Quasi-two-dimensional (quasi-2D) perovskites have attracted considerable attention and have been applied to a variety of novel optoelectronic devices due to their specific layered structure and carrier migration properties. Effectively controlling the carrier motion in perovskites with different phases is a crucial factor affecting their optoelectronic performance. Through Cs ions doping, single crystal PEA2PbI4 (PEA: phenethylamine) perovskites with n = 1 and n = 2 (n is an integer, representing the number of highly conductive [PbI]4− layers) dule phases have been successfully prepared. It is found that temperature can be used as a switch for the carrier funnel effect of the two phases. At low temperatures, the carrier funnel is open and the carrier is effectively and directionally driven to the n = 2 phase due to the type I bandgap alignment of the heterostructure. As the temperature increases, the bandgap alignment of the heterostructure is carried over to type II, where the carrier channel is closed. Time-resolved photoluminescence (TRPL) spectra show that the highest energy input efficiency is achieved at 80 K. The study provides a feasible strategy for improving the energy transfer efficiency in mixed-phase perovskites.
Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.
Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.
Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.
Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 2013, 342, 344–347.
Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584–1589.
Fu, Y. P.; Zheng, W. H.; Wang, X. X.; Hautzinger, M. P.; Pan, D. X.; Dang, L. N.; Wright, J. C.; Pan, A. L.; Jin, S. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. 2018, 140, 15675–15683.
Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.
Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.
Kumar, P.; Thokala, S.; Singh, S. P.; Singh, R. Research progress and challenges in extending the infra-red absorption of perovskite tandem solar cells. Nano Energy 2024, 121, 109175.
Sun, J.; Ding, L. M. Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 2023, 15, 90.
Sakhatskyi, K.; Turedi, B.; Matt, G. J.; Wu, E. F.; Sakhatska, A.; Bartosh, V.; Lintangpradipto, M. N.; Naphade, R.; Shorubalko, I.; Mohammed, O. F. et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photonics 2023, 17, 510–517.
Zhuge, M. H.; Yin, J.; Liu, Y. L.; Wang, Y. H.; Li, Z. Y.; Xiao, S. M.; Yu, S. H.; Song, Q. H. Precise control of single-crystal perovskite nanolasers. Adv. Mater. 2023, 35, 2300344.
Liu, T. F.; Jiang, Y. Y.; Qin, M. C.; Liu, J. X.; Sun, L. L.; Qin, F.; Hu, L.; Xiong, S. X.; Jiang, X. S.; Jiang, F. Y. et al. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nat. Commun. 2019, 10, 878.
Shi, E. Z.; Gao, Y.; Finkenauer, B. P.; Akriti; Coffey, A. H.; Dou, L. T. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 2018, 47, 6046–6072.
Li, Z. T.; Cao, K.; Li, J. S.; Tang, Y.; Ding, X. R.; Yu, B. H. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron. Adv. 2021, 4, 200019.
Lai, H. T.; Kan, B.; Liu, T. T.; Zheng, N.; Xie, Z. Q.; Zhou, T.; Wan, X. J.; Zhang, X. D.; Liu, Y. S.; Chen, Y. S. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 2018, 140, 11639–11646.
Ren, H.; Yu, S. D.; Chao, L. F.; Xia, Y. D.; Sun, Y. H.; Zuo, S. W.; Li, F.; Niu, T. T.; Yang, Y. G.; Ju, H. X. et al. Efficient and stable ruddlesden-popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 2020, 14, 154–163.
Zhou, B.; Yan, D. P. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets. Angew. Chem., Int. Ed. 2019, 58, 15128–15135.
Li, H.; Lu, J. F.; Zhang, T.; Shen, Y.; Wang, M. K. Cation-assisted restraint of a wide quantum well and interfacial charge accumulation in two-dimensional perovskites. ACS Energy Lett. 2018, 3, 1815–1823.
Ding, R.; Lyu, Y. X.; Wu, Z. H.; Guo, F.; Io, W. F.; Pang, S. Y.; Zhao, Y. Q.; Mao, J. F.; Wong, M. C.; Hao, J. H. Effective piezo-phototronic enhancement of flexible photodetectors based on 2D hybrid perovskite ferroelectric single-crystalline thin-films. Adv. Mater. 2021, 33, 2101263.
