PDF (40.3 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Tables (1)
Table 1
Research Article | Open Access

Exciton regulation and carrier dynamics in WS2 coupled with gap-adjustable plasmonic nanocavity

Xinhui Yang1Yiduo Wang1Xinxin Peng1Defeng Xu1Fengyi Zhang1Jiong Yang2Zhihui Chen1Yingwei Wang1Yongbo Yuan1Jun He1Xiaoming Yuan1()
Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics, Central South University, Changsha 410083, China
School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China
Show Author Information

Graphical Abstract

View original image Download original image
Gap-adjustable plasmonic nanocavity induced photoluminescence (PL) enhancement and exciton regulation in layer-dependent WS2.

Abstract

Layered transition metal dichalcogenides (TMDCs) exhibit exceptional physical properties and unique optical features. Plasmonic nanocavity provides an efficient and practical solution for fruitful exciton regulation related emission properties by manipulating light-matter interactions, which is not normally available. For practical applications, an ideal scenario is to enhance the exciton emission and to realize active regulation simultaneously. Here, we designed and fabricated an anisotropic nanocavity using monolayer biphenyl-4-thiol (BPT) and WS2 separated Ag nanowire and Au film. For the 1L WS2, emission intensity was enhanced by ~ 631-fold with a dichroic ratio of 2.3. For few-layer WS2 (2L WS2 as an example), the resonant wavelength of plasmonic nanocavity matches well with the energy of indirect exciton. Consequently, the enhancement effect of indirect exciton (~ 521 folds) is significantly greater than that of direct exciton (~ 316 folds). The effective modulation of the spectral emission dominated by indirect exciton or direct exciton can be achieved by varying excitation power. Specifically, plasmonic nanocavity can induce fruitful exciton emission properties in 2L WS2 at low temperature, including direct exciton, interlayer exciton and different types of indirect exciton emissions, which are usually not observed. Transient absorption spectroscopy further revealed that non-radiative and radiative recombination process of exciton and trion in few-layer WS2 were accelerated in the nanocavity. Our findings provide a prototypical plasmonic hybrid system for anisotropic enhancement of photoluminescence at the nanoscale to achieve active modulation, offering a new opportunity to build high-efficiency and high-quality photonic devices with multi-functionalities.

Electronic Supplementary Material

Download File(s)
7074_ESM.pdf (1.9 MB)

References

[1]

Peng, Z. W.; Chen, X. L.; Fan, Y. L.; Srolovitz, D. J.; Lei, D. Y. Strain engineering of 2D semiconductors and graphene: From strain fields to band-structure tuning and photonic applications. Light Sci. Appl. 2020, 9, 190.

[2]

Liu, Y. S.; Hu, X. M.; Wang, T.; Liu, D. M. Reduced binding energy and layer-dependent exciton dynamics in monolayer and multilayer WS2. ACS Nano 2019, 13, 14416–14425.

[3]

Cao, T.; Wang, G.; Han, W. P.; Ye, H. Q.; Zhu, C. R.; Shi, J. R.; Niu, Q.; Tan, P. H.; Wang, E. G.; Liu, B. L. et al. Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 2012, 3, 887.

[4]

Yang, X. H.; Zhang, S. H.; Zhang, Z. W.; Lin, J. T.; Liu, X. L.; Huang, Z. W.; Zhang, L. Q.; Luo, W. C.; He, J.; Yuan, X. M. Controlled fabrication of CsPbI2Br/transition metal dichalcogenide van der Waals heterostructure with fast carrier transfer process and interlayer exciton formation. Phys. E: Low Dimens. Syst. Nanostruct. 2023, 153, 115788.

[5]

Pu, J.; Takenobu, T. Monolayer transition metal dichalcogenides as light sources. Adv. Mater. 2018, 30, 1707627.

[6]

Tu, L. Q.; Cao, R. R.; Wang, X. D.; Chen, Y.; Wu, S. Q.; Wang, F.; Wang, Z.; Shen, H.; Lin, T.; Zhou, P. et al. Ultrasensitive negative capacitance phototransistors. Nat. Commun. 2020, 11, 101.

