PDF (12.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Amino acid assisted aqueous synthesis of highly stable CsPbBr3 nanocrystals for cell imaging

Xue Li1Yanan Guo1Guoying Tan1Qingyi Liu1Nan Song1 ()Yu Tang1,2 ()
State Key Laboratory of Applied Organic Chemistry, Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China
Show Author Information

Graphical Abstract

View original image Download original image
CsPbBr3 nanocrystals with good water stability and dispersibility have been successfully synthesized in aquesous media by using L-glutamic acid and oleylamine as the ligands, which has been applied for cell imaging.

Abstract

Lead halide perovskite nanocrystals (NCs) exhibit excellent optoelectronic performance and have drawn great interests in the fields of biological imaging and sensing. However, the poor stability of CsPbX3 (X = Cl, Br, I) in water is still a challenge to hinder their practical applications. In this work, a facile strategy has been developed for aqueous synthesis of CsPbX3 nanocrystals, in which L-glutamic acid (L-Glu) has been used to replace oleic acid in the synthetic process. Benefiting from the synergic effects of L-Glu and oleylamine (OAm), CsPbBr3 nanocrystals (L-Glu/OAm-CsPbBr3 NCs) with high water stability have been directly prepared under a mild condition at room temperature in water, facilitated by the process of crystal phase transformation from Cs4PbBr6 to CsPbBr3. L-Glu/OAm-CsPbBr3 NCs exhibit a high quantum yield of 85% and a narrow full width at half maximum of 16 nm, demonstrating their efficient luminescence in water. Typically, L-Glu on the surface have contributed greatly to an acidic environment and passivation of surface defects, improving the water stability and dispersibility of CsPbBr3 nanocrystals. Moreover, L-Glu/OAm-CsPbBr3 NCs exhibit great biocompatibility due to the presence of L-Glu, resulting in their good performance for HeLa cell imaging. Thus, we propose a facile and effective method to prepare CsPbBr3 nanocrystals with excellent water stability by using L-Glu and OAm as cooperated ligands and expand their application in cell imaging.

Electronic Supplementary Material

Download File(s)
7067_ESM.pdf (1.6 MB)

References

[1]

Kovalenko, M. V.; Protesescu, L.; Bodnarchuk, M. I. Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science 2017, 358, 745–750.

[2]

Shamsi, J.; Urban, A. S.; Imran, M.; De Trizio, L.; Manna, L. Metal halide perovskite nanocrystals: Synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 2019, 119, 3296–3348.

[3]

Protesescu, L.; Yakunin, S.; Bodnarchuk, M. I.; Krieg, F.; Caputo, R.; Hendon, C. H.; Yang, R. X.; Walsh, A.; Kovalenko, M. V. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): Novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 2015, 15, 3692–3696.

[4]

Manser, J. S.; Christians, J. A.; Kamat, P. V. Intriguing optoelectronic properties of metal halide perovskites. Chem. Rev. 2016, 116, 12956–13008.

[5]

Dutta, A.; Behera, R. K.; Pal, P.; Baitalik, S.; Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals: A generic synthesis approach. Angew. Chem., Int. Ed. 2019, 58, 5552–5556.

[6]

Yoon, Y. J.; Lee, K. T.; Lee, T. K.; Kim, S. H.; Shin, Y. S.; Walker, B.; Park, S. Y.; Heo, J.; Lee, J.; Kwak, S. K. et al. Reversible, full-color luminescence by post-treatment of perovskite nanocrystals. Joule 2018, 2, 2105–2116.

[7]

Zhang, L. Q.; Yang, X. L.; Jiang, Q.; Wang, P. Y.; Yin, Z. G.; Zhang, X. W.; Tan, H. R.; Yang, Y.; Wei, M. Y.; Sutherland, B. R. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 2017, 8, 15640.

[8]

Cao, Y. B.; Zhang, D. Q.; Zhang, Q. P.; Qiu, X.; Zhou, Y.; Poddar, S.; Fu, Y.; Zhu, Y. D.; Liao, J. F.; Shu, L. et al. High-efficiency, flexible and large-area red/green/blue all-inorganic metal halide perovskite quantum wires-based light-emitting diodes. Nat. Commun. 2023, 14, 4611.

[9]

Lin, J. D.; Lu, Y. X.; Li, X. Y.; Huang, F.; Yang, C. B.; Liu, M. L.; Jiang, N. Z.; Chen, D. Q. Perovskite quantum dots glasses based backlit displays. ACS Energy Lett. 2021, 6, 519–528.

