With the increasing incidence of breast cancer globally, there is an urgent demand for enhanced diagnostic and therapeutic strategies. This comprehensive review explores advancements in fluorescent probe technology for breast cancer imaging and early diagnosis. Fluorescent probes offer unparalleled sensitivity and specificity in detecting cancer biomarkers, enabling early diagnosis and delineation of tumor margins during surgery. We categorize these probes into molecular, nano, ratiometric, the second near-infrared window (NIR-II), and multifunctional varieties, each with unique capabilities for targeting specific cancer markers. This review highlights recent innovations in probe design, emphasizing their applications in pathogenesis studies, drug development, precision medicine, and fluorescence-guided surgery. Despite their promising clinical potential, challenges such as safety, biomarker targeting accuracy, system compatibility, and clinical translation persist. Addressing these hurdles is crucial for the integration of fluorescent probes into standard cancer care, aiming to improve treatment outcomes and patient quality of life.
Siegel, R. L.; Miller, K. D.; Fuchs, H. E.; Jemal, A. Cancer statistics, 2022. CA: Cancer J. Clin. 2022, 72, 7–33.
Nolan, E.; Lindeman, G. J.; Visvader, J. E. Deciphering breast cancer: From biology to the clinic. Cell 2023, 186, 1708–1728.
Loibl, S.; Poortmans, P.; Morrow, M.; Denkert, C.; Curigliano, G. Breast cancer. Lancet 2021, 397, 1750–1769.
Giaquinto, A. N.; Sung, H.; Miller, K. D.; Kramer, J. L.; Newman, L. A.; Minihan, A.; Jemal, A.; Siegel, R. L. Breast cancer statistics, 2022. CA: Cancer J. Clin. 2022, 72, 524–541.
Britt, K. L.; Cuzick, J.; Phillips, K. A. Key steps for effective breast cancer prevention. Nat. Rev. Cancer 2020, 20, 417–436.
Waks, A. G.; Winer, E. P. Breast cancer treatment. JAMA 2019, 321, 316.
Yao, N.; Li, W. Q.; Liu, T.; Siyin, S. T.; Chen, X. F.; Wang, W. Q.; Duan, N.; Chen, Y. T.; Qu, J. Primary tumor removal improves the prognosis in patients with stage IV breast cancer: A population-based study (cohort study). Int. J. Surg. 2020, 83, 109–114.
Pedersen, R. N.; Esen, B. Ö.; Mellemkjær, L.; Christiansen, P.; Ejlertsen, B.; Lash, T. L.; Nørgaard, M.; Cronin-Fenton, D. The incidence of breast cancer recurrence 10–32 years after primary diagnosis. JNCI: J. Natl. Cancer Inst. 2022, 114, 391–399.
Kuhl, C. K.; Lehman, C.; Bedrosian, I. Imaging in locoregional management of breast cancer. J. Clin. Oncol. 2020, 38, 2351–2361.
Leon-Ferre, R. A.; Goetz, M. P. Advances in systemic therapies for triple negative breast cancer. BMJ 2023, 381, e071674.
Li, H. D.; Kim, D.; Yao, Q. C.; Ge, H. Y.; Chung, J.; Fan, J. L.; Wang, J. Y.; Peng, X. J.; Yoon, J. Activity-based NIR enzyme fluorescent probes for the diagnosis of tumors and image-guided surgery. Angew. Chem., Int. Ed. 2021, 60, 17268–17289.
Mieog, J. S. D.; Achterberg, F. B.; Zlitni, A.; Hutteman, M.; Burggraaf, J.; Swijnenburg, R. J.; Gioux, S.; Vahrmeijer, A. L. Fundamentals and developments in fluorescence-guided cancer surgery. Nat. Rev. Clin. Oncol. 2022, 19, 9–22.
Choi, H. S.; Kim, H. K. Multispectral image-guided surgery in patients. Nat. Biomed. Eng. 2020, 4, 245–246.
Yang, R. Q.; Lou, K. L.; Wang, P. Y.; Gao, Y. Y.; Zhang, Y. Q.; Chen, M.; Huang, W. H.; Zhang, G. J. Surgical navigation for malignancies guided by near-infrared-II fluorescence imaging. Small Methods 2021, 5, 2001066.
