PDF (12.1 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Carrier funnel switch in quasi-two-dimensional perovskites

Tongqing Sun1Junyu He1Yang Li1Min Li1Xiujuan Zhuang2 ()
School of Physics and Electronics, Hunan University, Changsha 410082, China
College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
Show Author Information

Graphical Abstract

View original image Download original image
Temperature controls the opening and closing of the carrier funnel effect between the two phases by changing the heterojunction alignment type.

Abstract

Quasi-two-dimensional (quasi-2D) perovskites have attracted considerable attention and have been applied to a variety of novel optoelectronic devices due to their specific layered structure and carrier migration properties. Effectively controlling the carrier motion in perovskites with different phases is a crucial factor affecting their optoelectronic performance. Through Cs ions doping, single crystal PEA2PbI4 (PEA: phenethylamine) perovskites with n = 1 and n = 2 (n is an integer, representing the number of highly conductive [PbI]4− layers) dule phases have been successfully prepared. It is found that temperature can be used as a switch for the carrier funnel effect of the two phases. At low temperatures, the carrier funnel is open and the carrier is effectively and directionally driven to the n = 2 phase due to the type I bandgap alignment of the heterostructure. As the temperature increases, the bandgap alignment of the heterostructure is carried over to type II, where the carrier channel is closed. Time-resolved photoluminescence (TRPL) spectra show that the highest energy input efficiency is achieved at 80 K. The study provides a feasible strategy for improving the energy transfer efficiency in mixed-phase perovskites.

Electronic Supplementary Material

Download File(s)
7070_ESM.pdf (1.7 MB)

References

[1]

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

[2]

Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J. P.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Electron–hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 2013, 342, 341–344.

[3]

Zhu, H. M.; Fu, Y. P.; Meng, F.; Wu, X. X.; Gong, Z. Z.; Ding, Q.; Gustafsson, M. V.; Trinh, M. T.; Jin, S.; Zhu, X. Y. Lead halide perovskite nanowire lasers with low lasing thresholds and high quality factors. Nat. Mater. 2015, 14, 636–642.

[4]

Xing, G. C.; Mathews, N.; Sun, S. Y.; Lim, S. S.; Lam, Y. M.; Grätzel, M.; Mhaisalkar, S.; Sum, T. C. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 2013, 342, 344–347.

[5]

Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 2014, 26, 1584–1589.

[6]

Fu, Y. P.; Zheng, W. H.; Wang, X. X.; Hautzinger, M. P.; Pan, D. X.; Dang, L. N.; Wright, J. C.; Pan, A. L.; Jin, S. Multicolor heterostructures of two-dimensional layered halide perovskites that show interlayer energy transfer. J. Am. Chem. Soc. 2018, 140, 15675–15683.

[7]

Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

[8]

Liu, X. K.; Xu, W. D.; Bai, S.; Jin, Y. Z.; Wang, J. P.; Friend, R. H.; Gao, F. Metal halide perovskites for light-emitting diodes. Nat. Mater. 2021, 20, 10–21.

[9]

Kumar, P.; Thokala, S.; Singh, S. P.; Singh, R. Research progress and challenges in extending the infra-red absorption of perovskite tandem solar cells. Nano Energy 2024, 121, 109175.

[10]

Sun, J.; Ding, L. M. Linearly polarization-sensitive perovskite photodetectors. Nano-Micro Lett. 2023, 15, 90.

[11]

Sakhatskyi, K.; Turedi, B.; Matt, G. J.; Wu, E. F.; Sakhatska, A.; Bartosh, V.; Lintangpradipto, M. N.; Naphade, R.; Shorubalko, I.; Mohammed, O. F. et al. Stable perovskite single-crystal X-ray imaging detectors with single-photon sensitivity. Nat. Photonics 2023, 17, 510–517.

[12]

Zhuge, M. H.; Yin, J.; Liu, Y. L.; Wang, Y. H.; Li, Z. Y.; Xiao, S. M.; Yu, S. H.; Song, Q. H. Precise control of single-crystal perovskite nanolasers. Adv. Mater. 2023, 35, 2300344.

[13]

Liu, T. F.; Jiang, Y. Y.; Qin, M. C.; Liu, J. X.; Sun, L. L.; Qin, F.; Hu, L.; Xiong, S. X.; Jiang, X. S.; Jiang, F. Y. et al. Tailoring vertical phase distribution of quasi-two-dimensional perovskite films via surface modification of hole-transporting layer. Nat. Commun. 2019, 10, 878.

