PDF (11.5 MB)
Collect
Submit Manuscript
Research Article | Open Access

Spin-glass behavior in the competing CoCrGaO4 cubic spinel system

Jiyu Hu1,§Jiangli Ni1Zhenfa Zi1 ()Chaocheng Liu2,§ ()
School of Physics and Materials Engineering, Hefei Normal University, Hefei 230009, China
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, China

§ Jiyu Hu and Chaocheng Liu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Isothermal remanent magnetizations for CoCrGaO4 at different magnetizing fields suggests its intrinsic relaxation behavior.

Abstract

Spin glasses (SGs), generally defined as disordered systems with randomized competing interactions, are widely investigated complex phenomena. Discovering the ground states of spin glasses is crucial for understanding the nature of disordered magnets and many other physical manifestations, while also helping to solve some hard combinatorial optimization problems across multiple disciplines. However, the intrinsic cause of SG has always been elusive, especially in spinel oxide systems. Herein, we report the SG behavior observed in the cubic spinel oxides CoCrGaO4, and provide a comprehensive understanding of its intrinsic source. Magnetic results indicate a frustrated state under multi-magnetic competition, and the features of SG are confirmed by susceptibility tests. The fitting parameters of τ0, T0, and zv of isothermal remanent magnetization further reveal the relaxation behavior and strong spin frustration. Furthermore, the varying exchange coupling under different temperatures and magnetic fields is unveiled, which should be responsible for the disordered state. Our studies unravel the underlying mechanism responsible for doping-induced magnetic frustration and introduce CoCrGaO4 as a potential platform for investigating spin glass behavior, thereby advancing fundamental research on frustrated magnetism within the spinel system.

Electronic Supplementary Material

Download File(s)
7073_ESM.pdf (564.6 KB)

References

[1]

Kumar, R.; Yanda, P.; Sundaresan, A. Cluster-glass behavior in the two-dimensional triangular lattice Ising-spin compound Li2Mn3O7. Phys. Rev. B 2021, 103, 214427.

[2]

Mohanta, N.; Dagotto, E. Interfacial phase frustration stabilizes unconventional skyrmion crystals. npj Quantum Mater. 2022, 7, 76.

[3]

Shirsath, S. E.; Kadam, R. H.; Patange, S. M.; Mane, M. L.; Ghasemi, A.; Morisako, A. Enhanced magnetic properties of Dy3+ substituted Ni–Cu–Zn ferrite nanoparticles. Appl. Phys. Lett. 2012, 100, 042407.

[4]

Raghavender, A. T.; Shirsasth, S. E.; Vijaya Kumar, K. Synthesis and study of nanocrystalline Ni–Cu–Zn ferrites prepared by oxalate based precursor method. J. Alloys Compd. 2011, 509, 7004–7008.

[5]

Tsay, C. Y.; Liu, K. S.; Lin, T. F.; Lin, I. N. Microwave sintering of NiCuZn ferrites and multilayer chip inductors. J. Magn. Magn. Mater. 2000, 209, 189–192.

[6]

Su, H.; Zhang, H. W.; Tang, X. L.; Jing, Y. L. Influence of microstructure on permeability dispersion and power loss of NiZn ferrite. J. Appl. Phys. 2008, 103, 093903.

[7]

Han, L. A.; Zhai, W. L.; Bai, B.; Zhu, H. Z.; Yang, J.; Yan, Z. X.; Zhang, T. Critical behavior in Ni0.15Cu0.15Zn0.7Fe2O4 spinel ferrite. Ceram. Int. 2019, 45, 14322–14326.

[8]

Felhi, R.; Omrani, H.; Koubaa, M.; Koubaa, W. C.; Cheikhrouhou, A. Enhancement of magnetocaloric effect around room temperature in Zn0.7Ni0.3– x Cu x Fe2O4 (0 ≤ x ≤ 0.2) spinel ferrites. J. Alloys Compd. 2018, 758, 237–246.

[9]

Jiang, Q.; Zhao, Z. J.; Zhang, W.; Zeng, H. Y.; Lv, H. H.; Liu, Z. X.; Chen, Z. G. Synthesis and sonodynamic performance of spinel ferrites. J. Alloys Compd. 2023, 968, 172148.

[10]

Li, L. Z.; Tu, X. Q.; Peng, L.; Zhu, X. H. Structure and static magnetic properties of Zr-substituted NiZn ferrite thin films synthesized by sol-gel process. J. Alloys Compd. 2012, 545, 67–69.

[11]

Peng, L. L.; Chen, W. B.; Cao, S. X.; Liu, B. T.; Han, T.; Zhao, L.; Zhao, C.; Li, F.; Li, X. M. Enhanced photoluminescence and thermal properties due to size mismatch in Mg2Ti x Ge1− x O4: Mn4+ deep-red phosphors. J. Mater. Chem. C 2019, 7, 2345–2352.

[12]

Zhou, T. C.; Zhang, D. N.; Jia, L. J.; Bai, F. M.; Jin, L. C.; Liao, Y. L.; Wen, T. L.; Liu, C.; Su, H.; Jia, N. et al. Effect of NiZn ferrite nanoparticles upon the structure and magnetic and gyromagnetic properties of low-temperature processed LiZnTi ferrites. J. Phys. Chem. C 2015, 119, 13207–13214.