[10]

Zhao, X. M.; Liu, T. R.; Burlingame, Q. C.; Liu, T. J.; Holley, R.; Cheng, G. M.; Yao, N.; Gao, F.; Loo, Y. L. Accelerated aging of all-inorganic, interface-stabilized perovskite solar cells. Science 2022, 377, 307–310.

[11]

Huang, J.; Wang, H.; Jia, C. L.; Tang, Y. Z.; Yang, H. S.; Chen, C. Y.; Gou, K. Y.; Zhou, Y. F.; Zhang, D.; Liu, S. Z. Advances in crystallization regulation and defect suppression strategies for all-inorganic CsPbX3 perovskite solar sells. Prog. Mater Sci. 2024, 141, 101223.

[12]

Liu, N.; Luo, H. Y.; Wei, X. Y.; Zeng, X.; Yang, J.; Huang, Y. X.; Yu, P.; Wang, Y. P.; Zhang, D. K.; Pi, M. Y. et al. Linearly manipulating color emission via anion exchange technology for high performance amplified spontaneous emission of perovskites. Adv. Mater. 2024, 36, 2308672.

[13]

Zhang, Q.; Shang, Q. Y.; Su, R.; Do, T. T. H.; Xiong, Q. H. Halide perovskite semiconductor lasers: Materials, cavity design, and low threshold. Nano Lett. 2021, 21, 1903–1914.

[14]

Bao, C. X.; Yang, J.; Bai, S.; Xu, W. D.; Yan, Z. B.; Xu, Q. Y.; Liu, J. M.; Zhang, W. J.; Gao, F. High performance and stable all-inorganic metal halide perovskite-based photodetectors for optical communication applications. Adv. Mater. 2018, 30, 1803422.

[15]

Zhu, H. Y.; Chen, H. F.; Fei, J. J.; Deng, Y. T.; Yang, T.; Chen, P. H.; Liang, Y.; Cai, Y. Q.; Zhu, L.; Huang, Z. F. Solution-processed CsPbBr3 perovskite films via CsBr intercalated PbBr2 intermediate for high-performance photodetectors towards. Nano Energy 2024, 125, 109513.

[16]

Cheng, L. J.; Chi, J. M.; Su, M.; Song, Y. L. Interface engineering of perovskite nanocrystals: Challenges and opportunities for biological imaging and detection. J. Mater. Chem. C 2023, 11, 7970–7981.

[17]

Wang, S.; Wei, Z. Y.; Xu, Q.; Yu, L.; Xiao, Y. X. Trinity strategy: Enabling perovskite as hydrophilic and efficient fluorescent nanozyme for constructing biomarker reporting platform. ACS Nano 2024, 18, 1084–1097.

[18]

Avugadda, S. K.; Castelli, A.; Dhanabalan, B.; Fernandez, T.; Silvestri, N.; Collantes, C.; Baranov, D.; Imran, M.; Manna, L.; Pellegrino, T. et al. Highly emitting perovskite nanocrystals with 2-year stability in water through an automated polymer encapsulation for bioimaging. ACS Nano 2022, 16, 13657–13666.

[19]

Dong, Y. H.; Tang, X. Q.; Zhang, Z. W.; Song, J. Z.; Niu, T. C.; Shan, D.; Zeng, H. B. Perovskite nanocrystal fluorescence-linked immunosorbent assay methodology for sensitive point-of-care biological test. Matter 2020, 3, 273–286.

[20]

Huang, H.; Bodnarchuk, M. I.; Kershaw, S. V.; Kovalenko, M. V.; Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: Stability and defect tolerance. ACS Energy Lett. 2017, 2, 2071–2083.

[21]

Yang, D. D.; Li, X. M.; Zeng, H. B. Surface chemistry of all inorganic halide perovskite nanocrystals: Passivation mechanism and stability. Adv. Mater. Interfaces 2018, 5, 1701662.

[22]

De Roo, J.; Ibáñez, M.; Geiregat, P.; Nedelcu, G.; Walravens, W.; Maes, J.; Martins, J. C.; Van Driessche, I.; Kovalenko, M. V.; Hens, Z. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 2016, 10, 2071–2081.