[7]

Han, C. R.; Ye, J. T. Polarized resonant emission of monolayer WS2 coupled with plasmonic sawtooth nanoslit array. Nat. Commun. 2020, 11, 713.

[8]

Zhu, G. P.; Shi, X. Q.; Huang, G. Y.; Liu, K. Z.; Wei, W.; Guo, Q. Q.; Du, W.; Wang, T. Highly Polarized light emission of monolayer WSe2 coupled with gap-plasmon nanocavity. Adv. Opt. Mater. 2022, 10, 2101762.

[9]

Wang, Z.; Dong, Z. G.; Gu, Y. H.; Chang, Y. H.; Zhang, L.; Li, L. J.; Zhao, W. J.; Eda, G.; Zhang, W. J.; Grinblat, G. et al. Giant photoluminescence enhancement in tungsten-diselenide-gold plasmonic hybrid structures. Nat. Commun. 2016, 7, 11283.

[10]

Akselrod, G. M.; Ming, T.; Argyropoulos, C.; Hoang, T. B.; Lin, Y. X.; Ling, X.; Smith, D. R.; Kong, J.; Mikkelsen, M. H. Leveraging nanocavity harmonics for control of optical processes in 2D semiconductors. Nano Lett. 2015, 15, 3578–3584.

[11]

Chen, M. L.; Chang, R. G.; Yang, X. H.; Lu, C.; Zhang, S. H.; Zhang, Z. W.; He, J.; Yuan, X. M. Van der Waals epitaxy of CsPbBr3/WSe2 heterostructure and dynamics study of exciton recombination. J. Phys. D: Appl. Phys. 2024, 57, 235103.

[12]

Mueller, T.; Malic, E. Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2018, 2, 29.

[13]

Cong, C. X.; Shang, J. Z.; Wang, Y. L.; Yu, T. Optical properties of 2D semiconductor WS2. Adv. Opt. Mater. 2018, 6, 1700767.

[14]

Fang, L.; Yuan, X. M.; Liu, K. W.; Li, L.; Zhou, P.; Ma, W.; Huang, H.; He, J.; Tao, S. H. Direct bilayer growth: A new growth principle for a novel WSe2 homo-junction and bilayer WSe2 growth. Nanoscale 2020, 12, 3715–3722.

[15]

Palacios-Berraquero, C.; Kara, D. M.; Montblanch, A. R. P.; Barbone, M.; Latawiec, P.; Yoon, D.; Ott, A. K.; Loncar, M.; Ferrari, A. C.; Atatüre, M. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 2017, 8, 15093.

[16]

Yang, W. H.; Li, H.; Chen, J. J.; Yin, J.; Li, J.; Wu, Y. P.; Mo, B. J.; Wu, T.; Sun, B. F.; Wu, Z. M. et al. Plasmon-enhanced exciton emissions and Raman scattering of CVD-grown monolayer WS2 on Ag nanoprism arrays. Appl. Surf. Sci. 2020, 504, 144252.

[17]

Lobanov, S. V.; Gippius, N. A.; Tikhodeev, S. G.; Butov, L. V. Control of light polarization by voltage in excitonic metasurface devices. Appl. Phys. Lett. 2017, 111, 241101.

[18]

Han, C. R.; Parrott, E. P. J.; Humbert, G.; Crunteanu, A.; Pickwell-MacPherson, E. Broadband modulation of terahertz waves through electrically driven hybrid bowtie antenna-VO2 devices. Sci. Rep. 2017, 7, 12725.

[19]

Cheng, F.; Johnson, A. D.; Tsai, Y.; Su, P. H.; Hu, S.; Ekerdt, J. G.; Shih, C. K. Enhanced photoluminescence of monolayer WS2 on Ag films and nanowire-WS2-film composites. ACS Photonics 2017, 4, 1421–1430.

[20]

Yuan, X. M.; Yang, X. H.; Huang, Z. W.; Zhang, L. Q.; Peng, X. X.; Chen, H. T.; He, J. Ultrahigh polarization-sensitive Raman scattering and photon emission in a plasmonic Au/biphenyl-4-thiol/Ag nanowire nanocavity. J. Phys. Chem. C 2023, 127, 17880–17887.

