AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (14.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Boosting charge extraction and efficiency of inverted perovskite solar cells through coordinating group modification at the buffer layer/cathode interface

Zhiqing Liang1,§Ziqiu Ren1,§Ziyu Wang1 ( )Nan Yan2Ling Li1Bo Zhang1Yanlin Song3 ( )
College of Chemistry, Zhengzhou University, Zhengzhou 450052, China
Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710119, China
Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences (ICCAS), Beijing Engineering Research Center of Nanomaterials for Green Printing Technology, National Laboratory for Molecular Sciences (BNLMS), Beijing 100190, China

§ Zhiqing Liang and Ziqiu Ren contributed equally to this work.

Show Author Information

Graphical Abstract

Disodium bathocuproine disulfonate (BCDS) is employed as the cathode buffer layer instead of BCP in inverted perovskite solar cell (PSC). The sulfonic acid group on the BCDS molecule forms a strong chemical interaction with the Ag electrode, enhancing the charge extraction ability and promoting the conformal growth of the Ag electrode, thereby achieving a power conversion efficiency (PCE) of 25.06%.

Abstract

In inverted perovskite solar cells (PSCs), effective modification of the interface between the metal cathode and electron transport layer (ETL) is crucial for achieving high performance and stability. Herein, sulfonated bathocuproine, commonly known as disodium bathocuproine disulfonate (BCDS), was employed as a cathode buffer layer to address the interfacial issues at the [6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/Ag interface. BCDS possesses the ability to form coordinate bonds with Ag electrodes. The utilization of the BCDS buffer layer enhanced the charge extraction capability at the cathode interface while simultaneously achieving interfacial defect passivation, improving interfacial contact and increasing the built-in electric field. Consequently, a power conversion efficiency (PCE) of 25.06% was achieved. Furthermore, owing to the excellent film-forming uniformity of BCDS on PCBM, the stability of the device was also improved. After storage in dry air for more than 2000 h, the device maintained 96% of its initial efficiency. This work underscores the remarkable potential of tailoring coordination groups to enhance charge extraction efficiency at the ETL–cathode interface, unveiling a promising new frontier in buffer layer development and performance optimization strategies for PSCs.

Electronic Supplementary Material

Download File(s)
7075_ESM.pdf (5.2 MB)

References

[1]

Chen, B.; Rudd, P. N.; Yang, S.; Yuan, Y. B.; Huang, J. S. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 2019, 48, 3842–3867.

[2]

Jin, Y. B.; Feng, H. P.; Fang, Z.; Yang, L.; Liu, K. K.; Deng, B. R.; Chen, J. F.; Chen, X. L.; Zhong, Y. W.; Yang, J. X. et al. Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer. Nano Res. 2024, 17, 1500–1507.

[3]

Zhou, J. J.; Tan, L. G.; Liu, Y.; Li, H.; Liu, X. P.; Li, M. H.; Wang, S. Y.; Zhang, Y.; Jiang, C. F.; Hua, R. M. et al. Highly efficient and stable perovskite solar cells via a multifunctional hole transporting material. Joule 2024, 8, 1691–1706.

[4]

Chen, H.; Liu, C.; Xu, J.; Maxwell, A.; Zhou, W.; Yang, Y.; Zhou, Q. L.; Bati, A. S. R.; Wan, H. Y.; Wang, Z. W. et al. Improved charge extraction in inverted perovskite solar cells with dual-site-binding ligands. Science 2024, 384, 189–193.

[5]

Chin, X. Y.; Turkay, D.; Steele, J. A.; Tabean, S.; Eswara, S.; Mensi, M.; Fiala, P.; Wolff, C. M.; Paracchino, A.; Artuk, K. et al. Interface passivation for 31.25%-efficient perovskite/silicon tandem solar cells. Science 2023, 381, 59–63.

[6]

Kim, D. H.; Muzzillo, C. P.; Tong, J. H.; Palmstrom, A. F.; Larson, B. W.; Choi, C.; Harvey, S. P.; Glynn, S.; Whitaker, J. B.; Zhang, F. et al. Bimolecular additives improve wide-band-gap perovskites for efficient tandem solar cells with CIGS. Joule 2019, 3, 1734–1745.

[7]

Ye, S. Y.; Rao, H. X.; Zhao, Z. R.; Zhang, L. J.; Bao, H. L.; Sun, W. H.; Li, Y. L.; Gu, F. D.; Wang, J. Q.; Liu, Z. W. et al. A breakthrough efficiency of 19.9% obtained in inverted perovskite solar cells by using an efficient trap state passivator Cu(thiourea)I. J. Am. Chem. Soc. 2017, 139, 7504–7512.