[23]

Brennan, M. C.; Veghte, D. P.; Ford, B. R.; McCleese, C. L.; Loftus, L. M.; McComb, D. W.; Song, Z. N.; Heben, M. J.; Grusenmeyer, T. A. Photolysis of mixed halide perovskite nanocrystals. ACS Energy Lett. 2023, 8, 2150–2158.

[24]

Li, Q. Y.; Shen, D. Y.; Luo, C. Z.; Zheng, Z. S.; Xia, W. L.; Ma, W. C.; Li, J.; Yang, Y. X.; Chen, S.; Chen, Y. Ultra-thermostability of spatially confined and fully protected perovskite nanocrystals by in situ crystallization. Small 2022, 18, 2107452.

[25]

Straus, D. B.; Guo, S.; Abeykoon, A. M. M.; Cava, R. J. Understanding the Instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Adv. Mater. 2020, 32, 2001069.

[26]

Wang, Z. Y.; Wei, Y. C.; Chen, Y. M.; Zhang, H. Y.; Wang, D.; Ke, J. X.; Liu, Y. S.; Hong, M. C. “Whole-Body” fluorination for highly efficient and ultra-stable all-inorganic halide perovskite quantum dots. Angew. Chem. , Int. Ed. 2024, 63, e202315841.

[27]

Wang, J.; Long, R. Nuclear quantum effects accelerate charge recombination but boost the stability of inorganic perovskites in mild humidity. Nano Lett. 2024, 24, 3476–3483.

[28]

Krieg, F.; Ong, Q. K.; Burian, M.; Rainò, G.; Naumenko, D.; Amenitsch, H.; Süess, A.; Grotevent, M. J.; Krumeich, F.; Bodnarchuk, M. I. et al. Stable ultraconcentrated and ultradilute colloids of CsPbX3 (X = Cl, Br) nanocrystals using natural lecithin as a capping ligand. J. Am. Chem. Soc. 2019, 141, 19839–19849.

[29]

Li, Y.; Wang, X. Y.; Xue, W. N.; Wang, W.; Zhu, W.; Zhao, L. J. Highly luminescent and stable CsPbBr3 perovskite quantum dots modified by phosphine ligands. Nano Res. 2019, 12, 785–789.

[30]

Li, S.; Shi, Z. F.; Zhang, F.; Wang, L. T.; Ma, Z. Z.; Yang, D. W.; Yao, Z. Q.; Wu, D.; Xu, T. T.; Tian, Y. T. et al. Sodium doping-enhanced emission efficiency and stability of CsPbBr3 nanocrystals for white light-emitting devices. Chem. Mater. 2019, 31, 3917–3928.

[31]

Lv, W. Z.; Li, L.; Xu, M. C.; Hong, J. X.; Tang, X. X.; Xu, L. G.; Wu, Y. H.; Zhu, R.; Chen, R. F.; Huang, W. Improving the stability of metal halide perovskite quantum dots by encapsulation. Adv. Mater. 2019, 31, 1900682.

[32]

Li, Z. J.; Hofman, E.; Li, J.; Davis, A. H.; Tung, C. H.; Wu, L. Z.; Zheng, W. W. Photoelectrochemically active and environmentally stable CsPbBr3/TiO2 core/shell nanocrystals. Adv. Funct. Mater. 2018, 28, 1704288.

[33]

Li, X. M.; Wu, Y.; Zhang, S. L.; Cai, B.; Gu, Y.; Song, J. Z.; Zeng, H. B. CsPbX3 quantum dots for lighting and displays: Room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2435–2445.

[34]

Chen, M.; Zou, Y. T.; Wu, L. Z.; Pan, Q.; Yang, D.; Hu, H. C.; Tan, Y. S.; Zhong, Q. X.; Xu, Y.; Liu, H. Y. et al. Solvothermal synthesis of high-quality all-inorganic cesium lead halide perovskite nanocrystals: From nanocube to ultrathin nanowire. Adv. Funct. Mater. 2017, 27, 1701121.

[35]

Tong, Y.; Bladt, E.; Aygüler, M. F.; Manzi, A.; Milowska, K. Z.; Hintermayr, V. A.; Docampo, P.; Bals, S.; Urban, A. S.; Polavarapu, L. et al. Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication. Angew. Chem., Int. Ed. 2016, 55, 13887–13892.

[36]

Hills-Kimball, K.; Yang, H. J.; Cai, T.; Wang, J. Y.; Chen, O. Recent advances in ligand design and engineering in lead halide perovskite nanocrystals. Adv. Sci. 2021, 8, 2100214.

