Co, Ni, and Zn iso-reticular coordination polymers of 2,5-dihydroxyterphthalic acid (H2dot) can be rapidly obtained under room temperature and aqueous conditions using either sodium or ammonium hydroxide as the bases to deprotonate the linker. The use of metal bromides and tetrabutylammonium hydroxide (TBAOH) as the base allows the green synthesis of ionic metal-organic frameworks (MOFs), characterized by X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), thermo gravimetric analysis (TGA), H-nuclear magnetic resonance (NMR), elemental analysis, and X-ray photoelectron spectroscopy (XPS), and employed in the pressure, solvent, and additive-free CO2 fixation to epoxides by its cycloaddition to epichlorohydrin, exhibiting a cooperative behavior between the MOF and the ionic liquid formed within the framework, achieving TONs of the confined tetrabutylammonium bromide (TBABr) up to 700.
Kitagawa, S.; Kitaura, R.; Noro, S. I. Functional porous coordination polymers. Angew. Chem., Int. Ed. 2004, 43, 2334–2375.
Diercks, C. S.; Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 2017, 355, eaal1585.
Villa, R.; Alvarez, E.; Porcar, R.; Garcia-Verdugo, E.; Luis, S. V.; Lozano, P. Ionic liquids as an enabling tool to integrate reaction and separation processes. Green Chem. 2019, 21, 6527–6544.
Luo, Q. X.; An, B. W.; Ji, M.; Zhang, J. Hybridization of metal-organic frameworks and task-specific ionic liquids: Fundamentals and challenges. Mater. Chem. Front. 2018, 2, 219–234.
Kinik, F. P.; Uzun, A.; Keskin, S. Ionic liquid/metal-organic framework composites: From synthesis to applications. ChemSusChem 2017, 10, 2842–2863.
Durak, O.; Zeeshan, M.; Habib, N.; Gülbalkan, H. C.; Moqbel Alsuhile, A. A.; Çağlayan, H. P.; Kurtoğlu-Öztulum, S. F.; Zhao, Y. X.; Haşlak, Z. P.; Uzun, A. et al. Composites of porous materials with ionic liquids: Synthesis, characterization, applications, and beyond. Microporous Mesoporous Mater. 2022, 332, 111703.
Rosenboom, J. G.; Langer, R.; Traverso, G. Bioplastics for a circular economy. Nat. Rev. Mater. 2022, 7, 117–137.
Santacesaria, E.; Tesser, R.; Di Serio, M.; Casale, L.; Verde, D. New process for producing epichlorohydrin via glycerol chlorination. Ind. Eng. Chem. Res. 2010, 49, 964–970.
Wang, Y. W.; Zhu, X. H.; Zhang, Y.; Yuan, D.; Yao, Y. M. Synthesis and characterization of cobalt(II/II) and cobalt(II/III) macrocyclic complexes and their application in the copolymerization of epoxides and CO2. Organometallics 2023, 42, 1579–1588.
Yin, K.; Hua, L. Y.; Qu, L. Y.; Yao, Q. Y.; Wang, Y. R.; Yuan, D.; You, H. P.; Yao, Y. M. Heterobimetallic rare earth metal-zinc catalysts for reactions of epoxides and CO2 under ambient conditions. Dalton Trans. 2021, 50, 1453–1464.
Grant Glover, T.; Peterson, G. W.; Schindler, B. J.; Britt, D.; Yaghi. O. MOF-74 building unit has a direct impact on toxic gas adsorption. Chem. Eng. Sci. 2011, 66, 163–170.
Zheng, J.; Vemuri, R. S.; Estevez, L.; Koech, P. K.; Varga, T.; Camaioni, D. M.; Blake, T. A.; McGrail, B. P.; Motkuri, R. K. Pore-engineered metal-organic frameworks with excellent adsorption of water and fluorocarbon refrigerant for cooling applications. J. Am. Chem. Soc. 2017, 139, 10601–10604.
Choe, J. H.; Kim, H.; Hong, C. S. MOF-74 type variants for CO2 capture. Mater. Chem. Front. 2021, 5, 5172–5185.