Tsai, H.; Shrestha, S.; Pan, L.; Huang, H. H.; Strzalka, J.; Williams, D.; Wang, L.; Cao, L. R.; Nie, W. Y. Quasi-2D perovskite crystalline layers for printable direct conversion X-ray imaging. Adv. Mater. 2022, 34, 2106498.
Chen, Y. N.; Sun, Y.; Peng, J. J.; Tang, J. H.; Zheng, K. B.; Liang, Z. Q. 2D ruddlesden-popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487.
Guo, R.; Zhu, Z. A.; Boulesbaa, A.; Hao, F.; Puretzky, A.; Xiao, K.; Bao, J. M.; Yao, Y.; Li, W. Z. Synthesis and photoluminescence properties of 2D phenethylammonium lead bromide perovskite nanocrystals. Small Methods 2017, 1, 1700245.
Park, J. Y.; Song, R. Y.; Liang, J.; Jin, L. R.; Wang, K.; Li, S. R.; Shi, E. Z.; Gao, Y.; Zeller, M.; Teat, S. J. et al. Thickness control of organic semiconductor-incorporated perovskites. Nat. Chem. 2023, 15, 1745–1753.
Blancon, J. C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292.
Wang, H. Z.; Chen, Y. Y.; Li, D. H. Two/quasi-two-dimensional perovskite-based heterostructures: Construction, properties and applications. Int. J. Extrem. Manuf. 2023, 5, 012004.
Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.
Lin, R. X.; Wang, Y. R.; Lu, Q. W.; Tang, B. B.; Li, J. Y.; Gao, H.; Gao, Y.; Li, H. J.; Ding, C. Z.; Wen, J. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 2023, 620, 994–1000.
Posmyk, K.; Zawadzka, N.; Kipczak, Ł.; Dyksik, M.; Surrente, A.; Maude, D. K.; Kazimierczuk, T.; Babiński, A.; Molas, M. R.; Bumrungsan, W. et al. Bright excitonic fine structure in metal-halide perovskites: From two-dimensional to bulk. J. Am. Chem. Soc. 2024, 146, 4687–4694.
Li, X.; Lin, D. X.; Chen, Z. P.; Li, Z.; Wang, J. M.; Chen, J.; Gong, L.; Xu, J. B.; Chen, K.; Liu, P. Y. et al. Structural regulation for highly efficient and stable perovskite solar cells via mixed-vapor deposition. ACS Appl. Energy Mater. 2020, 3, 6544–6551.
Quan, L. N.; Zhao, Y. B.; De Arquer, F. P. G.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.; Li, Y. Y.; Fan, J. Z.; Tan, H. R. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 2017, 17, 3701–3709.
Shang, Q. Y.; Wang, Y. N.; Zhong, Y. G.; Mi, Y.; Qin, L.; Zhao, Y. F.; Qiu, X. H.; Liu, X. F.; Zhang, Q. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett. 2017, 8, 4431–4438.
Liu, J. X.; Leng, J.; Wu, K. F.; Zhang, J.; Jin, S. Y. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 2017, 139, 1432–1435.
Ramesh, S.; Giovanni, D.; Righetto, M.; Ye, S. Y.; Fresch, E.; Wang, Y.; Collini, E.; Mathews, N.; Sum, T. C. Tailoring the energy manifold of quasi-two-dimensional perovskites for efficient carrier extraction. Adv. Energy Mater. 2022, 12, 2103556.
Yao, Y. G.; Zhu, Y. K.; Hu, A.; Gao, Y. N. Temperature-regulated in-plane exciton dynamics in CdSe/CdSeS colloidal quantum well heterostructures. ACS Photonics 2023, 10, 4052–4060.
Liu, Z. H.; Wang, L.; Xie, X. Y. Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor. J. Mater. Chem. C 2020, 8, 11882–11889.