[37]

Pan, A. Z.; He, B.; Fan, X. Y.; Liu, Z. K.; Urban, J. J.; Alivisatos, A. P.; He, L.; Liu, Y. Insight into the ligand-mediated synthesis of colloidal cspbbr3 perovskite nanocrystals: The role of organic acid, base, and cesium precursors. ACS Nano 2016, 10, 7943–7954.

[38]

Zhang, M. Q.; Bi, C. H.; Xia, Y. X.; Sun, X. J.; Wang, X. Y.; Liu, A. Q.; Tian, S. Y.; Liu, X. F.; de Leeuw, N. H.; Tian, J. J. Water-driven synthesis of deep-blue perovskite colloidal quantum wells for electroluminescent devices. Angew. Chem., Int. Ed. 2023, 62, e202300149.

[39]

Jin, X. D.; Wang, C. Q.; Miao, Y. Q.; Liu, P. Z.; Ji, J. L.; Chang, M. J.; Xu, B. S.; Zhao, M.; Tian, J. J.; Guo, J. J. In situ surface reconstruction in pure water by ice-confined freeze-thaw strategy for high-performance core–shell structural perovskite nanocrystals. Adv. Funct. Mater. 2024, 34, 2401435.

[40]

Zhang, X. Y.; Bai, X.; Wu, H.; Zhang, X. T.; Sun, C.; Zhang, Y.; Zhang, W.; Zheng, W. T.; Yu, W. W.; Rogach, A. L. Water-assisted size and shape control of CsPbBr3 perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 3337–3342.

[41]

Geng, C.; Xu, S.; Zhong, H. Z.; Rogach, A. L.; Bi, W. G. Aqueous synthesis of methylammonium lead halide perovskite nanocrystals. Angew. Chem., Int. Ed. 2018, 57, 9650–9654.

[42]

Zhu, H.; Pan, Y. X.; Peng, C. D.; Lian, H. Z.; Lin, J. 4-Bromo-butyric acid-assisted in situ passivation strategy for superstable all-inorganic halide perovskite CsPbX3 quantum dots in polar media. Angew. Chem. , Int. Ed. 2022, 61, e202116702.

[43]

Song, S.; Lv, Y. C.; Cao, B. Q.; Wang, W. Z. Surface modification strategy synthesized CsPbX3 perovskite quantum dots with excellent stability and optical properties in water. Adv. Funct. Mater. 2023, 33, 2300493.

[44]

Yin, J. Y.; Zhang, J.; Wu, Z. Z.; Wu, F.; Li, X.; Dai, J. N.; Chen, C. Q. Origin of water-stable CsPbX3 quantum dots assisted by zwitterionic ligands and sequential strategies for enhanced luminescence based on crystal evolution. Small 2024, 20, 2307042.

[45]

Liu, Z. K.; Bekenstein, Y.; Ye, X. C.; Nguyen, S. C.; Swabeck, J.; Zhang, D. D.; Lee, S. T.; Yang, P. D.; Ma, W. L.; Alivisatos, A. P. Ligand mediated transformation of cesium lead bromide perovskite nanocrystals to lead depleted Cs4PbBr6 nanocrystals. J. Am. Chem. Soc. 2017, 139, 5309–5312.

[46]

Chiba, T.; Hayashi, Y.; Ebe, H.; Hoshi, K.; Sato, J.; Sato, S.; Pu, Y. J.; Ohisa, S.; Kido, J. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photonics 2018, 12, 681–687.

[47]

Paul, S.; Acharya, S. Postsynthesis transformation of halide perovskite nanocrystals. ACS Energy Lett. 2022, 7, 2136–2155.

[48]

Aminzare, M.; Jiang, J.; Mandl, G. A.; Mahshid, S.; Capobianco, J. A.; Dorval Courchesne, N. M. Biomolecules incorporated in halide perovskite nanocrystals: Synthesis, optical properties, and applications. Nanoscale 2023, 15, 2997–3031.

[49]

Chen, D. Z.; Ko, P. K.; Li, C. H. A.; Zou, B. S.; Geng, P.; Guo, L.; Halpert, J. E. Amino acid-passivated pure red CsPbI3 quantum dot LEDs. ACS Energy Lett. 2023, 8, 410–416.

