Lead halide perovskite nanocrystals (NCs) exhibit excellent optoelectronic performance and have drawn great interests in the fields of biological imaging and sensing. However, the poor stability of CsPbX3 (X = Cl, Br, I) in water is still a challenge to hinder their practical applications. In this work, a facile strategy has been developed for aqueous synthesis of CsPbX3 nanocrystals, in which L-glutamic acid (L-Glu) has been used to replace oleic acid in the synthetic process. Benefiting from the synergic effects of L-Glu and oleylamine (OAm), CsPbBr3 nanocrystals (L-Glu/OAm-CsPbBr3 NCs) with high water stability have been directly prepared under a mild condition at room temperature in water, facilitated by the process of crystal phase transformation from Cs4PbBr6 to CsPbBr3. L-Glu/OAm-CsPbBr3 NCs exhibit a high quantum yield of 85% and a narrow full width at half maximum of 16 nm, demonstrating their efficient luminescence in water. Typically, L-Glu on the surface have contributed greatly to an acidic environment and passivation of surface defects, improving the water stability and dispersibility of CsPbBr3 nanocrystals. Moreover, L-Glu/OAm-CsPbBr3 NCs exhibit great biocompatibility due to the presence of L-Glu, resulting in their good performance for HeLa cell imaging. Thus, we propose a facile and effective method to prepare CsPbBr3 nanocrystals with excellent water stability by using L-Glu and OAm as cooperated ligands and expand their application in cell imaging.
Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.
Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.
Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.
Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008.
Dutta, A.; Behera, R. K.; Pal, P.; Baitalik, S.; Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew. Chem., Int. Ed. 2019, 58, 5552–5556.
Yoon, Y. J.; Lee, K. T.; Lee, T. K.; Kim, S. H.; Shin, Y. S.; Walker, B.; Park, S. Y.; Heo, J.; Lee, J.; Kwak, S. K. et al. Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule 2018, 2, 2105–2116.
Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640.
Cao, Y. B.; Zhang, D. Q.; Zhang, Q. P.; Qiu, X.; Zhou, Y.; Poddar, S.; Fu, Y.; Zhu, Y. D.; Liao, J. F.; Shu, L. et al. High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 2023, 14, 4611.
Lin, J. D.; Lu, Y. X.; Li, X. Y.; Huang, F.; Yang, C. B.; Liu, M. L.; Jiang, N. Z.; Chen, D. Q. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett. 2021, 6, 519–528.
Zhao, X. M.; Liu, T. R.; Burlingame, Q. C.; Liu, T. J.; Holley, R.; Cheng, G. M.; Yao, N.; Gao, F.; Loo, Y. L. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 2022, 377, 307–310.
Huang, J.; Wang, H.; Jia, C. L.; Tang, Y. Z.; Yang, H. S.; Chen, C. Y.; Gou, K. Y.; Zhou, Y. F.; Zhang, D.; Liu, S. Z. Advances in crystallization regulation and defect suppression strategies for all-inorganic CsPbX3 perovskite solar sells. Prog. Mater Sci. 2024, 141, 101223.
Liu, N.; Luo, H. Y.; Wei, X. Y.; Zeng, X.; Yang, J.; Huang, Y. X.; Yu, P.; Wang, Y. P.; Zhang, D. K.; Pi, M. Y. et al. Linearly manipulating color emission via anion exchange technology for high performance amplified spontaneous emission of perovskites. Adv. Mater. 2024, 36, 2308672.
Zhang, Q.; Shang, Q. Y.; Su, R.; Do, T. T. H.; Xiong, Q. H. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett. 2021, 21, 1903–1914.
Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.
Zhu, H. Y.; Chen, H. F.; Fei, J. J.; Deng, Y. T.; Yang, T.; Chen, P. H.; Liang, Y.; Cai, Y. Q.; Zhu, L.; Huang, Z. F. Solution-processed CsPbBr3 perovskite films via CsBr intercalated PbBr2 intermediate for high-performance photodetectors towards. Nano Energy 2024, 125, 109513.
Cheng, L. J.; Chi, J. M.; Su, M.; Song, Y. L. Interface engineering of perovskite nanocrystals: Challenges and opportunities for biological imaging and detection. J. Mater. Chem. C 2023, 11, 7970–7981.
Wang, S.; Wei, Z. Y.; Xu, Q.; Yu, L.; Xiao, Y. X. Trinity strategy: Enabling perovskite as hydrophilic and efficient fluorescent nanozyme for constructing biomarker reporting platform. ACS Nano 2024, 18, 1084–1097.