[21]

Zeng, H. L.; Liu, G. B.; Dai, J. F.; Yan, Y. J.; Zhu, B. R.; He, R. C.; Xie, L.; Xu, S. J.; Chen, X. H.; Yao, W. et al. Optical signature of symmetry variations and spin-valley coupling in atomically thin tungsten dichalcogenides. Sci. Rep. 2013, 3, 1608.

[22]

Liu, H. W.; Bhushan, B. Orientation and relocation of biphenyl thiol self-assembled monolayers under sliding. Ultramicroscopy 2002, 91, 177–183.

[23]

Berkdemir, A.; Gutiérrez, H. R.; Botello-Méndez, A. R.; Perea-López, N.; Elías, A. L.; Chia, C. I.; Wang, B.; Crespi, V. H.; López-Urías, F.; Charlier, J. C. et al. Identification of individual and few layers of WS2 using Raman Spectroscopy. Sci. Rep. 2013, 3, 1755.

[24]

Park, J.; Kim, M. S.; Cha, E.; Kim, J.; Choi, W. Synthesis of uniform single layer WS2 for tunable photoluminescence. Sci. Rep. 2017, 7, 16121.

[25]

Ren, T. H.; Song, P.; Chen, J. Y.; Loh, K. P. Whisper gallery modes in monolayer tungsten disulfide-hexagonal boron nitride optical cavity. ACS Photonics 2018, 5, 353–358.

[26]

Lee, C.; Jeong, B. G.; Kim, S. H.; Kim, D. H.; Yun, S. J.; Choi, W.; An, S. J.; Lee, D.; Kim, Y. M.; Kim, K. K. et al. Investigating heterogeneous defects in single-crystalline WS2 via tip-enhanced Raman spectroscopy. npj 2D Mater. Appl. 2022, 6, 67.

[27]

Chen, W.; Zhang, S. P.; Kang, M.; Liu, W. K.; Ou, Z. W.; Li, Y.; Zhang, Y. X.; Guan, Z. Q.; Xu, H. X. Probing the limits of plasmonic enhancement using a two-dimensional atomic crystal probe. Light Sci. Appl. 2018, 7, 56.

[28]

Shang, J. Z.; Shen, X. N.; Cong, C. X.; Peimyoo, N.; Cao, B. C.; Eginligil, M.; Yu, T. Observation of excitonic fine structure in a 2D transition-metal dichalcogenide semiconductor. ACS Nano 2015, 9, 647–655.

[29]

Paradisanos, I.; Germanis, S.; Pelekanos, N. T.; Fotakis, C.; Kymakis, E.; Kioseoglou, G.; Stratakis, E. Room temperature observation of biexcitons in exfoliated WS2 monolayers. Appl. Phys. Lett. 2017, 110, 193102.

[30]

Paur, M.; Molina-Mendoza, A. J.; Bratschitsch, R.; Watanabe, K.; Taniguchi, T.; Mueller, T. Electroluminescence from multi-particle exciton complexes in transition metal dichalcogenide semiconductors. Nat. Commun. 2019, 10, 1709.

[31]

Shi, J. W.; Zhu, J. R.; Wu, X. X.; Zheng, B. Y.; Chen, J.; Sui, X. Y.; Zhang, S.; Shi, J.; Du, W. N.; Zhong, Y. G. et al. Enhanced trion emission and carrier dynamics in monolayer WS2 coupled with plasmonic nanocavity. Adv. Opt. Mater. 2020, 8, 2001147.

[32]

Tran, T. N.; Kim, S.; White, S. J. U.; Nguyen, M. A. P.; Xiao, L. C.; Strauf, S.; Yang, T. S.; Aharonovich, I.; Xu, Z. Q. Enhanced emission from interlayer excitons coupled to plasmonic gap cavities. Small 2021, 17, 2103994.

[33]

Han, X. B.; Wang, K.; Persaud, P. D.; Xing, X. Y.; Liu, W. W.; Long, H.; Li, F.; Wang, B.; Singh, M. R.; Lu, P. X. Harmonic resonance enhanced second-harmonic generation in the monolayer WS2–Ag nanocavity. ACS Photonics 2020, 7, 562–568.