[14]

Shi, E. Z.; Gao, Y.; Finkenauer, B. P.; Akriti; Coffey, A. H.; Dou, L. T. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 2018, 47, 6046–6072.

[15]

Li, Z. T.; Cao, K.; Li, J. S.; Tang, Y.; Ding, X. R.; Yu, B. H. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron. Adv. 2021, 4, 200019.

[16]

Lai, H. T.; Kan, B.; Liu, T. T.; Zheng, N.; Xie, Z. Q.; Zhou, T.; Wan, X. J.; Zhang, X. D.; Liu, Y. S.; Chen, Y. S. Two-dimensional ruddlesden-popper perovskite with nanorod-like morphology for solar cells with efficiency exceeding 15%. J. Am. Chem. Soc. 2018, 140, 11639–11646.

[17]

Ren, H.; Yu, S. D.; Chao, L. F.; Xia, Y. D.; Sun, Y. H.; Zuo, S. W.; Li, F.; Niu, T. T.; Yang, Y. G.; Ju, H. X. et al. Efficient and stable ruddlesden-popper perovskite solar cell with tailored interlayer molecular interaction. Nat. Photonics 2020, 14, 154–163.

[18]

Zhou, B.; Yan, D. P. Simultaneous long-persistent blue luminescence and high quantum yield within 2D organic-metal halide perovskite micro/nanosheets. Angew. Chem., Int. Ed. 2019, 58, 15128–15135.

[19]

Li, H.; Lu, J. F.; Zhang, T.; Shen, Y.; Wang, M. K. Cation-assisted restraint of a wide quantum well and interfacial charge accumulation in two-dimensional perovskites. ACS Energy Lett. 2018, 3, 1815–1823.

[20]

Ding, R.; Lyu, Y. X.; Wu, Z. H.; Guo, F.; Io, W. F.; Pang, S. Y.; Zhao, Y. Q.; Mao, J. F.; Wong, M. C.; Hao, J. H. Effective piezo-phototronic enhancement of flexible photodetectors based on 2D hybrid perovskite ferroelectric single-crystalline thin-films. Adv. Mater. 2021, 33, 2101263.

[21]

Tsai, H.; Shrestha, S.; Pan, L.; Huang, H. H.; Strzalka, J.; Williams, D.; Wang, L.; Cao, L. R.; Nie, W. Y. Quasi-2D perovskite crystalline layers for printable direct conversion X-ray imaging. Adv. Mater. 2022, 34, 2106498.

[22]

Chen, Y. N.; Sun, Y.; Peng, J. J.; Tang, J. H.; Zheng, K. B.; Liang, Z. Q. 2D ruddlesden-popper perovskites for optoelectronics. Adv. Mater. 2018, 30, 1703487.

[23]

Guo, R.; Zhu, Z. A.; Boulesbaa, A.; Hao, F.; Puretzky, A.; Xiao, K.; Bao, J. M.; Yao, Y.; Li, W. Z. Synthesis and photoluminescence properties of 2D phenethylammonium lead bromide perovskite nanocrystals. Small Methods 2017, 1, 1700245.

[24]

Park, J. Y.; Song, R. Y.; Liang, J.; Jin, L. R.; Wang, K.; Li, S. R.; Shi, E. Z.; Gao, Y.; Zeller, M.; Teat, S. J. et al. Thickness control of organic semiconductor-incorporated perovskites. Nat. Chem. 2023, 15, 1745–1753.

[25]

Blancon, J. C.; Tsai, H.; Nie, W.; Stoumpos, C. C.; Pedesseau, L.; Katan, C.; Kepenekian, M.; Soe, C. M. M.; Appavoo, K.; Sfeir, M. Y. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 2017, 355, 1288–1292.

[26]

Wang, H. Z.; Chen, Y. Y.; Li, D. H. Two/quasi-two-dimensional perovskite-based heterostructures: Construction, properties and applications. Int. J. Extrem. Manuf. 2023, 5, 012004.

[27]

Yuan, M. J.; Quan, L. N.; Comin, R.; Walters, G.; Sabatini, R.; Voznyy, O.; Hoogland, S.; Zhao, Y. B.; Beauregard, E. M.; Kanjanaboos, P. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 2016, 11, 872–877.

[28]

Lin, R. X.; Wang, Y. R.; Lu, Q. W.; Tang, B. B.; Li, J. Y.; Gao, H.; Gao, Y.; Li, H. J.; Ding, C. Z.; Wen, J. et al. All-perovskite tandem solar cells with 3D/3D bilayer perovskite heterojunction. Nature 2023, 620, 994–1000.

