Traditionally, hyaluronic acid has been widely used for drug delivery, but the current application bottleneck is that hyaluronic acid is hydrophilic and electronegative, which makes it difficult to carry hydrophobic drugs and small interfering RNA (siRNA) with the same charge. Based on previous studies, we designed and synthesized hyaluronic acid nanocarriers HA-spermine/N,N,N-trimethylcystamine/DOX-TPP (HSTD) for loading siRNA to overcome the problem of siRNA release caused by strong electrostatic interaction. Then, N,N,N-trimethylcystamine in the carrier can be degraded by intracellular glutathione to completely and rapidly release siRNA, thus promoting transfection. Moreover, when co-delivered with the chemotherapy drug doxorubicin (DOX), this novel nanocarrier showed promising synergy in inhibiting tumor growth.
Graça, M. F. P.; Miguel, S. P.; Cabral, C. S. D.; Correia, I. J. Hyaluronic acid-based wound dressings: A review. Carbohydr. Polym. 2020, 241, 116364.
Vasvani, S.; Kulkarni, P.; Rawtani, D. Hyaluronic acid: A review on its biology, aspects of drug delivery, route of administrations and a special emphasis on its approved marketed products and recent clinical studies. Int. J. Biol. Macromol. 2020, 151, 1012–1029.
Kim, H.; Lee, S.; Ki, C. S. Modular formation of hyaluronic acid/β-glucan hybrid nanogels for topical dermal delivery targeting skin dendritic cells. Carbohydr. Polym. 2021, 252, 117132.
Liang, Y.; Wang, Y. H.; Wang, L. P.; Liang, Z. J.; Li, D.; Xu, X. Y.; Chen, Y. B.; Yang, X. C.; Zhang, H. B.; Niu, H. T. Self-crosslinkable chitosan-hyaluronic acid dialdehyde nanoparticles for CD44-targeted siRNA delivery to treat bladder cancer. Bioact. Mater. 2021, 6, 433–446.
Lee, Y.; Shinn, J.; Xu, C.; Dobson, H. E.; Neamati, N.; Moon, J. J. Hyaluronic acid-bilirubin nanomedicine-based combination chemoimmunotherapy. Nat. Commun. 2023, 14, 4771.
Yin, T. J.; Wang, L.; Yin, L. F.; Zhou, J. P.; Huo, M. R. Co-delivery of hydrophobic paclitaxel and hydrophilic AURKA specific siRNA by redox-sensitive micelles for effective treatment of breast cancer. Biomaterials 2015, 61, 10–25.
Liu, L. X.; Cao, F. Q.; Liu, X. X.; Wang, H.; Zhang, C.; Sun, H. F.; Wang, C.; Leng, X. G.; Song, C. X.; Kong, D. L. et al. Hyaluronic acid-modified cationic lipid-PLGA hybrid nanoparticles as a nanovaccine induce robust humoral and cellular immune responses. ACS Appl. Mater. Interfaces 2016, 8, 11969–11979.
Sahiner, N.; Sagbas, S.; Sahiner, M.; Ayyala, R. S. Polyethyleneimine modified poly(Hyaluronic acid) particles with controllable antimicrobial and anticancer effects. Carbohydr. Polym. 2017, 159, 29–38.
Hashemi, M.; Hajimazdarany, S.; Mohan, C. D.; Mohammadi, M.; Rezaei, S.; Olyaee, Y.; Goldoost, Y.; Ghorbani, A.; Mirmazloomi, S. R.; Gholinia, N. et al. Long non-coding RNA/epithelial-mesenchymal transition axis in human cancers: Tumorigenesis, chemoresistance, and radioresistance. Pharmacol. Res. 2022, 186, 106535.
Kim, M.; Lee, J. S.; Kim, W.; Lee, J. H.; Jun, B. H.; Kim, K. S.; Kim, D. E. Aptamer-conjugated nano-liposome for immunogenic chemotherapy with reversal of immunosuppression. J. Control. Release 2022, 348, 893–910.
Liu, H. N.; Guo, N. N.; Guo, W. W.; Huang-Fu, M. Y.; Vakili, M. R.; Chen, J. J.; Xu, W. H.; Wei, Q. C.; Han, M.; Lavasanifar, A. et al. Delivery of mitochondriotropic doxorubicin derivatives using self-assembling hyaluronic acid nanocarriers in doxorubicin-resistant breast cancer. Acta Pharmacol. Sin. 2018, 39, 1681–1692.
Han, M.; Vakili, M. R.; Soleymani Abyaneh, H.; Molavi, O.; Lai, R.; Lavasanifar, A. Mitochondrial delivery of doxorubicin via triphenylphosphine modification for overcoming drug resistance in MDA-MB-435/DOX cells. Mol. Pharmaceutics 2014, 11, 2640–2649.
Han, M.; Lv, Q.; Tang, X. J.; Hu, Y. L.; Xu, D. H.; Li, F. Z.; Liang, W. Q.; Gao, J. Q. Overcoming drug resistance of MCF-7/ADR cells by altering intracellular distribution of doxorubicin via MVP knockdown with a novel siRNA polyamidoamine-hyaluronic acid complex. J. Control. Release 2012, 163, 136–144.
Scherr, J.; Parey, K.; Klusch, N.; Murphy, B. J.; Balser, S.; Neuhaus, A.; Zickermann, V.; Kühlbrandt, W.; Terfort, A.; Rhinow, D. Self-perforated hydrogel nanomembranes facilitate structural analysis of proteins by electron cryo-microscopy. ACS Nano 2017, 11, 6467–6473.
Karimi, M.; Ghasemi, A.; Sahandi Zangabad, P.; Rahighi, R.; Moosavi Basri, S. M.; Mirshekari, H.; Amiri, M.; Shafaei Pishabad, Z.; Aslani, A.; Bozorgomid, M. et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem. Soc. Rev. 2016, 45, 1457–1501.
Yeh, P. H.; Sun, J. S.; Wu, H. C.; Hwang, L. H.; Wang, T. W. Stimuli-responsive HA-PEI nanoparticles encapsulating endostatin plasmid for stem cell gene therapy. RSC Adv. 2013, 3, 12922–12932.
Ganesh, S.; Iyer, A. K.; Morrissey, D. V.; Amiji, M. M. Hyaluronic acid based self-assembling nanosystems for CD44 target mediated siRNA delivery to solid tumors. Biomaterials 2013, 34, 3489–3502.
Yang, J.; Shimada, Y.; Olsthoorn, R. C. L.; Snaar-Jagalska, B. E.; Spaink, H. P.; Kros, A. Application of coiled coil peptides in liposomal anticancer drug delivery using a zebrafish xenograft model. ACS Nano 2016, 10, 7428–7435.
Mirzaei, S.; Abadi, A. J.; Gholami, M. H.; Hashemi, F.; Zabolian, A.; Hushmandi, K.; Zarrabi, A.; Entezari, M.; Aref, A. R.; Khan, H. et al. The involvement of epithelial-to-mesenchymal transition in doxorubicin resistance: Possible molecular targets. Eur. J. Pharmacol. 2021, 908, 174344.
Ali, M. R. K.; Rahman, M. A.; Wu, Y.; Han, T. G.; Peng, X. H.; Mackey, M. A.; Wang, D. S.; Shin, H. J.; Chen, Z. G.; Xiao, H. P. et al. Efficacy, long-term toxicity, and mechanistic studies of gold nanorods photothermal therapy of cancer in xenograft mice. Proc. Natl. Acad. Sci. USA 2017, 114, E3110–E3118.