[34]

Okada, M.; Miyauchi, Y.; Matsuda, K.; Taniguchi, T.; Watanabe, K.; Shinohara, H.; Kitaura, R. Observation of biexcitonic emission at extremely low power density in tungsten disulfide atomic layers grown on hexagonal boron nitride. Sci. Rep. 2017, 7, 322.

[35]

Molas, M. R.; Nogajewski, K.; Slobodeniuk, A. O.; Binder, J.; Bartos, M.; Potemski, M. The optical response of monolayer, few-layer and bulk tungsten disulfide. Nanoscale 2017, 9, 13128–13141.

[36]

Vaclavkova, D.; Wyzula, J.; Nogajewski, K.; Bartos, M.; Slobodeniuk, A. O.; Faugeras, C.; Potemski, M.; Molas, M. R. Singlet and triplet trions in WS2 monolayer encapsulated in hexagonal boron nitride. Nanotechnology 2018, 29, 325705.

[37]

Jadczak, J.; Kutrowska-Girzycka, J.; Kapuściński, P.; Huang, Y. S.; Wójs, A.; Bryja, L. Probing of free and localized excitons and trions in atomically thin WSe2, WS2, MoSe2 and MoS2 in photoluminescence and reflectivity experiments. Nanotechnology 2017, 28, 395702.

[38]

Wang, H. N.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Radiative lifetimes of excitons and trions in monolayers of the metal dichalcogenide MoS2. Phys. Rev. B 2016, 93, 045407.

[39]

Fan, X. P.; Zheng, W. H.; Liu, H. J.; Zhuang, X. J.; Fan, P.; Gong, Y. F.; Li, H. L.; Wu, X. P.; Jiang, Y.; Zhu, X. L. et al. Nonlinear photoluminescence in monolayer WS2: Parabolic emission and excitation fluence-dependent recombination dynamics. Nanoscale 2017, 9, 7235–7241.

[40]

Robert, C.; Lagarde, D.; Cadiz, F.; Wang, G.; Lassagne, B.; Amand, T.; Balocchi, A.; Renucci, P.; Tongay, S.; Urbaszek, B. et al. Exciton radiative lifetime in transition metal dichalcogenide monolayers. Phys. Rev. B 2016, 93, 205423.

[41]

Xu, X. J.; Li, L. H.; Li, X. L.; Hu, X. W.; Yang, M. M.; Guo, Q. L.; Wang, Y.; Zhuang, X. J.; Liang, B. L. Different optical characteristics between monolayer and bilayer WS2 due to interlayer interaction. Optik 2022, 251, 168374.

[42]

Li, Z. P.; Wang, T. M.; Lu, Z. G.; Jin, C. H.; Chen, Y. W.; Meng, Y. Z.; Lian, Z.; Taniguchi, T.; Watanabe, K.; Zhang, S. B.; et al. Revealing the biexciton and trion-exciton complexes in BN encapsulated WSe2. Nat. Commun. 2018, 9, 3719.

[43]

Yan, W.; Meng, L.; Meng, Z. S.; Weng, Y. K.; Kang, L. L.; Li, X. A. Probing angle-dependent interlayer coupling in twisted bilayer WS2. J. Phys. Chem. C 2019, 123, 30684–30688.

[44]

Zheng, S. J.; Sun, L. F.; Zhou, X. H.; Liu, F. C.; Liu, Z.; Shen, Z. X.; Fan, H. J. Coupling and interlayer exciton in twist-stacked WS2 bilayers. Adv. Opt. Mater. 2015, 3, 1600–1605.

[45]

Grzeszczyk, M.; Szpakowski, J.; Slobodeniuk, A. O.; Kazimierczuk, T.; Bhatnagar, M.; Taniguchi, T.; Watanabe, K.; Kossacki, P.; Potemski, M.; Babiński, A. et al. The optical response of artificially twisted MoS2 bilayers. Sci. Rep. 2021, 11, 17037.

[46]

Rahaman, M.; Kim, G.; Ma, K. Y.; Song, S.; Shin, H. S.; Jariwala, D. Tailoring exciton dynamics in TMDC heterobilayers in the ultranarrow gap-plasmon regime. npj 2D Mater. Appl. 2023, 7, 66.