[29]

Posmyk, K.; Zawadzka, N.; Kipczak, Ł.; Dyksik, M.; Surrente, A.; Maude, D. K.; Kazimierczuk, T.; Babiński, A.; Molas, M. R.; Bumrungsan, W. et al. Bright excitonic fine structure in metal-halide perovskites: From two-dimensional to bulk. J. Am. Chem. Soc. 2024, 146, 4687–4694.

[30]

Li, X.; Lin, D. X.; Chen, Z. P.; Li, Z.; Wang, J. M.; Chen, J.; Gong, L.; Xu, J. B.; Chen, K.; Liu, P. Y. et al. Structural regulation for highly efficient and stable perovskite solar cells via mixed-vapor deposition. ACS Appl. Energy Mater. 2020, 3, 6544–6551.

[31]

Quan, L. N.; Zhao, Y. B.; De Arquer, F. P. G.; Sabatini, R.; Walters, G.; Voznyy, O.; Comin, R.; Li, Y. Y.; Fan, J. Z.; Tan, H. R. et al. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett. 2017, 17, 3701–3709.

[32]

Shang, Q. Y.; Wang, Y. N.; Zhong, Y. G.; Mi, Y.; Qin, L.; Zhao, Y. F.; Qiu, X. H.; Liu, X. F.; Zhang, Q. Unveiling structurally engineered carrier dynamics in hybrid quasi-two-dimensional perovskite thin films toward controllable emission. J. Phys. Chem. Lett. 2017, 8, 4431–4438.

[33]

Liu, J. X.; Leng, J.; Wu, K. F.; Zhang, J.; Jin, S. Y. Observation of internal photoinduced electron and hole separation in hybrid two-dimentional perovskite films. J. Am. Chem. Soc. 2017, 139, 1432–1435.

[34]

Ramesh, S.; Giovanni, D.; Righetto, M.; Ye, S. Y.; Fresch, E.; Wang, Y.; Collini, E.; Mathews, N.; Sum, T. C. Tailoring the energy manifold of quasi-two-dimensional perovskites for efficient carrier extraction. Adv. Energy Mater. 2022, 12, 2103556.

[35]

Yao, Y. G.; Zhu, Y. K.; Hu, A.; Gao, Y. N. Temperature-regulated in-plane exciton dynamics in CdSe/CdSeS colloidal quantum well heterostructures. ACS Photonics 2023, 10, 4052–4060.

[36]

Liu, Z. H.; Wang, L.; Xie, X. Y. Improving the performance of inverted two-dimensional perovskite solar cells by adding an anti-solvent into the perovskite precursor. J. Mater. Chem. C 2020, 8, 11882–11889.

[37]

Fu, X. W.; Jiao, S. L.; Jiang, Y.; Li, L. H.; Wang, X. X.; Zhu, C. G.; Ma, C.; Zhao, H. P.; Xu, Z. Y.; Liu, Y. et al. Large-scale growth of ultrathin low-dimensional perovskite nanosheets for high-detectivity photodetectors. ACS Appl. Mater. Interfaces 2020, 12, 2884–2891.

[38]

Yue, Y. F.; Li, M. Y.; Li, H.; Chai, N. Y.; Dong, Y. F.; Li, Z. P.; Chen, X. Y.; Wang, X. W. One-step anti-solvent associated method for high performance two-dimensional perovskite photodetectors fabrication at low temperature. Chem. Eng. J. 2022, 441, 135997.

[39]

Pang, P. Y.; Jin, G. R.; Liang, C.; Wang, B. Z.; Xiang, W.; Zhang, D. L.; Xu, J. W.; Hong, W.; Xiao, Z. W.; Wang, L. et al. Rearranging low-dimensional phase distribution of quasi-2D perovskites for efficient sky-blue perovskite light-emitting diodes. ACS Nano 2020, 14, 11420–11430.

[40]

Williams, O. F.; Guo, Z. K.; Hu, J.; Yan, L.; You, W.; Moran, A. M. Energy transfer mechanisms in layered 2D perovskites. J. Chem. Phys. 2018, 148, 134706.

[41]

Chen, X. H.; Lu, H. P.; Li, Z.; Zhai, Y. X.; Ndione, P. F.; Berry, J. J.; Zhu, K.; Yang, Y.; Beard, M. C. Impact of layer thickness on the charge carrier and spin coherence lifetime in two-dimensional layered perovskite single crystals. ACS Energy Lett. 2018, 3, 2273–2279.

