AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (13.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Strain-controlled current-induced magnetization switching in flexible spin-orbit torque device

Meiling Li1Xiaoguang Xu1 ( )Mengxi Wang2Bin He3Tanzhao Zhang1Jianqin Guo1Kangkang Meng1Guoqiang Yu3Yong Jiang1 ( )
Key Laboratory of Advanced Materials and Devices for Post-Moore Chips, Ministry of Education, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Key Laboratory of Spintronics Materials, Devices and Systems of Zhejiang Province, Hangzhou 311300, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Show Author Information

Graphical Abstract

The current-driven magnetization switching behavior induced by spin-orbit torque on flexible substrates is successfully modulated linearly by tensile strain. Moreover, the flexible device can serve as a strain sensor to monitor actions of the finger joint.

Abstract

Spin-orbit torque (SOT)-based flexible devices have been proved to be promising candidates for wearable technology and artificial intelligence. However, there is still a blank for the bending sensitive SOT devices, which hampers the applications of flexible spintronic devices. Here we report a bending strain-mediated perpendicular magnetic anisotropy (PMA) and current-induced magnetization switching in Kapton/polyimide/Ta/Pt/Co/Pt ferromagnetic heterostructures. The coercivity of anomalous Hall effect loop increases about 15% under a tensile strain of about 1.35%. Moreover, the critical current density (Jc) gradually decreases with increasing of the tensile strain, and the magnitude of Jc reduces about 7.6% under 1.35% tensile strain. It is notable that the Hall resistance can be reversible modulated by tensile strain. These strain sensitive behaviors can be attributed to the mechanical strain from the flexible substrates. This study paves the way for future train sensors and low energy consumption logic-in memory basing on mechanical strain.

Electronic Supplementary Material

Download File(s)
7066_ESM.pdf (582.7 KB)

References

[1]

Mannsfeld, S. C. B.; Tee, B. C. K.; Stoltenberg, R. M.; Chen, C. V. H. H.; Barman, S.; Muir, B. V. Q.; Sokolov, A. N.; Reese, C.; Bao, Z. N. Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers. Nat. Mater. 2010, 9, 859–864.

[2]

Lee, S.; Reuveny, A.; Reeder, J.; Lee, S.; Jin, H.; Liu, Q. H.; Yokota, T.; Sekitani, T.; Isoyama, T.; Abe, Y. et al. A transparent bending-insensitive pressure sensor. Nat. Nanotechnol. 2016, 11, 472–478.

[3]

Li, S. B.; Cao, P. J.; Li, F. L.; Asghar, W.; Wu, Y. Z.; Xiao, H. Y.; Liu, Y. W.; Zhou, Y. L.; Yang, H. L.; Zhang, Y. et al. Self-powered stretchable strain sensors for motion monitoring and wireless control. Nano Energy 2022, 92, 106754.

[4]

Zeng, W.; Shu, L.; Li, Q.; Chen, S.; Wang, F.; Tao, X. M. Fiber-based wearable electronics: A review of materials, fabrication, devices, and applications. Adv. Mater. 2014, 26, 5310–5336.

[5]

Kim, J.; Kim, M.; Lee, M. S.; Kim, K.; Ji, S.; Kim, Y. T.; Park, J.; Na, K.; Bae, K. H.; Kyun Kim, H. et al. Wearable smart sensor systems integrated on soft contact lenses for wireless ocular diagnostics. Nat. Commun. 2017, 8, 14997.

[6]

Li, P.; Liu, T.; Chang, H. C.; Kalitsov, A.; Zhang, W.; Csaba, G.; Li, W.; Richardson, D.; DeMann, A.; Rimal, G. et al. Spin-orbit torque-assisted switching in magnetic insulator thin films with perpendicular magnetic anisotropy. Nat. Commun. 2016, 7, 12688.

[7]

Brataas, A.; Kent, A. D.; Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 2012, 11, 372–381.

[8]

Mihai Miron, I.; Gaudin, G.; Auffret, S.; Rodmacq, B.; Schuhl, A.; Pizzini, S.; Vogel, J.; Gambardella, P. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 2010, 9, 230–234.

[9]

Hwee Wong, G. D.; Xu, Z.; Gan, W. L.; Ang, C. C. I.; Law, W. C.; Tang, J. X.; Zhang, W.; Wong, P. K. J.; Yu, X. J.; Xu, F. et al. Strain-mediated spin-orbit torque enhancement in Pt/Co on flexible substrate. ACS Nano 2021, 15, 8319–8327.

