lee, S. H.; Cho, S. I.; Hwang, C. S.; Ko, J. B.; Park, S. H. K. Contact properties of a low-resistance aluminum-based electrode with metal capping layers in vertical oxide thin-film transistors. J. Mater. Chem. C 2023, 11, 14177–14186.
Nam, Y.; Yang, J. H.; Jeong, P.; Kwon, O. S.; Pi, J. E.; Cho, S. H.; Hwang, C. S.; Ahn, J.; Ji, S.; Park, S. H. K. Effect of a rapid thermal annealing process on the electrical properties of an aluminum-doped indium zinc tin oxide thin film transistor. Phys. Status Solidi A 2017, 214, 1600490.
Nam, Y.; Kim, H. O.; Cho, S. H.; Park, S. H. K. Effect of hydrogen diffusion in an In–Ga–Zn–O thin film transistor with an aluminum oxide gate insulator on its electrical properties. RSC Adv. 2018, 8, 5622–5628.
Groner, M. D.; Elam, J. W.; Fabreguette, F. H.; George, S. M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 2002, 413, 186–197.
Kim, S.; Lee, S. H.; Jo, I. H.; Seo, J.; Yoo, Y. E.; Kim, J. H. Influence of growth temperature on dielectric strength of Al2O3 thin films prepared via atomic layer deposition at low temperature. Sci. Rep. 2022, 121, 5124.
George, S. M. Atomic layer deposition: An overview. Chem. Rev. 2010, 110, 111–131.
Knez, M.; Nielsch, K.; Niinistö, L. Synthesis and surface engineering of complex nanostructures by atomic layer deposition. Adv. Mater. 2007, 19, 3425–3438.
Sønsteby, H. H.; Yanguas-Gil, A.; Elam, J. W. Consistency and reproducibility in atomic layer deposition. J. Vac. Sci. Technol. A 2020, 38, 020804.
Barquinha, P.; Pimentel, A.; Marques, A.; Pereira, L.; Martins, R.; Fortunato, E. Influence of the semiconductor thickness on the electrical properties of transparent TFTs based on indium zinc oxide. J. Non-Cryst. Solids 2006, 352, 1749–1752.
Chen, A. H.; Cao, H. T.; Zhang, H. Z.; Liang, L. Y.; Liu, Z. M.; Yu, Z.; Wan, Q. Influence of the channel layer thickness on electrical properties of indium zinc oxide thin-film transistor. Microelectron. Eng. 2010, 87, 2019–2023.
Yang, Z.; Yang, J. W.; Meng, T.; Qu, M. Y.; Zhang, Q. Influence of channel layer thickness on the stability of amorphous indium zinc oxide thin film transistors. Mater. Lett. 2016, 166, 46–50.
Kang, D. H.; Han, J. U.; Mativenga, M.; Ha, S. H.; Jang, J. Threshold voltage dependence on channel length in amorphous-indium-gallium-zinc-oxide thin-film transistors. Appl. Phys. Lett. 2013, 102, 083508.
Barard, S.; Mukherjee, D.; Sarkar, S.; Kreouzis, T.; Chambrier, I.; Cammidge, A. N.; Ray, A. K. Channel length-dependent characterisations of organic thin-film transistors with solution processable gadolinium phthalocyanine derivatives. J. Mater. Sci.: Mater. Electron. 2020, 31, 265–273.
Orouji, A. A.; Kumar, M. J. Leakage current reduction techniques in poly-Si TFTs for active matrix liquid crystal displays: A comprehensive study. IEEE Trans. Device Mater. Reliab. 2006, 6, 315–325.
Jeong, J. K.; Won Yang, H.; Jeong, J. H.; Mo, Y. G.; Kim, H. D. Origin of threshold voltage instability in indium-gallium-zinc oxide thin film transistors. Appl. Phys. Lett. 2008, 93, 123508.
Park, J.; Jang, K. S.; Shin, D. G.; Shin, M.; Yi, J. S. Gate-induced drain leakage current characteristics of p-type polycrystalline silicon thin film transistors aged by off-state stress. Solid State Electron. 2018, 148, 20–26.