[13]

Li, L. Z.; Wang, R.; Tu, X. Q.; Peng, L. Structure and static magnetic properties of Ti-substituted NiZnCo ferrite thin films synthesized by the sol-gel process. J. Magn. Magn. Mater. 2014, 355, 306–308.

[14]

Meng, F. B.; Yang, M.; Zhao, L.; Zhang, Y. J.; Shang, X. N.; Jin, P.; Zhang, W. A comparative study of the structural, magnetic and electrochemical properties of Al3+ and Cu2+ substituted NiZn ferrite/reduced graphene oxide nanocomposites. Ceram. Int. 2017, 43, 15959–15964.

[15]

Shojaei, A. F.; Tabari, A. R.; Loghmani, M. H. Normal spinel CoCr2O4 and CoCr2O4/TiO2 nanocomposite as novel photocatalysts, for degradation of dyes. Micro Nano Lett. 2013, 8, 426–431.

[16]

Liu, D.; Mo, X. P.; Li, K. X.; Liu, Y.; Wang, J. J.; Yang, T. T. The performance of spinel bulk-like oxygen-deficient CoGa2O4 as an air-cathode catalyst in microbial fuel cell. J. Power Sources 2017, 359, 355–362.

[17]

Azad, A. K.; Eriksson, S. G.; Yunus, S. M.; Eriksen, J.; Rundlöf, H. Synthesis, cation distribution and crystal structure of the spinel type solid solution Ga x CoFe1− x CrO4 (0 ≤ x ≤ 1). Phys. B: Condens. Matter 2003, 327, 1–8.

[18]

Iqbal, Y.; Bae, H.; Rhee, I.; Hong, S. Relaxivities of hydrogen protons in aqueous solutions of PEG-coated rod-shaped manganese-nickel-ferrite (Mn0.4Ni0.6Fe2O4) nanoparticles. J. Korean Phys. Soc. 2014, 65, 1594–1597.

[19]

Ali, R.; Khan, M. A.; Manzoor, A.; Shahid, M.; Haider, S.; Malik, A. S.; Sher, M.; Shakir, I.; Warsi, M. F. Investigation of structural and magnetic properties of Zr–Co doped nickel ferrite nanomaterials. J. Magn. Magn. Mater. 2017, 429, 142–147.

[20]

Akhtar, M. N.; Babar, M.; Qamar, S.; ur Rehman, Z.; Khan, M. A. Structural Rietveld refinement and magnetic features of prosademium (Pr) doped Cu nanocrystalline spinel ferrites. Ceram. Int. 2019, 45, 10187–10195.

[21]

Shen, Y.; Wu, Y. B.; Li, X. Y.; Zhao, Q. D.; Hou, Y. One-pot synthesis of MgFe2O4 nanospheres by solvothermal method. Mater. Lett. 2013, 96, 85–88.

[22]

Liu, C. C.; Kan, X. C.; Liu, X. S.; Feng, S. J.; Hu, J. Y. Discovery of the Griffiths phase in the quaternary nitrides Ge1– x Sn x NFe3. J. Am. Ceram. Soc. 2021, 104, 3387–3396.

[23]

Löhle, J.; Mattenberger, K.; Vogt, O. High temperature susceptibility of UAs x Se1– x . J. Magn. Magn. Mater. 1998, 177–181, 43–44.

[24]

Zu, L.; Lin, S.; Liu, Y.; Lin, J. C.; Yuan, B.; Kan, X. C.; Tong, P.; Song, W. H.; Sun, Y. P. A first-order antiferromagnetic-paramagnetic transition induced by structural transition in GeNCr3. Appl. Phys. Lett. 2016, 108, 031906.

[25]

Lin, S.; Lv, H. Y.; Lin, J. C.; Huang, Y. N.; Zhang, L.; Song, W. H.; Tong, P.; Lu, W. J.; Sun, Y. P. Critical behavior in the itinerant ferromagnet AsNCr3 with tetragonal-antiperovskite structure. Phys. Rev. B 2018, 98, 014412.

[26]

Wang, B. S.; Tong, P.; Sun, Y. P.; Zhu, X. B.; Yang, Z. R.; Song, W. H.; Dai, J. M. Observation of spin-glass behavior in antiperovskite compound SnCFe3. Appl. Phys. Lett. 2010, 97, 042508.

[27]

Manna, K.; Samal, D.; Bera, A. K.; Elizabeth, S.; Yusuf, S. M.; Anil Kumar, P. S. Correspondence between neutron depolarization and higher order magnetic susceptibility to investigate ferromagnetic clusters in phase separated systems. J. Phys.: Condens. Matter 2014, 26, 016002.

[28]

Pal, S.; Kumar, K.; Banerjee, A.; Roy, S. B.; Nigam, A. K. Field-cooled state of the canonical spin glass revisited. Phys. Rev. B 2020, 101, 180402(R).