[42]

Gao, W.; Wei, Q.; Wang, T.; Xu, J. T.; Zhuang, L. C.; Li, M. J.; Yao, K.; Yu, S. F. Two-photon lasing from two-dimensional homologous ruddlesden-popper perovskite with giant nonlinear absorption and natural microcavities. ACS Nano 2022, 16, 13082–13091.

[43]

Dhanabalan, B.; Leng, Y. C.; Biffi, G.; Lin, M. L.; Tan, P. H.; Infante, I.; Manna, L.; Arciniegas, M. P.; Krahne, R. Directional anisotropy of the vibrational modes in 2D-layered perovskites. ACS Nano 2020, 14, 4689–4697.

[44]

Tekelenburg, E. K.; Kahmann, S.; Kamminga, M. E.; Blake, G. R.; Loi, M. A. Elucidating the structure and photophysics of layered perovskites through cation fluorination. Adv. Opt. Mater. 2021, 9, 2001647.

[45]

Ren, E. L.; Zhang, C. Y.; Wang, F. C.; Kong, J. F.; Li, L.; Chen, J.; Xu, J. Y.; Zhang, Y. Synthesis of Cs+-tuned (PEA)2PbI4 perovskite thin films by one-step spin coating. ECS J. Solid State Sci. Technol. 2023, 12, 026003.

[46]

Sun, Q.; Zhao, C. Y.; Yin, Z. X.; Wang, S. P.; Leng, J.; Tian, W. M.; Jin, S. Y. Ultrafast and high-yield polaronic exciton dissociation in two-dimensional perovskites. J. Am. Chem. Soc. 2021, 143, 19128–19136.

[47]

He, H. P.; Yu, Q. Q.; Li, H.; Li, J.; Si, J. J.; Jin, Y. Z.; Wang, N. N.; Wang, J. P.; He, J. W.; Wang, X. K. et al. Exciton localization in solution-processed organolead trihalide perovskites. Nat. Commun. 2016, 7, 10896.

[48]

Zhong, Y. G.; Liao, K.; Du, W. N.; Zhu, J. R.; Shang, Q. Y.; Zhou, F.; Wu, X. X.; Sui, X. Y.; Shi, J. W.; Yue, S. et al. Large-scale thin CsPbBr3 single-crystal film grown on sapphire via chemical vapor deposition: Toward laser array application. ACS Nano 2020, 14, 15605–15615.

[49]

Yantara, N.; Bruno, A.; Iqbal, A.; Jamaludin, N. F.; Soci, C.; Mhaisalkar, S.; Mathews, N. Designing efficient energy funneling kinetics in ruddlesden-popper perovskites for high-performance light-emitting diodes. Adv. Mater. 2018, 30, 1800818.

[50]

Wang, S.; Ma, J. Q.; Li, W. C.; Wang, J.; Wang, H. Z.; Shen, H. Z.; Li, J. Z.; Wang, J. Q.; Luo, H. M.; Li, D. H. Temperature-dependent band gap in two-dimensional perovskites: Thermal expansion interaction and electron–phonon interaction. J. Phys. Chem. Lett. 2019, 10, 2546–2553.

[51]

Yu, S. H.; Xu, J.; Shang, X. Y.; Ma, E.; Lin, F. L.; Zheng, W.; Tu, D. T.; Li, R. F.; Chen, X. Y. Unusual temperature dependence of bandgap in 2D inorganic lead-halide perovskite nanoplatelets. Adv. Sci. 2021, 8, 2100084.

[52]

Zhang, H. C.; Bi, Z. X.; Zhai, Z. H.; Gao, H.; Liu, Y. W.; Jin, M. L.; Ye, M.; Li, X. Z.; Liu, H. W.; Zhang, Y. G. et al. Revealing unusual bandgap shifts with temperature and bandgap renormalization effect in phase-stabilized metal halide perovskite thin films. Adv. Funct. Mater. 2024, 34, 2302214.

[53]

Wei, K.; Xu, Z. J.; Chen, R. Z.; Zheng, X.; Cheng, X. G.; Jiang, T. Temperature-dependent excitonic photoluminescence excited by two-photon absorption in perovskite CsPbBr3 quantum dots. Opt. Lett. 2016, 41, 3821–3824.

[54]

Kahmann, S.; Shao, S. Y.; Loi, M. A. Cooling, scattering, and recombination-the role of the material quality for the physics of tin halide perovskites. Adv. Funct. Mater. 2019, 29, 1902963.