Kamal, A. M.; Sakorikar, T.; Pal, U. M.; Pandya, H. J. Engineering approaches for breast cancer diagnosis: A review. IEEE Rev. Biomed. Eng. 2023, 16, 687–705.
Mann, R. M.; Hooley, R.; Barr, R. G.; Moy, L. Novel approaches to screening for breast cancer. Radiology 2020, 297, 266–285.
Van Baelen, K.; Geukens, T.; Maetens, M.; Tjan-Heijnen, V.; Lord, C. J.; Linn, S.; Bidard, F. C.; Richard, F.; Yang, W. W.; Steele, R. E. et al. Current and future diagnostic and treatment strategies for patients with invasive lobular breast cancer. Ann. Oncol. 2022, 33, 769–785.
Li, Y. C.; Chen, Q. H.; Pan, X. Y.; Lu, W.; Zhang, J. New insight into the application of fluorescence platforms in tumor diagnosis: From chemical basis to clinical application. Med. Res. Rev. 2023, 43, 570–613.
Nasrollahpour, H.; Khalilzadeh, B.; Hasanzadeh, M.; Rahbarghazi, R.; Estrela, P.; Naseri, A.; Tasoglu, S.; Sillanpää, M. Nanotechnology-based electrochemical biosensors for monitoring breast cancer biomarkers. Med. Res. Rev. 2023, 43, 464–569.
Pradipta, A. R.; Tanei, T.; Morimoto, K.; Shimazu, K.; Noguchi, S.; Tanaka, K. Emerging technologies for real-time intraoperative margin assessment in future breast-conserving surgery. Adv. Sci. 2020, 7, 1901519.
Freeman, K.; Geppert, J.; Stinton, C.; Todkill, D.; Johnson, S.; Clarke, A.; Taylor-Phillips, S. Use of artificial intelligence for image analysis in breast cancer screening programmes: Systematic review of test accuracy. BMJ 2021, 374, n1872.
Crosby, D.; Bhatia, S.; Brindle, K. M.; Coussens, L. M.; Dive, C.; Emberton, M.; Esener, S.; Fitzgerald, R. C.; Gambhir, S. S.; Kuhn, P. et al. Early detection of cancer. Science 2022, 375, eaay9040.
Li, Y. C.; Chen, Q. H.; Pan, X. Y.; Lu, W.; Zhang, J. Development and challenge of fluorescent probes for bioimaging applications: From visualization to diagnosis. Top. Curr. Chem. 2022, 380, 22.
Wang, Y. Q.; Hu, Y. X.; Ye, D. J. Activatable multimodal probes for in vivo imaging and theranostics. Angew. Chem., Int. Ed. 2022, 61, e202209512.
Liu, X.; Chang, Y. T. Fluorescent probe strategy for live cell distinction. Chemical Society Reviews 2022, 51, 1573–1591.
Gao, L. Q.; Wang, W.; Wang, X.; Yang, F.; Xie, L. X.; Shen, J.; Brimble, M. A.; Xiao, Q. C.; Yao, S. Q. Fluorescent probes for bioimaging of potential biomarkers in Parkinson’s disease. Chem. Soc. Rev. 2021, 50, 1219–1250.
Han, H. H.; Tian, H. Jr. ; Zang, Y.; Sedgwick, A. C.; Li, J.; Sessler, J. L.; He, X. P.; James, T. D. Small-molecule fluorescence-based probes for interrogating major organ diseases. Chem. Soc. Rev. 2021, 50, 9391–9429.
Ding, C. P.; Ren, T. B. Near infrared fluorescent probes for detecting and imaging active small molecules. Coord. Chem. Rev. 2023, 482, 215080.
Tian, H. Jr. ; Sedgwick, A. C.; Han, H. H.; Sen, S.; Chen, G. R.; Zang, Y.; Sessler, J. L.; James, T. D.; Li, J.; He, X. P. Fluorescent probes for the imaging of lipid droplets in live cells. Coord. Chem. Rev. 2021, 427, 213577.
Wu, L. L.; Huang, C. S.; Emery, B. P.; Sedgwick, A. C.; Bull, S. D.; He, X. P.; Tian, H.; Yoon, J.; Sessler, J. L.; James, T. D. Förster resonance energy transfer (FRET)-based small-molecule sensors and imaging agents. Chem. Soc. Rev. 2020, 49, 5110–5139.