Avugadda, S. K.; Castelli, A.; Dhanabalan, B.; Fernandez, T.; Silvestri, N.; Collantes, C.; Baranov, D.; Imran, M.; Manna, L.; Pellegrino, T. et al. Highly emitting perovskite nanocrystals with 2-year stability in water through an automated polymer encapsulation for bioimaging. ACS Nano 2022, 16, 13657–13666.
Dong, Y. H.; Tang, X. Q.; Zhang, Z. W.; Song, J. Z.; Niu, T. C.; Shan, D.; Zeng, H. B. Perovskite nanocrystal fluorescence-linked immunosorbent assay methodology for sensitive point-of-care biological test. Matter 2020, 3, 273–286.
Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.
Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability. Adv. Mater. Interfaces 2018, 5, 1701662.
De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.
Brennan, M. C.; Veghte, D. P.; Ford, B. R.; McCleese, C. L.; Loftus, L. M.; McComb, D. W.; Song, Z. N.; Heben, M. J.; Grusenmeyer, T. A. Photolysis of mixed halide perovskite nanocrystals. ACS Energy Lett. 2023, 8, 2150–2158.
Li, Q. Y.; Shen, D. Y.; Luo, C. Z.; Zheng, Z. S.; Xia, W. L.; Ma, W. C.; Li, J.; Yang, Y. X.; Chen, S.; Chen, Y. Ultra-thermostability of spatially confined and fully protected perovskite nanocrystals by in situ crystallization. Small 2022, 18, 2107452.
Straus, D. B.; Guo, S.; Abeykoon, A. M. M.; Cava, R. J. Understanding the Instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 2020, 32, 2001069.
Wang, Z. Y.; Wei, Y. C.; Chen, Y. M.; Zhang, H. Y.; Wang, D.; Ke, J. X.; Liu, Y. S.; Hong, M. C. “Whole-Body” fluorination for highly efficient and ultra-stable all-inorganic halide perovskite quantum dots. Angew. Chem. , Int. Ed. 2024, 63, e202315841.
Wang, J.; Long, R. Nuclear quantum effects accelerate charge recombination but boost the stability of inorganic perovskites in mild humidity. Nano Lett. 2024, 24, 3476–3483.
Krieg, F.; Ong, Q. K.; Burian, M.; Rainò, G.; Naumenko, D.; Amenitsch, H.; Süess, A.; Grotevent, M. J.; Krumeich, F.; Bodnarchuk, M. I. et al. Stable ultraconcentrated and ultradilute colloids of CsPbX3 (X = Cl, Br) nanocrystals using natural lecithin as a capping ligand. J. Am. Chem. Soc. 2019, 141, 19839–19849.
Li, Y.; Wang, X. Y.; Xue, W. N.; Wang, W.; Zhu, W.; Zhao, L. J. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785–789.
Li, S.; Shi, Z. F.; Zhang, F.; Wang, L. T.; Ma, Z. Z.; Yang, D. W.; Yao, Z. Q.; Wu, D.; Xu, T. T.; Tian, Y. T. et al. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem. Mater. 2019, 31, 3917–3928.
Lv, W. Z.; Li, L.; Xu, M. C.; Hong, J. X.; Tang, X. X.; Xu, L. G.; Wu, Y. H.; Zhu, R.; Chen, R. F.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 2019, 31, 1900682.
Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.
Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.
Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.
Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.
Hills-Kimball, K.; Yang, H. J.; Cai, T.; Wang, J. Y.; Chen, O. Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 2021, 8, 2100214.
Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal cspbbr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.
Zhang, M. Q.; Bi, C. H.; Xia, Y. X.; Sun, X. J.; Wang, X. Y.; Liu, A. Q.; Tian, S. Y.; Liu, X. F.; de Leeuw, N. H.; Tian, J. J. Water-driven synthesis of deep-blue perovskite colloidal quantum wells for electroluminescent devices. Angew. Chem., Int. Ed. 2023, 62, e202300149.
Jin, X. D.; Wang, C. Q.; Miao, Y. Q.; Liu, P. Z.; Ji, J. L.; Chang, M. J.; Xu, B. S.; Zhao, M.; Tian, J. J.; Guo, J. J. In situ surface reconstruction in pure water by ice-confined freeze-thaw strategy for high-performance core–shell structural perovskite nanocrystals. Adv. Funct. Mater. 2024, 34, 2401435.
Zhang, X. Y.; Bai, X.; Wu, H.; Zhang, X. T.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Yu, W. W.; Rogach, A. L. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 3337–3342.
Geng, C.; Xu, S.; Zhong, H. Z.; Rogach, A. L.; Bi, W. G. Aqueous synthesis of methylammonium lead halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 9650–9654.
Zhu, H.; Pan, Y. X.; Peng, C. D.; Lian, H. Z.; Lin, J. 4-Bromo-butyric acid-assisted in situ passivation strategy for superstable all-inorganic halide perovskite CsPbX3 quantum dots in polar media. Angew. Chem. , Int. Ed. 2022, 61, e202116702.
