Glioblastoma (GBM) treatment faces a significant challenge due to the blood-brain barrier (BBB) restricting therapeutic delivery. In this study, we found that inactivated and attenuated meningitis bacteria (e.g., Escherichia coli K1) intracellularly loaded with nanoagents could safely and effectively bypass the BBB even when injected intravenously into mice at a dose of ~ 107 colony forming units (CFU) since the vehicles preserved the bacteria’s structure and chemotaxis while removing their pathogenicity. We demonstrated that bacteria could internalize glucose polymer, indocyanine green and stimulator of interferon genes (STING) agonists (e.g., SR717)-modified silica nanoparticles through the bacteria-specific adenosine-triphosphate (ATP)-binding cassette sugar transporter pathway. As a result, the developed system could deliver approximately five times more nanoagents to the brain than free nanoagents. Upon 808-nm irradiation, the indocyanine green induced photothermal effects that destroyed the bacteria, releasing the SR717, which triggered adaptive antitumor immunity, and the bacterial remnants further induced innate antitumor immunity. Our findings demonstrate that this inactivated nanobacteria system effectively treats GBM in mice, suggesting potential for broader applications in central nervous system disorders.
Purow, B.; Schiff, D. Advances in the genetics of glioblastoma: Are we reaching critical mass. Nat. Rev. Neurol. 2009, 5, 419–426.
GBD 2016 Brain and Other CNS Cancer Collaborators. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol. 2019, 18, 376–393.
Song, E.; Mao, T. Y.; Dong, H. P.; Boisserand, L. S. B.; Antila, S.; Bosenberg, M.; Alitalo, K.; Thomas, J. L.; Iwasaki, A. VEGF-C-driven lymphatic drainage enables immunosurveillance of brain tumours. Nature 2020, 577, 689–694.
Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.
Mullard, A. Can innate immune system targets turn up the heat on 'cold' tumours. Nat. Rev. Drug Discov. 2018, 17, 3–5.
van den Bent, M. J.; Geurts, M.; French, P. J.; Smits, M.; Capper, D.; Bromberg, J. E. C.; Chang, S. M. Primary brain tumours in adults. Lancet 2023, 402, 1564–1579.
Sattiraju, A.; Kang, S.; Giotti, B.; Chen, Z. H.; Marallano, V. J.; Brusco, C.; Ramakrishnan, A.; Shen, L.; Tsankov, A. M.; Hambardzumyan, D. et al. Hypoxic niches attract and sequester tumor-associated macrophages and cytotoxic T cells and reprogram them for immunosuppression. Immunity 2023, 56, 1825–1843.e6.
Samson, N.; Ablasser, A. The cGAS-STING pathway and cancer. Nat. Cancer 2022, 3, 1452–1463.
Li, X. F.; Khorsandi, S.; Wang, Y. F.; Santelli, J.; Huntoon, K.; Nguyen, N.; Yang, M. M.; Lee, D.; Lu, Y. F.; Gao, R. Q. et al. Cancer immunotherapy based on image-guided STING activation by nucleotide nanocomplex-decorated ultrasound microbubbles. Nat. Nanotechnol. 2022, 17, 891–899.
Sun, X. Q.; Zhang, Y.; Li, J. Q.; Park, K. S.; Han, K.; Zhou, X. W.; Xu, Y.; Nam, J.; Xu, J.; Shi, X. Y. et al. Amplifying STING activation by cyclic dinucleotide-manganese particles for local and systemic cancer metalloimmunotherapy. Nat. Nanotechnol. 2021, 16, 1260–1270.
Dane, E. L.; Belessiotis-Richards, A.; Backlund, C.; Wang, J. N.; Hidaka, K.; Milling, L. E.; Bhagchandani, S.; Melo, M. B.; Wu, S. W.; Li, N. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 2022, 21, 710–720.
Li, S. X.; Luo, M.; Wang, Z. H.; Feng, Q.; Wilhelm, J.; Wang, X.; Li, W.; Wang, J.; Cholka, A.; Fu, Y. X. et al. Prolonged activation of innate immune pathways by a polyvalent STING agonist. Nat. Biomed. Eng. 2021, 5, 455–466.
Wang, F. H.; Su, H.; Xu, D. Q.; Dai, W. B.; Zhang, W. J.; Wang, Z. Y.; Anderson, C. F.; Zheng, M. Z.; Oh, R.; Wan, F. Y. et al. Tumour sensitization via the extended intratumoural release of a STING agonist and camptothecin from a self-assembled hydrogel. Nat. Biomed. Eng. 2020, 4, 1090–1101.