[10]

Zhao, S. S.; Zhou, Z. Y.; Li, C. L.; Peng, B.; Hu, Z. Q.; Liu, M. Low-voltage control of (Co/Pt) x perpendicular magnetic anisotropy heterostructure for flexible spintronics. ACS Nano 2018, 12, 7167–7173.

[11]

Lee, O.; You, L.; Jang, J.; Subramanian, V.; Salahuddin, S. Flexible spin-orbit torque devices. Appl. Phys. Lett. 2015, 107, 252401.

[12]

Li, M. L.; Li, C. X.; Xu, X. G.; Wang, M. X.; Zhu, Z. Q.; Meng, K. K.; He, B.; Yu, G. Q.; Hu, Y. F.; Peng, L. M. et al. An ultrathin flexible programmable spin logic device based on spin-orbit torque. Nano Lett. 2023, 23, 3818–3825.

[13]

Farle, M.; Platow, W.; Anisimov, A. N.; Poulopoulos, P.; Baberschke, K. Anomalous reorientation phase transition of the magnetization in fct Ni/Cu(001). Phys. Rev. B 1997, 56, 5100–5103.

[14]

Baek, S. H. C.; Park, K. W.; Kil, D. S.; Jang, Y.; Park, J.; Lee, K. J.; Park, B. G. Complementary logic operation based on electric-field controlled spin-orbit torques. Nat. Electron. 2018, 1, 398–403.

[15]

Luo, Z. C.; Hrabec, A.; Dao, T. P.; Sala, G.; Finizio, S.; Feng, J. X.; Mayr, S.; Raabe, J.; Gambardella, P.; Heyderman, L. J. Current-driven magnetic domain-wall logic. Nature 2020, 579, 214–218.

[16]

Zhao, X. N.; Dong, Y. N.; Chen, W. B.; Xie, X. J.; Bai, L. H.; Chen, Y. X.; Kang, S. S.; Yan, S. S.; Tian, Y. F. Purely electrical controllable complete spin logic in a single magnetic heterojunction. Adv. Funct. Mater. 2021, 31, 2105359.

[17]

Wan, C. H.; Zhang, X.; Yuan, Z. H.; Fang, C.; Kong, W. J.; Zhang, Q. T.; Wu, H.; Khan, U.; Han, X. F. Programmable spin logic based on spin hall effect in a single device. Adv. Electron. Mater. 2017, 3, 1600282.

[18]

Zhang, Y. L.; Liu, J.; Dong, Y. Q.; Wu, S. Z.; Zhang, J. Y.; Wang, J.; Lu, J. D.; Rückriegel, A.; Wang, H. C.; Duine, R. et al. Strain-driven dzyaloshinskii-moriya interaction for room-temperature magnetic skyrmions. Phys. Rev. Lett. 2021, 127, 117204.

[19]

Okabayashi, J.; Usami, T.; Mahfudh Yatmeidhy, A.; Murakami, Y.; Shiratsuchi, Y.; Nakatani, R.; Gohda, Y.; Hamaya, K. Strain-driven dzyaloshinskii-moriya interaction for room-temperature magnetic skyrmions. NPG Asia Mater. 2024, 16, 3.

[20]

Matsumoto, H.; Ota, S.; Koyama, T.; Chiba, D. Control of magnetic anisotropy in a Co thin film on a flexible substrate by applying biaxial tensile strain. Appl. Phys. Lett. 2021, 118, 022406.

[21]

Wang, M. X.; Guo, Q.; Xu, X. G.; Zhang, Z. Y.; Ren, Z. Y.; Zhu, L. B.; Meng, K. K.; Chen, J. K.; Wu, Y.; Miao, J. et al. Lateral electric-field-controlled perpendicular magnetic anisotropy and current-induced magnetization switching in multiferroic heterostructures. Adv. Electron. Mater. 2020, 6, 2000229.

[22]

Carcia, P. F. Perpendicular magnetic anisotropy in Pd/Co and Pt/Co thin-film layered structures. J. Appl. Phys. 1988, 63, 5066–5073.

[23]

Xie, Q. D.; Lin, W. N.; Yang, B. S.; Shu, X. Y.; Chen, S. H.; Liu, L.; Yu, X. J.; Breese, M. B. H.; Zhou, T. J.; Yang, M. et al. Giant enhancements of perpendicular magnetic anisotropy and spin-orbit torque by a MoS2 layer. Adv. Mater. 2019, 31, 1900776.

[24]

Grimsditch, M.; Jaccard, Y.; Schuller, I. K. Magnetic anisotropies in dot arrays: Shape anisotropy versus coupling. Phys. Rev. B 1998, 58, 11539–11543.

