Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lead halide perovskite nanocrystals (NCs) exhibit excellent optoelectronic performance and have drawn great interests in the fields of biological imaging and sensing. However, the poor stability of CsPbX3 (X = Cl, Br, I) in water is still a challenge to hinder their practical applications. In this work, a facile strategy has been developed for aqueous synthesis of CsPbX3 nanocrystals, in which L-glutamic acid (L-Glu) has been used to replace oleic acid in the synthetic process. Benefiting from the synergic effects of L-Glu and oleylamine (OAm), CsPbBr3 nanocrystals (L-Glu/OAm-CsPbBr3 NCs) with high water stability have been directly prepared under a mild condition at room temperature in water, facilitated by the process of crystal phase transformation from Cs4PbBr6 to CsPbBr3. L-Glu/OAm-CsPbBr3 NCs exhibit a high quantum yield of 85% and a narrow full width at half maximum of 16 nm, demonstrating their efficient luminescence in water. Typically, L-Glu on the surface have contributed greatly to an acidic environment and passivation of surface defects, improving the water stability and dispersibility of CsPbBr3 nanocrystals. Moreover, L-Glu/OAm-CsPbBr3 NCs exhibit great biocompatibility due to the presence of L-Glu, resulting in their good performance for Hela cell imaging. Thus, we propose a facile and effective method to prepare CsPbBr3 nanocrystals with excellent water stability by using L-Glu and OAm as cooperated ligands and expand their application in cell imaging.
© The author(s) 2025
This article is licensed under a Creative Commons Attribution 4.0 International License (CC BY 4.0), which permits reusers to distribute, remix, adapt, and build upon the material in any medium or format, so long as attribution is given to the original author(s) and the source, provide a link to the license, and indicate if changes were made.
See https://creativecommons.org/licenses/by/4.0/