[8]

Wang, X.; Rakstys, K.; Jack, K.; Jin, H.; Lai, J.; Li, H.; Ranasinghe, C. S. K.; Saghaei, J.; Zhang, G. R.; Burn, P. L. et al. Engineering fluorinated-cation containing inverted perovskite solar cells with an efficiency of > 21% and improved stability towards humidity. Nat. Commun. 2021, 12, 52.

[9]

Jiang, Q.; Tong, J. H.; Xian, Y. M.; Kerner, R. A.; Dunfield, S. P.; Xiao, C. X.; Scheidt, R. A.; Kuciauskas, D.; Wang, X. M.; Hautzinger, M. P. et al. Surface reaction for efficient and stable inverted perovskite solar cells. Nature 2022, 611, 278–283.

[10]

Sun, A. X.; Tian, C. C.; Zhuang, R. S.; Chen, C.; Zheng, Y. T.; Wu, X. Y.; Tang, C.; Liu, Y.; Li, Z. H.; Ouyang, B. L. et al. High open-circuit voltage (1.197 V) in large-area (1 cm2) inverted perovskite solar cell via interface planarization and highly polar self-assembled monolayer. Adv. Energy Mater. 2024, 14, 2303941.

[11]

Tang, H. C.; Shen, Z. C.; Shen, Y. Z.; Yan, G.; Wang, Y. B.; Han, Q. F.; Han, L. Y. Reinforcing self-assembly of hole transport molecules for stable inverted perovskite solar cells. Science 2024, 383, 1236–1240.

[12]

Shao, Y. C.; Xiao, Z. G.; Bi, C.; Yuan, Y. B.; Huang, J. S. Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells. Nat. Commun. 2014, 5, 5784.

[13]

Liu, K. K.; Tian, C. B.; Liang, Y. M.; Luo, Y. J.; Xie, L. Q.; Wei, Z. H. Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Res. 2022, 15, 7139–7153.

[14]

Li, H.; Xie, G. S.; Fang, J.; Wang, X.; Li, S. B.; Lin, D. X.; Wang, D. Z.; Huang, N. S.; Peng, H. C.; Qiu, L. B. Holistic dielectric and buffer interfacial layers enable high-efficiency perovskite solar cells and modules. Nano Energy 2024, 124, 109507.

[15]

Chen, C. L.; Zhang, S. S.; Wu, S. H.; Zhang, W. J.; Zhu, H. M.; Xiong, Z. Z.; Zhang, Y. J.; Chen, W. Effect of BCP buffer layer on eliminating charge accumulation for high performance of inverted perovskite solar cells. RSC Adv. 2017, 7, 35819–35826.

[16]

Lee, K.; Ryu, J.; Yu, H.; Yun, J.; Lee, J.; Jang, J. Enhanced efficiency and air-stability of NiO X -based perovskite solar cells via PCBM electron transport layer modification with Triton X-100. Nanoscale 2017, 9, 16249–16255.

[17]

Li, M.; Zhao, C.; Wang, Z. K.; Zhang, C. C.; Lee, H. K. H.; Pockett, A.; Barbé, J.; Tsoi, W. C.; Yang, Y. G.; Carnie, M. J. et al. Interface modification by ionic liquid: A promising candidate for indoor light harvesting and stability improvement of planar perovskite solar cells. Adv. Energy Mater. 2018, 8, 1801509.

[18]

Cui, C. H.; Li, Y. W.; Li, Y. F. Fullerene derivatives for the applications as acceptor and cathode buffer layer materials for organic and perovskite solar cells. Adv. Energy Mater. 2017, 7, 1601251.

[19]

Chen, P.; Xiao, Y.; Hu, J. T.; Li, S. D.; Luo, D. Y.; Su, R.; Caprioglio, P.; Kaienburg, P.; Jia, X. H.; Chen, N. et al. Multifunctional ytterbium oxide buffer for perovskite solar cells. Nature 2024, 625, 516–522.

[20]

Da, P. M.; Zheng, G. F. Tailoring interface of lead-halide perovskite solar cells. Nano Res. 2017, 10, 1471–1497.

[21]

Chen, Y. H.; Chen, T.; Dai, L. M. Layer-by-layer growth of CH3NH3PbI3− x Cl x for highly efficient planar heterojunction perovskite solar cells. Adv. Mater. 2015, 27, 1053–1059.