Fu, X. W.; Jiao, S. L.; Jiang, Y.; Li, L. H.; Wang, X. X.; Zhu, C. G.; Ma, C.; Zhao, H. P.; Xu, Z. Y.; Liu, Y. et al. Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 2884–2891.
Yue, Y. F.; Li, M. Y.; Li, H.; Chai, N. Y.; Dong, Y. F.; Li, Z. P.; Chen, X. Y.; Wang, X. W. One-step anti-solvent associated method for high performance two-dimensional perovskite photodetectors fabrication at low temperature. Chem. Eng. J. 2022, 441, 135997.
Pang, P. Y.; Jin, G. R.; Liang, C.; Wang, B. Z.; Xiang, W.; Zhang, D. L.; Xu, J. W.; Hong, W.; Xiao, Z. W.; Wang, L. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 2020, 14, 11420–11430.
Williams, O. F.; Guo, Z. K.; Hu, J.; Yan, L.; You, W.; Moran, A. M. Energy transfer mechanisms in layered 2D perovskites. J. Chem. Phys. 2018, 148, 134706.
Chen, X. H.; Lu, H. P.; Li, Z.; Zhai, Y. X.; Ndione, P. F.; Berry, J. J.; Zhu, K.; Yang, Y.; Beard, M. C. Impact of layer thickness on the charge carrier and spin coherence lifetime in two-dimensional layered perovskite single crystals. ACS Energy Lett. 2018, 3, 2273–2279.
Gao, W.; Wei, Q.; Wang, T.; Xu, J. T.; Zhuang, L. C.; Li, M. J.; Yao, K.; Yu, S. F. Two-photon lasing from two-dimensional homologous ruddlesden-popper perovskite with giant nonlinear absorption and natural microcavities. ACS Nano 2022, 16, 13082–13091.
Dhanabalan, B.; Leng, Y. C.; Biffi, G.; Lin, M. L.; Tan, P. H.; Infante, I.; Manna, L.; Arciniegas, M. P.; Krahne, R. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 2020, 14, 4689–4697.
Tekelenburg, E. K.; Kahmann, S.; Kamminga, M. E.; Blake, G. R.; Loi, M. A. Elucidating the structure and photophysics of layered perovskites through cation fluorination. Adv. Opt. Mater. 2021, 9, 2001647.
Ren, E. L.; Zhang, C. Y.; Wang, F. C.; Kong, J. F.; Li, L.; Chen, J.; Xu, J. Y.; Zhang, Y. Synthesis of Cs+-tuned (PEA)2PbI4 perovskite thin films by one-step spin coating. ECS J. Solid State Sci. Technol. 2023, 12, 026003.
Sun, Q.; Zhao, C. Y.; Yin, Z. X.; Wang, S. P.; Leng, J.; Tian, W. M.; Jin, S. Y. Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites. J. Am. Chem. Soc. 2021, 143, 19128–19136.
He, H. P.; Yu, Q. Q.; Li, H.; Li, J.; Si, J. J.; Jin, Y. Z.; Wang, N. N.; Wang, J. P.; He, J. W.; Wang, X. K. et al. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun. 2016, 7, 10896.
Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.
Yantara, N.; Bruno, A.; Iqbal, A.; Jamaludin, N. F.; Soci, C.; Mhaisalkar, S.; Mathews, N. Designing efficient energy funneling kinetics in ruddlesden-popper perovskites for high-performance light-emitting diodes. Adv. Mater. 2018, 30, 1800818.
Wang, S.; Ma, J. Q.; Li, W. C.; Wang, J.; Wang, H. Z.; Shen, H. Z.; Li, J. Z.; Wang, J. Q.; Luo, H. M.; Li, D. H. Temperature-dependent band gap in two-dimensional perovskites: Thermal expansion interaction and electron–phonon interaction. J. Phys. Chem. Lett. 2019, 10, 2546–2553.
Yu, S. H.; Xu, J.; Shang, X. Y.; Ma, E.; Lin, F. L.; Zheng, W.; Tu, D. T.; Li, R. F.; Chen, X. Y. Unusual temperature dependence of bandgap in 2D inorganic lead-halide perovskite nanoplatelets. Adv. Sci. 2021, 8, 2100084.