Tapiador, J.; García-Rojas, E.; López-Patón, P.; Calleja, G.; Orcajo, G.; Martos, C.; Leo, P. Influence of divalent metal ions on CO2 valorization at room temperature by isostructural MOF-74 materials. J. Environ. Chem. Eng. 2023, 11, 109497.
Sánchez-Sánchez, M.; Getachew, N.; Díaz, K.; Díaz-García, M.; Chebude, Y.; Díaz, I. Synthesis of metal-organic frameworks in water at room temperature: Salts as linker sources. Green Chem. 2015, 17, 1500–1509.
Cho, H. Y.; Yang, D. A.; Kim, J.; Jeong, S. Y.; Ahn, W. S. CO2 adsorption and catalytic application of Co-MOF-74 synthesized by microwave heating. Catal. Today 2012, 185, 35–40.
Chand, S.; Pal, S. C.; Mondal, M.; Hota, S.; Pal, A.; Sahoo, R.; Das, M. C. Three-dimensional Co(II)-metal-organic frameworks with varying porosities and open metal sites toward multipurpose heterogeneous catalysis under mild conditions. Cryst. Growth Des. 2019, 19, 5343–5353.
Ren, Y. W.; Shi, Y. C.; Chen, J. X.; Yang, S. R.; Qia, C. R.; Jiang, H. F. Ni(salphen)-based metal-organic framework for the synthesis of cyclic carbonates by cycloaddition of CO2 to epoxides. RSC Adv. 2013, 3, 2167–2170.
Ma, M. Y.; Zacher, D.; Zhang, X. N.; Fischer, R. A.; Metzler-Nolte, N. A method for the preparation of highly porous, nanosized crystals of isoreticular metal-organic frameworks. Cryst. Growth Des. 2011, 11, 185–189.
Zou, R. Y.; Li, P. Z.; Zeng, Y. F.; Liu, J.; Zhao, R.; Duan, H.; Luo, Z.; Wang, J. G.; Zou, R. Q.; Zhao, Y. L. Bimetallic metal-organic frameworks: Probing the Lewis acid site for CO2 conversion. Small 2016, 12, 2334–2343.
Heidary, N.; Chartrand, D.; Guiet, A.; Kornienko, N. Rational incorporation of defects within metal-organic frameworks generates highly active electrocatalytic sites. Chem. Sci. 2021, 12, 7324–7333.
Yang, D. A.; Cho, H. Y.; Kim, J.; Yang, S. T.; Ahn, W. S. CO2 capture and conversion using Mg-MOF-74 prepared by a sonochemical method. Energy Environ. Sci. 2012, 5, 6465–6473
Das, P.; Mandal, S. K. Unprecedented high temperature CO2 selectivity and effective chemical fixation by a copper-based undulated metal-organic framework. ACS Appl. Mater. Interfaces 2020, 12, 37137–37146.
Xu, K.; Moeljadi, A. M. P.; Mai, B. K.; Hirao, H. How does CO2 react with styrene oxide in Co-MOF-74 and Mg-MOF-74. Catalytic mechanisms proposed by QM/MM calculations. J. Phys. Chem. C 2018, 122, 503–514.
Campisciano, V.; Calabrese, C.; Giacalone, F.; Aprile, C.; Lo Meo, P.; Gruttadauria, M. Reconsidering TOF calculation in the transformation of epoxides and CO2 into cyclic carbonates. J. CO2 Util. 2020, 38, 132–140.
Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976, A32, 751–767.
Valverde, D.; Porcar, R.; Lozano, P.; García-Verdugo, E.; Luis, S. V. Multifunctional polymers based on ionic liquid and rose bengal fragments for the conversion of CO2 to carbonates. ACS Sustain. Chem. Eng. 2021, 9, 2309–2318.
Alassmy, Y. A.; Pescarmona, P. P. The role of water revisited and enhanced: A sustainable catalytic system for the conversion of CO2 into cyclic carbonates under mild conditions. ChemSusChem 2019, 12, 3856–3863.
Tran, Y. B. N.; Nguyen, P. T. K.; Luong, Q. T.; Nguyen, K. D. Series of M-MOF-184 (M = Mg, Co, Ni, Zn, Cu, Fe) metal-organic frameworks for catalysis cycloaddition of CO2. Inorg. Chem. 2020, 59, 16747–16759.