[22]

Jiang, Z. Y.; Pan, M.; Ren, F. M.; Chen, R.; Sun, Z. X.; Yang, Z. C.; Liu, Z. H.; Chen, W. Boosting stability of inverted perovskite solar cells with magnetron-sputtered molybdenum rear electrodes. Rare Met. 2023, 42, 3741–3754.

[23]

Menzel, D.; Al-Ashouri, A.; Tejada, A.; Levine, I.; Guerra, J. A.; Rech, B.; Albrecht, S.; Korte, L. Field effect passivation in perovskite solar cells by a LiF interlayer. Adv. Energy Mater. 2022, 12, 2201109.

[24]

Huang, Y. L.; Liu, T. H.; Wang, B. Z.; Li, J. L.; Li, D. Y.; Wang, G. L.; Lian, Q.; Amini, A.; Chen, S.; Cheng, C. et al. Antisolvent engineering to optimize grain crystallinity and hole-blocking capability of perovskite films for high-performance photovoltaics. Adv. Mater. 2021, 33, 2102816.

[25]

Chang, C. Y.; Lee, K. T.; Huang, W. K.; Siao, H. Y.; Chang, Y. C. High-performance, air-stable, low-temperature processed semitransparent perovskite solar cells enabled by atomic layer deposition. Chem. Mater. 2015, 27, 5122–5130.

[26]

Kim, I. S.; Cao, D. H.; Buchholz, D. B.; Emery, J. D.; Farha, O. K.; Hupp, J. T.; Kanatzidis, M. G.; Martinson, A. B. F. Liquid water- and heat-resistant hybrid perovskite photovoltaics via an inverted ALD oxide electron extraction layer design. Nano Lett. 2016, 16, 7786–7790.

[27]

Yu, S. Q.; Xiong, Z.; Zhou, H. T.; Zhang, Q.; Wang, Z. H.; Ma, F.; Qu, Z. H.; Zhao, Y.; Chu, X. B.; Zhang, X. W. et al. Homogenized NiO x nanoparticles for improved hole transport in inverted perovskite solar cells. Science 2023, 382, 1399–1404.

[28]

Liu, N. H.; Xiong, J.; Wang, G.; He, Z.; Dai, J. Q.; Zhang, Y. S.; Huang, Y.; Zhang, Z. L.; Wang, D. J.; Li, S. et al. Overcoming the PCBM/Ag interface issues in inverted perovskite solar cells by rhodamine-functionalized dodecahydro- closo-dodecaborate derivate interlayer. Adv. Funct. Mater. 2023, 33, 2300396.

[29]

Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A. S.; Liu, J.; Harrison, G. T.; Nugraha, M. I.; Eswaran, M. K.; Babics, M. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 2022, 376, 73–77.

[30]

Henderson, C.; Luke, J.; Bicalho, I. S.; Correa, L.; Yang, E. J.; Rimmele, M.; Demetriou, H.; Chin, Y. C.; Lan, T. H.; Heutz, S. et al. Charge transfer complex formation between organic interlayers drives light-soaking in large area perovskite solar cells. Energy Environ. Sci. 2023, 16, 5891–5903.

[31]

Yang, J. B.; Cao, Q.; Wang, T.; Yang, B. W.; Pu, X. Y.; Zhang, Y. X.; Chen, H.; Tojiboyev, I.; Li, Y. K.; Etgar, L. et al. Inhibiting metal-inward diffusion-induced degradation through strong chemical coordination toward stable and efficient inverted perovskite solar cells. Energy Environ. Sci. 2022, 15, 2154–2163.

[32]

Cheng, F. W.; Zhan, S. Q.; Cai, Y. T.; Cao, F.; Dai, X. F.; Xu, R. C.; Yin, J.; Li, J.; Zheng, N. F.; Wu, B. H. Interfacial property tuning enables copper electrodes in high-performance n–i–p perovskite solar cells. J. Am. Chem. Soc. 2023, 145, 20081–20087.

[33]

Shibayama, N.; Kanda, H.; Kim, T. W.; Segawa, H.; Ito, S. Design of BCP buffer layer for inverted perovskite solar cells using ideal factor. APL Mater. 2019, 7, 031117.

[34]

Jiang, Q.; Song, Z. N.; Bramante, R. C.; Ndione, P. F.; Tirawat, R.; Berry, J. J.; Yan, Y. F.; Zhu, K. Highly efficient bifacial single-junction perovskite solar cells. Joule 2023, 7, 1543–1555.