[29]

Jiang, W. J.; Zhou, X. Z.; Williams, G.; Mukovskii, Y.; Glazyrin, K. Extreme sensitivity of the Griffiths phase to magnetic field in single crystal La0.73Ba0.27MnO3. Phys. Rev. B 2007, 76, 092404.

[30]

Hennion, M.; Moussa, F.; Biotteau, G.; Rodriguez-Carvajal, J.; Pinsard, L.; Revcolevschi, A. Liquidlike spatial distribution of magnetic droplets revealed by neutron scattering in La1− x Ca x MnO3. Phys. Rev. Lett. 1998, 81, 1957–1960.

[31]

Liu, C. C.; Tao, X. Y. N.; Kan, X. C.; Liu, X. S.; Zhang, C. H.; Feng, S. J.; Yang, Y. J.; Lv, Q. R.; Hu, J. Y.; Shezad, M. Spin-glass behavior in Co-based antiperovskite compound SnNCo3. Appl. Phys. Lett. 2020, 116, 052401.

[32]

Lin, S.; Shao, D. F.; Lin, J. C.; Zu, L.; Kan, X. C.; Wang, B. S.; Huang, Y. N.; Song, W. H.; Lu, W. J.; Tong, P. et al. Spin-glass behavior and zero-field-cooled exchange bias in a Cr-based antiperovskite compound PdNCr3. J. Mater. Chem. C 2015, 3, 5683–5696.

[33]

Liu, C. C.; Kan, X. C.; Wang, B. S.; Liu, X. S. Observation of the Griffiths phase in the ternary nitrides Sn1– x NFe3+ x . Phys. Rev. B 2020, 102, 235119.

[34]

Gabay, M.; Toulouse, G. Coexistence of spin-glass and ferromagnetic orderings. Phys. Rev. Lett. 1981, 47, 201–204.

[35]

Ulrich, M.; García-Otero, J.; Rivas, J.; Bunde, A. Slow relaxation in ferromagnetic nanoparticles: Indication of spin-glass behavior. Phys. Rev. B 2003, 67, 024416.

[36]

Singh, A. K.; Panda, D. P.; Mehta, S.; Mondal, A.; Peter, S. C. Nickel substitution induced reentrant spin glass behavior in EuGa4. Phys. Rev. B 2022, 106, 224414.

[37]

Liu, C. C.; Kan, X. C.; Liu, X. S.; Zhang, Z. T.; Hu, J. Y. Magnetic compensation and critical behavior in spinel Co2TiO4. Phys. Chem. Chem. Phys. 2020, 22, 20929–20940.

[38]

Zu, L.; Lin, S.; Lin, J. C.; Yuan, B.; Kan, X. C.; Tong, P.; Song, W. H.; Sun, Y. P. Observation of the spin-glass behavior in Co-based antiperovskite nitride GeNCo3. Inorg. Chem. 2016, 55, 9346–9351.

[39]

Scholz, T.; Dronskowski, R. Synthesis and characterisation of a quaternary nitride series with spin-glass behaviour: Sn x Ge1- x Fe3N. J. Mater. Chem. C 2019, 7, 3822–3828.

[40]

Yang, W.; Kan, X. C.; Liu, X. S.; Wang, Z. Z.; Chen, Z. H.; Wang, Z.; Zhu, R. W.; Shezad, M. Spin glass behavior in Zn0.8– x Ni x Cu0.2Fe2O4 (0 ≤ x ≤ 0.28) ferrites. Ceram. Int. 2019, 45, 23328–23332.

[41]

Li, Y.; LaBarre, P. G.; Pajerowski, D. M.; Ramirez, A. P.; Rosenkranz, S.; Phelan, D. Neutron scattering study of fluctuating and static spin correlations in the anisotropic spin glass Fe2TiO5. Phys. Rev. B 2023, 107, 014405.

[42]

Zeng, H.; Sun, S. H.; Vedantam, T. S.; Liu, J. P.; Dai, Z. R.; Wang, Z. L. Exchange-coupled FePt nanoparticle assembly. Appl. Phys. Lett. 2002, 80, 2583.

[43]

Soares, J. M.; Cabral, F. A. O.; de Araújo, J. H.; Machado, F. L. A. Exchange-spring behavior in nanopowders of CoFe2O4–CoFe2. Appl. Phys. Lett. 2011, 98, 072502.

[44]

Song, B.; Jian, J. K.; Bao, H. Q.; Lei, M.; Li, H.; Wang, G.; Xu, Y. P.; Chen, X. L. Observation of spin-glass behavior in antiperovskite Mn3GaN. Appl. Phys. Lett. 2008, 92, 192511.

[45]

Hu, J. Y.; Liu, C. C.; Wang, M.; Wang, M. L.; Kan, X. C.; Zheng, G. H.; Ma, Y. Q. Analysis on the microstructure and magnetic properties of MgGaFeO4 spinel compound. J. Am. Ceram. Soc. 2021, 104, 6434–6443.

Nano Research
Article number: 94907073
Cite this article:
Hu J, Ni J, Zi Z, et al. Spin-glass behavior in the competing CoCrGaO4 cubic spinel system. Nano Research, 2025, 18(1): 94907073. https://doi.org/10.26599/NR.2025.94907073
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return