Shae, D.; Becker, K. W.; Christov, P.; Yun, D. S.; Lytton-Jean, A. K. R.; Sevimli, S.; Ascano, M.; Kelley, M.; Johnson, D. B.; Balko, J. M. et al. Endosomolytic polymersomes increase the activity of cyclic dinucleotide STING agonists to enhance cancer immunotherapy. Nat. Nanotechnol. 2019, 14, 269–278.
Leventhal, D. S.; Sokolovska, A.; Li, N.; Plescia, C.; Kolodziej, S. A.; Gallant, C. W.; Christmas, R.; Gao, J. R.; James, M. J.; Abin-Fuentes, A. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 2020, 11, 2379.
Garland, K. M.; Sheehy, T. L.; Wilson, J. T. Chemical and biomolecular strategies for STING pathway activation in cancer immunotherapy. Chem. Rev. 2022, 122, 5977–6039.
Sun, X. Q.; Huang, X. H.; Park, K. S.; Zhou, X. W.; Kennedy, A. A.; Pretto, C. D.; Wu, Q.; Wan, Z. Y.; Xu, Y.; Gong, W. et al. Self-assembled STING-activating coordination nanoparticles for cancer immunotherapy and vaccine applications. ACS Nano 2024, 18, 10439–10453.
Xu, L.; Deng, H. P.; Wu, L.; Wang, D. L.; Shi, L. L.; Qian, Q. H.; Huang, X. G.; Zhu, L. J.; Gao, X. H.; Yang, J. P. et al. Supramolecular cyclic dinucleotide nanoparticles for STING-mediated cancer immunotherapy. ACS Nano 2023, 17, 10090–10103.
Li, Q. G.; Dong, Z. L.; Cao, Z. Q.; Lei, H. L.; Wang, C. J.; Hao, Y.; Feng, L. Z.; Liu, Z. A general biomineralization strategy to synthesize autologous cancer vaccines with cGAS-STING activating capacity for postsurgical immunotherapy. ACS Nano 2023, 17, 10496–10510.
Yang, H.; Yang, S. S.; Guo, Q. S.; Sheng, J. F.; Mao, Z. W. ATP-responsive manganese-based bacterial materials synergistically activate the cGAS-STING pathway for tumor immunotherapy. Adv. Mater. 2024, 36, 2310189.
Wu, J. X.; Sun, L. J.; Chen, X.; Du, F. H.; Shi, H. P.; Chen, C.; Chen, Z. J. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 2013, 339, 826–830.
Ishikawa, H.; Ma, Z.; Barber, G. N. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature 2009, 461, 788–792.
Sun, L. J.; Wu, J. X.; Du, F. H.; Chen, X.; Chen, Z. J. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 2013, 339, 786–791.
Corrales, L.; Glickman, L. H.; McWhirter, S. M.; Kanne, D. B.; Sivick, K. E.; Katibah, G. E.; Woo, S. R.; Lemmens, E.; Banda, T.; Leong, J. J. et al. Direct activation of STING in the tumor microenvironment leads to potent and systemic tumor regression and immunity. Cell Rep. 2015, 11, 1018–1030.
Demaria, O.; De Gassart, A.; Coso, S.; Gestermann, N.; Di Domizio, J.; Flatz, L.; Gaide, O.; Michielin, O.; Hwu, P.; Petrova, T. V. et al. STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proc. Natl. Acad. Sci. USA 2015, 112, 15408–15413.
Zhou, S. B.; Gravekamp, C.; Bermudes, D.; Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 2018, 18, 727–743.
Dang, L. H.; Bettegowda, C.; Huso, D. L.; Kinzler, K. W.; Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl. Acad. Sci. USA 2001, 98, 15155–15160.
Hosseinidoust, Z.; Mostaghaci, B.; Yasa, O.; Park, B. W.; Singh, A. V.; Sitti, M. Bioengineered and biohybrid bacteria-based systems for drug delivery. Adv. Drug Deliv. 2016, 106, 27–44.
Forbes, N. S. Engineering the perfect (bacterial) cancer therapy. Nat. Rev. Cancer 2010, 10, 785–794.
Liu, Y.; Zhang, M. M.; Wang, X. Y.; Yang, F. M.; Cao, Z. P.; Wang, L.; Liu, J. Y. Dressing bacteria with a hybrid immunoactive nanosurface to elicit dual anticancer and antiviral immunity. Adv. Mater. 2023, 35, 2210949.
Jiang, J. W.; Huang, Y. J.; Zeng, Z. S.; Zhao, C. S. Harnessing engineered immune cells and bacteria as drug carriers for cancer immunotherapy. ACS Nano 2023, 17, 843–884.
Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.
Han, D. D.; Wang, F.; Ma, Y. C.; Zhao, Y.; Zhang, W.; Zhang, Z. Y.; Liu, H. F.; Yang, X. J.; Zhang, C.; Zhang, J. C. et al. Redirecting antigens by engineered photosynthetic bacteria and derived outer membrane vesicles for enhanced cancer immunotherapy. ACS Nano 2023, 17, 18716–18731.
Liu, X. M.; Sun, M. Y.; Pu, F.; Ren, J. S.; Qu, X. G. Transforming intratumor bacteria into immunopotentiators to reverse cold tumors for enhanced immuno-chemodynamic therapy of triple-negative breast cancer. J. Am. Chem. Soc. 2023, 145, 26296–26307.
Liu, K. K.; Wang, L. N.; Peng, J.; Lyu, Y. J.; Li, Y. M.; Duan, D. Y.; Zhang, W. Y.; Wei, G. J.; Li, T. P.; Niu, Y. J. et al. Drug-loaded Bacillus Calmette-Guérin bacteria for immuno-chemo combo therapy in bladder cancer. Adv. Mater. 2024, 36, 2310735.
Pan, P.; Dong, X.; Chen, Y.; Zeng, X.; Zhang, X. Z. Engineered bacteria for enhanced radiotherapy against breast carcinoma. ACS Nano 2022, 16, 801–812.
Sun, R.; Liu, M. Z.; Lu, J. P.; Chu, B. B.; Yang, Y. M.; Song, B.; Wang, H. Y.; He, Y. Bacteria loaded with glucose polymer and photosensitive ICG silicon-nanoparticles for glioblastoma photothermal immunotherapy. Nat. Commun. 2022, 13, 5127.
Pinho-Ribeiro, F. A.; Deng, L. W.; Neel, D. V.; Erdogan, O.; Basu, H.; Yang, D. P.; Choi, S.; Walker, A. J.; Carneiro-Nascimento, S.; He, K. et al. Bacteria hijack a meningeal neuroimmune axis to facilitate brain invasion. Nature 2023, 615, 472–481.
Kim, K. S. Mechanisms of microbial traversal of the blood-brain barrier. Nat. Rev. Microbiol. 2008, 6, 625–634.
Coureuil, M.; Lécuyer, H.; Bourdoulous, S.; Nassif, X. A journey into the brain: Insight into how bacterial pathogens cross blood-brain barriers. Nat. Rev. Microbiol. 2017, 15, 149–159.
Harimoto, T.; Hahn, J.; Chen, Y. Y.; Im, J.; Zhang, J.; Hou, N.; Li, F. D.; Coker, C.; Gray, K.; Harr, N. et al. A programmable encapsulation system improves delivery of therapeutic bacteria in mice. Nat. Biotechnol. 2022, 40, 1259–1269.
Ma, X. T.; Liang, X. L.; Li, Y.; Feng, Q. Q.; Cheng, K. M.; Ma, N. N.; Zhu, F.; Guo, X. J.; Yue, Y. L.; Liu, G. N. et al. Modular-designed engineered bacteria for precision tumor immunotherapy via spatiotemporal manipulation by magnetic field. Nat. Commun. 2023, 14, 1606.
Chen, Q. W.; Qiao, J. Y.; Liu, X. H.; Zhang, C.; Zhang, X. Z. Customized materials-assisted microorganisms in tumor therapeutics. Chem. Soc. Rev. 2021, 50, 12576–12615.
Geng, Z. M.; Cao, Z. P.; Liu, R.; Liu, K.; Liu, J. Y.; Tan, W. H. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat. Commun. 2021, 12, 6584.
Park, B. W.; Zhuang, J.; Yasa, O.; Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 2017, 11, 8910–8923.
Li, J. J.; Xia, Q.; Guo, H. Y.; Fu, Z. Z.; Liu, Y.; Lin, S. S.; Liu, J. Y. Decorating bacteria with triple immune nanoactivators generates tumor-resident living immunotherapeutics. Angew. Chem., Int. Ed. 2022, 61, e202202409.
Wang, L.; Cao, Z. P.; Zhang, M. M.; Lin, S. S.; Liu, J. Y. Spatiotemporally controllable distribution of combination therapeutics in solid tumors by dually modified bacteria. Adv. Mater. 2022, 34, 2106669.
Yan, X. H.; Zhou, Q.; Vincent, M.; Deng, Y.; Yu, J. F.; Xu, J. B.; Xu, T. T.; Tang, T.; Bian, L. M.; Wang, Y. X. J. et al. Multifunctional biohybrid magnetite microrobots for imaging-guided therapy. Sci. Rob. 2017, 2, eaaq1155.