[55]

Neutzner, S.; Thouin, F.; Cortecchia, D.; Petrozza, A.; Silva, C.; Kandada, A. R. S. Exciton–polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rev. Mater. 2018, 2, 064605.

[56]

Fang, H. H.; Wang, F.; Adjokatse, S.; Zhao, N.; Even, J.; Loi, M. A. Photoexcitation dynamics in solution-processed formamidinium lead iodide perovskite thin films for solar cell applications. Light Sci. Appl. 2016, 5, e16056.

[57]

Qin, Y.; Li, J. Z.; Hu, J. G.; He, T. C. Optical properties of two-dimensional/three-dimensional composite perovskite films. J. Phys. Chem. C 2024, 128, 1202–1206.

[58]

Wang, Y. N.; Song, F. L.; Yuan, Y.; Dang, J. C.; Xie, X.; Sun, S. B.; Yan, S.; Hou, Y. B.; Lou, Z. D.; Xu, X. L. Strong triplet-exciton–LO-phonon coupling in two-dimensional layered organic-inorganic hybrid perovskite single crystal microflakes. J. Phys. Chem. Lett. 2021, 12, 2133–2141.

[59]

Xu, J. Y.; Guo, Z. L.; Zhou, Q. H.; Wang, Y. X.; Xue, Z.; Han, Y. D.; Yang, W. S.; Ma, X. N. Exciton–phonon coupling and vibronic emission structure in 2D perovskite thin films with naphthylmethylamine spacers. J. Phys. Chem. C 2023, 127, 18431–18441.

[60]

Lee, J. W.; Dai, Z. H.; Han, T. H.; Choi, C.; Chang, S. Y.; Lee, S. J.; De Marco, N.; Zhao, H. X.; Sun, P. Y.; Huang, Y. et al. 2D perovskite stabilized phase-pure formamidinium perovskite solar cells. Nat. Commun. 2018, 9, 3021.

[61]

Wang, R.; Xue, J. J.; Meng, L.; Lee, J. W.; Zhao, Z. P.; Sun, P. Y.; Cai, L.; Huang, T. Y.; Wang, Z. X.; Wang, Z. K. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477.

[62]

Guo, Z. Y.; Zhang, Y.; Wang, B. Z.; Wang, L. D.; Zhou, N.; Qiu, Z. W.; Li, N. X.; Chen, Y. H.; Zhu, C.; Xie, H. P. et al. Promoting energy transfer via manipulation of crystallization kinetics of quasi-2D perovskites for efficient green light-emitting diodes. Adv. Mater. 2021, 33, 2102246.

[63]

Guo, Z.; Wu, X. X.; Zhu, T.; Zhu, X. Y.; Huang, L. B. Electron–phonon scattering in atomically thin 2D perovskites. ACS Nano 2016, 10, 9992–9998.

[64]

Do, T. T. H.; Del Águila, A. G.; Xing, J.; Liu, S.; Xiong, Q. H. Direct and indirect exciton transitions in two-dimensional lead halide perovskite semiconductors. J. Chem. Phys. 2020, 153, 064705.

[65]

Liu, Z. Y.; Chen, Y. Y.; Li, J. Z.; Yao, W. D.; Luo, T.; Li, D. H. Probing local structural phase transition at the surface of (BA)2PbI4 via interlayer exciton emission. Adv. Funct. Mater. 2024, 34, 2312074.

[66]

Debasu, M. L.; Ananias, D.; Macedo, A. G.; Rocha, J.; Carlos, L. D. Emission-decay curves, energy-transfer and effective-refractive index in Gd2O3: Eu3+ nanorods. J. Phys. Chem. C 2011, 115, 15297–15303.

[67]

Baur, F.; Glocker, F.; Jüstel, T. Photoluminescence and energy transfer rates and efficiencies in Eu3+ activated Tb2Mo3O12. J. Mater. Chem. C 2015, 3, 2054–2064.

[68]

Zheng, W. H.; Liu, H. W.; Xu, J.; Jiang, Y.; Fan, P.; Huang, W.; Jiang, F.; Li, L. H.; Fan, X. P.; Zhu, X. L. et al. Carrier-funneling-induced efficient energy transfer in CdS x Se1− x heterostructure microplates. ACS Energy Lett. 2019, 4, 2796–2804.

Nano Research
Article number: 94907070
Cite this article:
Sun T, He J, Li Y, et al. Carrier funnel switch in quasi-two-dimensional perovskites. Nano Research, 2025, 18(1): 94907070. https://doi.org/10.26599/NR.2025.94907070
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return