[35]

Gaikar, V. G.; Padalkar, K. V.; Aswal, V. K. Characterization of mixed micelles of structural isomers of sodium butyl benzene sulfonate and sodium dodecyl sulfate by SANS, FTIR spectroscopy and NMR spectroscopy. J. Mol. Liq. 2008, 138, 155–167.

[36]

Kazachenko, A. S.; Akman, F.; Abdelmoulahi, H.; Issaoui, N.; Malyar, Y. N.; Al-Dossary, O.; Wojcik, M. J. Intermolecular hydrogen bonds interactions in water clusters of ammonium sulfamate: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NBO analysis. J. Mol. Liq. 2021, 342, 117475.

[37]

Cao, Y.; Feng, J. S.; Wang, M. Z.; Yan, N.; Lou, J. J.; Feng, X. L.; Xiao, F. W.; Liu, Y. C.; Qi, D. Y.; Yuan, Y. et al. Interface modification by ammonium sulfamate for high-efficiency and stable perovskite solar cells. Adv. Energy Mater. 2023, 13, 2302103.

[38]

Nasef, M. M.; Saidi, H. Surface studies of radiation grafted sulfonic acid membranes: XPS and SEM analysis. Appl. Surf. Sci. 2006, 252, 3073–3084.

[39]

Chang, C. Y.; Chang, Y. C.; Huang, W. K.; Liao, W. C.; Wang, H.; Yeh, C.; Tsai, B. C.; Huang, Y. C.; Tsao, C. S. Achieving high efficiency and improved stability in large-area ITO-free perovskite solar cells with thiol-functionalized self-assembled monolayers. J. Mater. Chem. A 2016, 4, 7903–7913.

[40]

Yang, T. H.; Gao, L. L.; Lu, J.; Ma, C.; Du, Y. C.; Wang, P. J.; Ding, Z. C.; Wang, S. Q.; Xu, P.; Liu, D. L. et al. One-stone-for-two-birds strategy to attain beyond 25% perovskite solar cells. Nat. Commun. 2023, 14, 839.

[41]

Elumalai, N. K.; Uddin, A. Open circuit voltage of organic solar cells: An in-depth review. Energy Environ. Sci. 2016, 9, 391–410.

[42]

Chiang, S. E.; Chandel, A.; Thakur, D.; Chen, Y. T.; Lin, P. C.; Wu, J. R.; Cai, K. B.; Kassou, S.; Yeh, J. M.; Yuan, C. T. et al. On the role of solution-processed bathocuproine in high-efficiency inverted perovskite solar cells. Solar Energy 2021, 218, 142–149.

[43]

Gao, Y.; Xu, W. Z.; He, F.; Nie, P. B.; Yang, Q. D.; Si, Z. C.; Meng, H.; Wei, G. D. Carbon nanodots enhanced performance of Cs0.15FA0.85PbI3 perovskite solar cells. Nano Res. 2021, 14, 2294–2300.

[44]

Sun, C.; Yang, P. P.; Nan, Z. A.; Tian, C. B.; Cai, Y. T.; Chen, J. F.; Qi, F. F.; Tian, H. R.; Xie, L. Q.; Meng, L. Y. et al. Well-defined fullerene bisadducts enable high-performance tin-based perovskite solar cells. Adv. Mater. 2023, 35, 2205603.

[45]

Sui, Y. J.; Zhou, W. C.; Khan, D.; Wang, S. L.; Zhang, T.; Yu, G. P.; Huang, Y. M.; Yang, X. Q.; Chang, K.; He, Y. C. et al. Understanding the role of crown ether functionalization in inverted perovskite solar cells. ACS Energy Lett. 2024, 9, 1518–1526.

[46]

Tuo, B. Y.; Wang, Z. Y.; Ren, Z. Q.; Zhang, H. W.; Lu, X. Q.; Zhang, Y. Q.; Zang, S. Q.; Song, Y. L. A novel radical-reaction interruption strategy for enhancing the light stability of perovskite solar cells. Energy Environ. Sci. 2024, 17, 2945–2955.

Nano Research
Article number: 94907075
Cite this article:
Liang Z, Ren Z, Wang Z, et al. Boosting charge extraction and efficiency of inverted perovskite solar cells through coordinating group modification at the buffer layer/cathode interface. Nano Research, 2025, 18(1): 94907075. https://doi.org/10.26599/NR.2025.94907075
Topics:

276

Views

41

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 14 August 2024
Revised: 30 September 2024
Accepted: 14 October 2024
Published: 24 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return