Zhang, Y.; Hu, H.; Ju, J.; Yan, Q. Q.; Arumugam, V.; Jing, X. C.; Cai, H. Q.; Gao, Y. N. Ionization of a covalent organic framework for catalyzing the cycloaddition reaction between epoxides and carbon dioxide. Chin. J. Catal. 2020, 41, 485–493.
Ding, L. G.; Yao, B. J.; Jiang, W. L.; Li, J. T.; Fu, Q. J.; Li, Y. A.; Liu, Z. H.; Ma, J. P.; Dong Y. B. Bifunctional imidazolium-based ionic liquid decorated UiO-67 type MOF for selective CO2 adsorption and catalytic property for CO2 cycloaddition with epoxides. Inorg. Chem. 2017, 56, 2337–2344.
Jiang, Y. C.; Zhao, Y. F.; Liang, L.; Zhang, X.; Sun, J. M. Imidazolium-based poly(ionic liquid)s@MIL-101 for CO2 adsorption and subsequent catalytic cycloaddition without additional cocatalyst and solvent. New J. Chem. 2022, 46, 2309–2319.
Ding, M. L.; Jiang, H. L. Incorporation of imidazolium-based poly(ionic liquid)s into a metal-organic framework for CO2 capture and conversion. ACS Catal. 2018, 8, 3194–3201.
Liu, W. S.; Zhou, L. J.; Li, G.; Yang, S. L.; Gao, E. Q. Double cationization approach toward ionic metal-organic frameworks with a high bromide content for CO2 cycloaddition to epoxides. ACS Sustain. Chem. Eng. 2021, 9, 1880–1890.
Xiong, L. F.; Zhou, L. J.; Bu, R.; Yang, S. L.; Gao, E. Q. Efficient ionic functionalization of metal-organic frameworks for efficient addition of carbon dioxide to epoxides. Microporous Mesoporous Mater. 2022, 330, 111601.
Sun, Y. X.; Jia, X. M.; Huang, H. L.; Guo, X. Y.; Qiao, Z. H.; Zhong, C. L. Solvent-free mechanochemical route for the construction of ionic liquid and mixed-metal MOF composites for synergistic CO2 fixation. J. Mater. Chem. A 2020, 8, 3180–3185.
Sun, Y. X.; Huang, H. L.; Vardhan, H.; Aguila, B.; Zhong, C. L.; Perman, J. A.; Al-Enizi, A. M.; Nafady, A.; Ma, S. Q. Facile approach to graft ionic liquid into MOF for improving the efficiency of CO2 chemical fixation. ACS Appl. Mater. Interfaces 2018, 10, 27124–27130.
Zhang, X. T.; Wang, X. T.; Li, C.; Hu, T. P.; Fan, L. M. Nanoporous {Co3}-Organic framework for efficiently seperating gases and catalyzing cycloaddition of epoxides with CO2 and Knoevenagel condensation. J. Colloid Interface Sci. 2024, 656, 127–136.
Zhang, X. T.; Wang, X. T.; Li, C.; Fan, L. M.; Hu, T. P. Robust heterometallic {In2CdO}-Organic framework for efficiently catalyzing CO2 cycloaddition and Knoevenagel condensation. Sep. Purif. Technol. 2025, 354, 128926.
Zhao, B.; Li, C.; Hu, T. P.; Gao, Y. P.; Fan, L. M.; Zhang, X. T. Robust {Pb10}-cluster-based metal-organic framework for capturing and converting CO2 into cyclic carbonates under mild conditions. Inorg. Chem. 2024, 63, 14183–14192.
Han, C.; Zhang, X. D.; Huang, S. S.; Hu, Y.; Yang, Z.; Li, T. T.; Li, Q. P.; Qian, J. J. MOF-on-MOF-derived hollow Co3O4/In2O3 nanostructure for efficient photocatalytic CO2 reduction. Adv. Sci. 2023, 10, 2300797.
Dong, A. R.; Chen, D. D.; Li, Q. P.; Qian, J. J. Metal-organic frameworks for greenhouse gas applications. Small 2023, 19, 2201550.