Cao, Z. P.; Wang, X. Y.; Pang, Y.; Cheng, S. S.; Liu, J. Y. Biointerfacial self-assembly generates lipid membrane coated bacteria for enhanced oral delivery and treatment. Nat. Commun. 2019, 10, 5783.
Tang, J. L.; Chu, B. B.; Wang, J. H.; Song, B.; Su, Y. Y.; Wang, H. Y.; He, Y. Multifunctional nanoagents for ultrasensitive imaging and photoactive killing of Gram-negative and Gram-positive bacteria. Nat. Commun. 2019, 10, 4057.
Yang, Y. M.; Chu, B. B.; Cheng, J. Y.; Tang, J. L.; Song, B.; Wang, H. Y.; He, Y. Bacteria eat nanoprobes for aggregation-enhanced imaging and killing diverse microorganisms. Nat. Commun. 2022, 13, 1255.
Liu, M. Z.; Chu, B. B.; Sun, R.; Ding, J. L.; Ye, H.; Yang, Y. M.; Wu, Y. Q.; Shi, H. L.; Song, B.; He, Y. et al. Antisense oligonucleotides selectively enter human-derived antibiotic-resistant bacteria through bacterial-specific ATP-binding cassette sugar transporter. Adv. Mater. 2023, 35, 2300477.
Zhang, Q.; Song, B.; Xu, Y. N.; Yang, Y. M.; Ji, J.; Cao, W. J.; Lu, J. P.; Ding, J. L.; Cao, H. T.; Chu, B. B. et al. In vivo bioluminescence imaging of natural bacteria within deep tissues via ATP-binding cassette sugar transporter. Nat. Commun. 2023, 14, 2331.
Chin, E. N.; Yu, C. G.; Vartabedian, V. F.; Jia, Y.; Kumar, M.; Gamo, A. M.; Vernier, W.; Ali, S. H.; Kissai, M.; Lazar, D. C. et al. Antitumor activity of a systemic STING-activating non-nucleotide cGAMP mimetic. Science 2020, 369, 993–999.
Janjua, T. I.; Cao, Y. X.; Yu, C. Z.; Popat, A. Clinical translation of silica nanoparticles. Nat. Rev. Mater. 2021, 6, 1072–1074.
Yang, Y. N.; Zhang, M.; Song, H.; Yu, C. Z. Silica-based nanoparticles for biomedical applications: From nanocarriers to biomodulators. Acc. Chem. Res. 2020, 53, 1545–1556.
Zlitni, A.; Gowrishankar, G.; Steinberg, I.; Haywood, T.; Gambhir, S. S. Maltotriose-based probes for fluorescence and photoacoustic imaging of bacterial infections. Nat. Commun. 2020, 11, 1250.
Ning, X. H.; Seo, W.; Lee, S.; Takemiya, K.; Rafi, M.; Feng, X. L.; Weiss, D.; Wang, X. J.; Williams, L.; Camp, V. M. et al. PET imaging of bacterial infections with fluorine-18-labeled maltohexaose. Angew. Chem., Int. Ed. 2014, 53, 14096–14101.
Ning, X. H.; Lee, S.; Wang, Z. R.; Kim, D.; Stubblefield, B.; Gilbert, E.; Murthy, N. Maltodextrin-based imaging probes detect bacteria in vivo with high sensitivity and specificity. Nat. Mater. 2011, 10, 602–607.
Koebnik, R. Structural and functional roles of the surface-exposed loops of the β-barrel membrane protein OmpA from Escherichia coli. J. Bacteriol. 1999, 181, 3688–3694.
Khan, N. A.; Shin, S.; Chung, J. W.; Kim, K. J.; Elliott, S.; Wang, Y.; Kim, K. S. Outer membrane protein A and cytotoxic necrotizing factor-1 use diverse signaling mechanisms for Escherichia coli K1 invasion of human brain microvascular endothelial cells. Microb. Pathog. 2003, 35, 35–42.
Mittal, R.; Prasadarao, N. V. gp96 expression in neutrophils is critical for the onset of Escherichia coli K1 (RS218) meningitis. Nat. Commun. 2011, 2, 552
Lu, J. P.; Ding, J. L.; Chu, B. B.; Ji, C.; Zhang, Q.; Xu, Y. N.; Song, B.; Wang, H. Y.; He, Y. Inactive Trojan bacteria as safe drug delivery vehicles crossing the blood-brain barrier. Nano Lett. 2023, 23, 4326–4333.