[50]

Shi, J. W.; Li, F. C.; Jin, Y.; Liu, C.; Cohen-Kleinstein, B.; Yuan, S.; Li, Y. Y.; Wang, Z. K.; Yuan, J. Y.; Ma, W. L. In situ ligand bonding management of CsPbI3 perovskite quantum dots enables high-performance photovoltaics and red light-emitting diodes. Angew. Chem., Int. Ed. 2020, 59, 22230–22237.

[51]

Song, W. T.; Wang, Y. M.; Wang, B.; Yao, Y. F.; Wang, W. G.; Wu, J. H.; Shen, Q.; Luo, W. J.; Zou, Z. G. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress-response encapsulation. Nano Res. 2020, 13, 795–801.

[52]

Song, W. T.; Wang, D. D.; Tian, J. W.; Qi, G. B.; Wu, M.; Liu, S. T.; Wang, T. T.; Wang, B.; Yao, Y. F.; Zou, Z. G. et al. Encapsulation of dual-passivated perovskite quantum dots for bio-imaging. Small 2022, 18, 2204763.

[53]

Grandhi, G. K.; Viswanath, N.; S. M.; Cho, H. B.; Kim, S. M.; Im, W. B. Highly stable hetero-structured green-emitting cesium lead bromide nanocrystals via ligand-mediated phase control. Nanoscale 2019, 11, 21137–21146.

[54]

Zhang, Y. H.; Saidaminov, M. I.; Dursun, I.; Yang, H. Z.; Murali, B.; Alarousu, E.; Yengel, E.; Alshankiti, B. A.; Bakr, O. M.; Mohammed, O. F. Zero-dimensional Cs4PbBr6 perovskite nanocrystals. J. Phys. Chem. Lett. 2017, 8, 961–965.

[55]

Nikl, M.; Mihokova, E.; Nitsch, K.; Somma, F.; Giampaolo, C.; Pazzi, G. P.; Fabeni, P.; Zazubovich, S. Photoluminescence of Cs4PbBr6 crystals and thin films. Chem. Phys. Lett. 1999, 306, 280–284.

[56]

Ren, J. J.; Zhou, X. P.; Wang, Y. H. Water triggered interfacial synthesis of highly luminescent CsPbX3: Mn2+ quantum dots from nonluminescent quantum dots. Nano Res. 2020, 13, 3387–3395.

[57]

Yang, D.; Li, P. L.; Zou, Y. T.; Cao, M. H.; Hu, H. C.; Zhong, Q. X.; Hu, J. X.; Sun, B. Q.; Duhm, S.; Xu, Y. et al. Interfacial synthesis of monodisperse CsPbBr3 nanorods with tunable aspect ratio and clean surface for efficient light-emitting diode applications. Chem. Mater. 2019, 31, 1575–1583.

[58]

Huang, H. Y.; Yang, R. T.; Chinn, D.; Munson, C. L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Ind. Eng. Chem. Res. 2003, 42, 2427–2433.

[59]

Ravi, V. K.; Santra, P. K.; Joshi, N.; Chugh, J.; Singh, S. K.; Rensmo, H.; Ghosh, P.; Nag, A. Origin of the substitution mechanism for the binding of organic ligands on the surface of CsPbBr3 perovskite nanocubes. J. Phys. Chem. Lett. 2017, 8, 4988–4994.

[60]

Brown, J.; Grimaud, A. Proton-donating and chemistry-dependent buffering capability of amino acids for the hydrogen evolution reaction. Phys. Chem. Chem. Phys. 2023, 25, 8005–8012.

[61]

Liu, M.; Zhao, J. T.; Luo, Z. L.; Sun, Z. H.; Pan, N.; Ding, H. Y.; Wang, X. P. Unveiling solvent-related effect on phase transformations in CsBr–PbBr2 system: Coordination and ratio of precursors. Chem. Mater. 2018, 30, 5846–5852.

[62]

Chen, Y. H.; Smock, S. R.; Flintgruber, A. H.; Perras, F. A.; Brutchey, R. L.; Rossini, A. J. Surface termination of CsPbBr3 perovskite quantum dots determined by solid-state NMR spectroscopy. J. Am. Chem. Soc. 2020, 142, 6117–6127.

Nano Research
Article number: 94907067
Cite this article:
Li X, Guo Y, Tan G, et al. Amino acid assisted aqueous synthesis of highly stable CsPbBr3 nanocrystals for cell imaging. Nano Research, 2025, 18(1): 94907067. https://doi.org/10.26599/NR.2025.94907067
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return