[47]

Wu, L. J.; Ge, C. H.; Braun, K.; He, M.; Liu, S. M.; Tong, Q. J.; Wang, X.; Pan, A. L. Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams. Chin. Phys. B 2021, 30, 087802.

[48]

He, Z. Y.; Xu, W. S.; Zhou, Y. Q.; Wang, X. C.; Sheng, Y. W.; Rong, Y. M.; Guo, S. Q.; Zhang, J. Y.; Smith, J. M.; Warner, J. H. Biexciton formation in bilayer tungsten disulfide. ACS Nano 2016, 10, 2176–2183.

[49]

Kim, J. Y.; Kim, T. J.; Lee, S. H.; Lee, E.; Kim, J.; Joo, J. Temperature- and power-dependent characteristics of heterointerlayer excitons emitting in the visible region of a WS2/PbI2 nanostructure: Implications in excitonic devices. ACS Appl. Nano Mater. 2022, 5, 11167–11175.

[50]

Gustafson, J. K.; Cunningham, P. D.; McCreary, K. M.; Jonker, B. T.; Hayden, L. M. Ultrafast carrier dynamics of monolayer WS2 via broad-band time-resolved terahertz spectroscopy. J. Phys. Chem. C 2019, 123, 30676–30683.

[51]

Pogna, E. A. A.; Marsili, M.; De Fazio, D.; Dal Conte, S.; Manzoni, C.; Sangalli, D.; Yoon, D.; Lombardo, A.; Ferrari, A. C.; Marini, A. et al. Photo-induced bandgap renormalization governs the ultrafast response of single-layer MoS2. ACS Nano 2016, 10, 1182–1188.

[52]

Goswami, T.; Rani, R.; Hazra, K. S.; Ghosh, H. N. Ultrafast carrier dynamics of the exciton and trion in MoS2 monolayers followed by dissociation dynamics in Au@MoS2 2D heterointerfaces. J. Phys. Chem. Lett. 2019, 10, 3057–3063.

[53]

Kime, G.; Leontiadou, M. A.; Brent, J. R.; Savjani, N.; O’Brien, P.; Binks, D. Ultrafast charge dynamics in dispersions of monolayer MoS2 nanosheets. J. Phys. Chem. C 2017, 121, 22415–22421.

[54]

Chowdhury, R. K.; Nandy, S.; Bhattacharya, S.; Karmakar, M.; Bhaktha, S. N. B.; Datta, P. K.; Taraphder, A.; Ray, S. K. Ultrafast time-resolved investigations of excitons and biexcitons at room temperature in layered WS2. 2D Mater. 2018, 6, 015011.

[55]

Cunningham, P. D.; McCreary, K. M.; Jonker, B. T. Auger recombination in chemical vapor deposition-grown monolayer WS2. J. Phys. Chem. Lett. 2016, 7, 5242–5246.

[56]

Wang, H. N.; Strait, J. H.; Zhang, C. J.; Chan, W. M.; Manolatou, C.; Tiwari, S.; Rana, F. Fast exciton annihilation by capture of electrons or holes by defects via Auger scattering in monolayer metal dichalcogenides. Phys. Rev. B 2015, 91, 165411.

[57]

Sun, D. Z.; Rao, Y.; Reider, G. A.; Chen, G. G.; You, Y. M.; Brézin, L.; Harutyunyan, A. R.; Heinz, T. F. Observation of rapid exciton-exciton annihilation in monolayer molybdenum disulfide. Nano Lett. 2014, 14, 5625–5629.

[58]

Zhou, M. F.; Wang, W. H.; Lu, J. P.; Ni, Z. H. How defects influence the photoluminescence of TMDCs. Nano Res. 2021, 14, 29–39.

Nano Research
Article number: 94907074
Cite this article:
Yang X, Wang Y, Peng X, et al. Exciton regulation and carrier dynamics in WS2 coupled with gap-adjustable plasmonic nanocavity. Nano Research, 2025, 18(1): 94907074. https://doi.org/10.26599/NR.2025.94907074
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return