[25]

Hu, J. F.; Ernst, B.; Tu, S.; Kuveždić, M.; Hamzić, A.; Tafra, E.; Basletić, M.; Zhang, Y. G.; Markou, A.; Felser, C. et al. Anomalous hall and Nernst effects in Co2TiSn and Co2Ti0.6V0.4Sn Heusler thin films. Phys. Rev. Appl. 2018, 10, 044037.

[26]

Yang, Q.; Nan, T. X.; Zhang, Y. J.; Zhou, Z. Y.; Peng, B.; Ren, W.; Ye, Z. G.; Sun, N. X.; Liu, M. Voltage control of perpendicular magnetic anisotropy in multiferroic (Co/Pt)3/PbMg1/3Nb2/3O3–PbTiO3 heterostructures. Phys. Rev. Appl. 2017, 8, 044006.

[27]

Nakajima, N.; Koide, T.; Shidara, T.; Miyauchi, H.; Fukutani, H.; Fujimori, A.; Iio, K.; Katayama, T.; Nývlt, M.; Suzuki, Y. Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: Magnetic circular X-ray dichroism study. Phys. Rev. Lett. 1998, 81, 5229–5232.

[28]

Cao, J. W.; Chen, Y. F.; Jin, T. L.; Gan, W. L.; Wang, Y.; Zheng, Y. Q.; Lv, H.; Cardoso, S.; Wei, D.; Lew, W. S. Spin orbit torques induced magnetization reversal through asymmetric domain wall propagation in Ta/CoFeB/MgO structures. Sci. Rep. 2018, 8, 1355.

[29]

Ma, Q. L.; Li, Y. F.; Gopman, D. B.; Kabanov, Y. P.; Shull, R. D.; Chien, C. L. Switching a perpendicular ferromagnetic layer by competing spin currents. Phys. Rev. Lett. 2018, 120, 117703.

[30]

Vélez, S.; Schaab, J.; Wörnle, M. S.; Müller, M.; Gradauskaite, E.; Welter, P.; Gutgsell, C.; Nistor, C.; Degen, C. L.; Trassin, M. et al. High-speed domain wall racetracks in a magnetic insulator. Nat. Commun. 2019, 10, 4750.

[31]

Emori, S.; Bauer, U.; Ahn, S. M.; Martinez, E.; Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 2013, 12, 611–616.

[32]

Zhang, R. Q.; Liao, L. Y.; Chen, X. Z.; Xu, T.; Cai, L.; Guo, M. H.; Bai, H.; Sun, L.; Xue, F. H.; Su, J. et al. Current-induced magnetization switching in a CoTb amorphous single layer. Phys. Rev. B 2020, 101, 214418.

[33]

Xie, X. J.; Zhao, X. N.; Dong, Y. N.; Qu, X. L.; Zheng, K.; Han, X. D.; Han, X.; Fan, Y. B.; Bai, L. H.; Chen, Y. X. et al. Controllable field-free switching of perpendicular magnetization through bulk spin-orbit torque in symmetry-broken ferromagnetic films. Nat. Commun. 2021, 12, 2473.

[34]

Liu, E.; Fache, T.; Cespedes-Berrocal, D.; Zhang, Z.; Petit-Watelot, S.; Mangin, S.; Xu, F.; Rojas-Sánchez, J. C. Strain-enhanced charge-to-spin conversion in Ta/Fe/Pt multilayers grown on flexible mica substrate. Phys. Rev. Appl. 2019, 12, 044074.

[35]

Kwon, J. H.; Kwak, W. Y.; Cho, B. K. Magnetization manipulation of a flexible magnetic sensor by controlled stress application. Sci. Rep. 2018, 8, 15765.

[36]

Pandey, E.; Singh, B. B.; Sharangi, P.; Bedanta, S. Strain engineered domain structure and their relaxation in perpendicularly magnetized Co/Pt deposited on flexible polyimide. Nano Express 2020, 1, 010037.

[37]

Ota, S.; Hibino, Y.; Bang, D.; Awano, H.; Kozeki, T.; Akamine, H.; Fujii, T.; Namazu, T.; Takenobu, T.; Koyama, T. et al. Strain-induced reversible modulation of the magnetic anisotropy in perpendicularly magnetized metals deposited on a flexible substrate. Appl. Phys. Express 2016, 9, 043004.

Nano Research
Article number: 94907066
Cite this article:
Li M, Xu X, Wang M, et al. Strain-controlled current-induced magnetization switching in flexible spin-orbit torque device. Nano Research, 2025, 18(1): 94907066. https://doi.org/10.26599/NR.2025.94907066
Topics:

398

Views

94

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 August 2024
Revised: 09 October 2024
Accepted: 10 October 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return