Zhang, H. C.; Bi, Z. X.; Zhai, Z. H.; Gao, H.; Liu, Y. W.; Jin, M. L.; Ye, M.; Li, X. Z.; Liu, H. W.; Zhang, Y. G. et al. Revealing unusual bandgap shifts with temperature and bandgap renormalization effect in phase-stabilized metal halide perovskite thin films. Adv. Funct. Mater. 2024, 34, 2302214.
Wei, K.; Xu, Z. J.; Chen, R. Z.; Zheng, X.; Cheng, X. G.; Jiang, T. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett. 2016, 41, 3821–3824.
Kahmann, S.; Shao, S. Y.; Loi, M. A. Cooling, scattering, and recombination-the role of the material quality for the physics of tin halide perovskites. Adv. Funct. Mater. 2019, 29, 1902963.
Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Kandada, A. R. S. Exciton–polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2018, 2, 064605.
Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Loi, M. A. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 2016, 5, e16056.
Qin, Y.; Li, J. Z.; Hu, J. G.; He, T. C. Optical properties of two-dimensional/three-dimensional composite perovskite films. J. Phys. Chem. C 2024, 128, 1202–1206.
Wang, Y. N.; Song, F. L.; Yuan, Y.; Dang, J. C.; Xie, X.; Sun, S. B.; Yan, S.; Hou, Y. B.; Lou, Z. D.; Xu, X. L. Strong triplet-exciton–LO-phonon coupling in two-dimensional layered organic-inorganic hybrid perovskite single crystal microflakes. J. Phys. Chem. Lett. 2021, 12, 2133–2141.
Xu, J. Y.; Guo, Z. L.; Zhou, Q. H.; Wang, Y. X.; Xue, Z.; Han, Y. D.; Yang, W. S.; Ma, X. N. Exciton–phonon coupling and vibronic emission structure in 2D perovskite thin films with naphthylmethylamine spacers. J. Phys. Chem. C 2023, 127, 18431–18441.
Lee, J. W.; Dai, Z. H.; Han, T. H.; Choi, C.; Chang, S. Y.; Lee, S. J.; De Marco, N.; Zhao, H. X.; Sun, P. Y.; Huang, Y. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9, 3021.
Wang, R.; Xue, J. J.; Meng, L.; Lee, J. W.; Zhao, Z. P.; Sun, P. Y.; Cai, L.; Huang, T. Y.; Wang, Z. X.; Wang, Z. K. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477.
Guo, Z. Y.; Zhang, Y.; Wang, B. Z.; Wang, L. D.; Zhou, N.; Qiu, Z. W.; Li, N. X.; Chen, Y. H.; Zhu, C.; Xie, H. P. et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 2021, 33, 2102246.
Guo, Z.; Wu, X. X.; Zhu, T.; Zhu, X. Y.; Huang, L. B. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano 2016, 10, 9992–9998.
Do, T. T. H.; Del Águila, A. G.; Xing, J.; Liu, S.; Xiong, Q. H. Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors. J. Chem. Phys. 2020, 153, 064705.
Liu, Z. Y.; Chen, Y. Y.; Li, J. Z.; Yao, W. D.; Luo, T.; Li, D. H. Probing local structural phase transition at the surface of (BA)2PbI4 via interlayer exciton emission. Adv. Funct. Mater. 2024, 34, 2312074.
Debasu, M. L.; Ananias, D.; Macedo, A. G.; Rocha, J.; Carlos, L. D. Emission-decay curves, energy-transfer and effective-refractive index in Gd2O3: Eu3+ nanorods. J. Phys. Chem. C 2011, 115, 15297–15303.
Baur, F.; Glocker, F.; Jüstel, T. Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 2015, 3, 2054–2064.
Zheng, W. H.; Liu, H. W.; Xu, J.; Jiang, Y.; Fan, P.; Huang, W.; Jiang, F.; Li, L. H.; Fan, X. P.; Zhu, X. L. et al. Carrier-funneling-induced efficient energy transfer in CdS x Se1− x heterostructure microplates. ACS Energy Lett. 2019, 4, 2796–2804.