Song, S.; Lv, Y. C.; Cao, B. Q.; Wang, W. Z. Surface modification strategy synthesized CsPbX3 perovskite quantum dots with excellent stability and optical properties in water. Adv. Funct. Mater. 2023, 33, 2300493.
Yin, J. Y.; Zhang, J.; Wu, Z. Z.; Wu, F.; Li, X.; Dai, J. N.; Chen, C. Q. Origin of water-stable CsPbX3 quantum dots assisted by zwitterionic ligands and sequential strategies for enhanced luminescence based on crystal evolution. Small 2024, 20, 2307042.
Liu, Z. K.; Bekenstein, Y.; Ye, X. C.; Nguyen, S. C.; Swabeck, J.; Zhang, D. D.; Lee, S. T.; Yang, P. D.; Ma, W. L.; Alivisatos, A. P. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 2017, 139, 5309–5312.
Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.
Paul, S.; Acharya, S. Postsynthesis transformation of halide perovskite nanocrystals. ACS Energy Lett. 2022, 7, 2136–2155.
Aminzare, M.; Jiang, J.; Mandl, G. A.; Mahshid, S.; Capobianco, J. A.; Dorval Courchesne, N. M. Biomolecules incorporated in halide perovskite nanocrystals: Synthesis, optical properties, and applications. Nanoscale 2023, 15, 2997–3031.
Chen, D. Z.; Ko, P. K.; Li, C. H. A.; Zou, B. S.; Geng, P.; Guo, L.; Halpert, J. E. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 2023, 8, 410–416.
Shi, J. W.; Li, F. C.; Jin, Y.; Liu, C.; Cohen-Kleinstein, B.; Yuan, S.; Li, Y. Y.; Wang, Z. K.; Yuan, J. Y.; Ma, W. L. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem., Int. Ed. 2020, 59, 22230–22237.
Song, W. T.; Wang, Y. M.; Wang, B.; Yao, Y. F.; Wang, W. G.; Wu, J. H.; Shen, Q.; Luo, W. J.; Zou, Z. G. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795–801.
Song, W. T.; Wang, D. D.; Tian, J. W.; Qi, G. B.; Wu, M.; Liu, S. T.; Wang, T. T.; Wang, B.; Yao, Y. F.; Zou, Z. G. et al. Encapsulation of dual-passivated perovskite quantum dots for bio-imaging. Small 2022, 18, 2204763.
Grandhi, G. K.; Viswanath, N.; S. M.; Cho, H. B.; Kim, S. M.; Im, W. B. Highly stable hetero-structured green-emitting cesium lead bromide nanocrystals via ligand-mediated phase control. Nanoscale 2019, 11, 21137–21146.
Zhang, Y. H.; Saidaminov, M. I.; Dursun, I.; Yang, H. Z.; Murali, B.; Alarousu, E.; Yengel, E.; Alshankiti, B. A.; Bakr, O. M.; Mohammed, O. F. Zero-dimensional Cs4PbBr6 perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 961–965.
Nikl, M.; Mihokova, E.; Nitsch, K.; Somma, F.; Giampaolo, C.; Pazzi, G. P.; Fabeni, P.; Zazubovich, S. Photoluminescence of Cs4PbBr6 crystals and thin films. Chem. Phys. Lett. 1999, 306, 280–284.
Ren, J. J.; Zhou, X. P.; Wang, Y. H. Water triggered interfacial synthesis of highly luminescent CsPbX3: Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 2020, 13, 3387–3395.
Yang, D.; Li, P. L.; Zou, Y. T.; Cao, M. H.; Hu, H. C.; Zhong, Q. X.; Hu, J. X.; Sun, B. Q.; Duhm, S.; Xu, Y. et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 2019, 31, 1575–1583.
Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 2003, 42, 2427–2433.
Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988–4994.
Brown, J.; Grimaud, A. Proton-donating and chemistry-dependent buffering capability of amino acids for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2023, 25, 8005–8012.
Liu, M.; Zhao, J. T.; Luo, Z. L.; Sun, Z. H.; Pan, N.; Ding, H. Y.; Wang, X. P. Unveiling solvent-related effect on phase transformations in CsBr–PbBr2 system: Coordination and ratio of precursors. Chem. Mater. 2018, 30, 5846–5852.
Chen, Y. H.; Smock, S. R.; Flintgruber, A. H.; Perras, F. A.; Brutchey, R. L.; Rossini, A. J. Surface termination of CsPbBr3 perovskite quantum dots determined by solid-state NMR spectroscopy. J. Am. Chem. Soc. 2020, 142, 6117–6127.