Fang, B.; Shen, Y.; Peng, B.; Bai, H.; Wang, L. M.; Zhang, J. X.; Hu, W. B.; Fu, L.; Zhang, W.; Li, L. et al. Small-molecule quenchers for förster resonance energy transfer: Structure, mechanism, and applications. Angew. Chem., Int. Ed. 2022, 61, e202207188.
Jiang, C. R.; Song, Z. R.; Yu, L. L.; Ye, S. J.; He, H. Fluorescent probes based on macrocyclic hosts: Construction, mechanism and analytical applications. TrAC Trends Anal. Chem. 2020, 133, 116086.
Chi, W. J.; Chen, J.; Liu, W. J.; Wang, C.; Qi, Q. K.; Qiao, Q. L.; Tan, T. M.; Xiong, K. M.; Liu, X.; Kang, K. et al. A general descriptor Δ E enables the quantitative development of luminescent materials based on photoinduced electron transfer. J. Am. Chem. Soc. 2020, 142, 6777–6785.
He, H. Y.; Sun, D. W.; Wu, Z. H.; Pu, H. B.; Wei, Q. Y. On-off-on fluorescent nanosensing: Materials, detection strategies and recent food applications. Trends Food Sci. Technol. 2022, 119, 243–256.
Xiao, Y.; Wu, Z. N.; Yao, Q. F.; Xie, J. P. Luminescent metal nanoclusters: Biosensing strategies and bioimaging applications. Aggregate 2021, 2, 114–132.
Zhao, X.; Gao, X. M.; Gu, T. Y.; Chen, K. L.; Yan, Z. Y.; Chen, L. J.; Yan, X. P. Recent advances in stimuli-responsive persistent luminescence nanoparticles-based sensors. TrAC Trends Anal. Chem. 2023, 168, 117279.
Li, X. C.; Zhao, S. J.; Li, B. L.; Yang, K.; Lan, M. H.; Zeng, L. T. Advances and perspectives in carbon dot-based fluorescent probes: Mechanism, and application. Coord. Chem. Rev. 2021, 431, 213686.
Cai, Y. F.; Ji, X.; Zhang, Y. S.; Liu, C.; Zhang, Z. C.; Lv, Y. J.; Dong, X. C.; He, H. S.; Qi, J. P.; Lu, Y. et al. Near-infrared fluorophores with absolute aggregation-caused quenching and negligible fluorescence re-illumination for in vivo bioimaging of nanocarriers. Aggregate 2023, 4, e277.
Lee, M. M. S.; Yu, E. Y.; Chau, J. H. C.; Lam, J. W. Y.; Kwok, R. T. K.; Wang, D.; Tang, B. Z. Inspiration from nature: BioAIEgens for biomedical and sensing applications. Biomaterials 2022, 288, 121712.
He, W.; Zhang, Z. C.; Luo, Y. M.; Kwok, R. T. K.; Zhao, Z.; Tang, B. Z. Recent advances of aggregation-induced emission materials for fluorescence image-guided surgery. Biomaterials 2022, 288, 121709.
Zhang, R. Y.; Huang, X. L.; Chen, C.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. AIEgen for cancer discrimination. Mater. Sci. Eng.: R: Rep. 2021, 146, 100649.
Wang, Y. H.; Shao, Z. S.; Cheng, C.; Wang, J. L.; Song, Z.; Song, W. J.; Zheng, F.; Wang, H. S. Fluorescent oligonucleotide indicators for ratiometric microRNA sensing on metal-organic frameworks. Chem. Eng. J. 2022, 437, 135296.
Gao, H. Q.; Duan, X. C.; Jiao, D.; Zeng, Y.; Zheng, X. Y.; Zhang, J. T.; Ou, H. L.; Qi, J.; Ding, D. Boosting photoacoustic effect via intramolecular motions amplifying thermal-to-acoustic conversion efficiency for adaptive image-guided cancer surgery. Angew. Chem., Int. Ed. 2021, 60, 21047–21055.
Duan, Q. J.; Zhao, Z. Y.; Zhang, Y. J.; Fu, L. B.; Yuan, Y. Y.; Du, J. Z.; Wang, J. Activatable fluorescent probes for real-time imaging-guided tumor therapy. Adv. Drug Deliv. Rev. 2023, 196, 114793.
Park, S. H.; Kwon, N.; Lee, J. H.; Yoon, J.; Shin, I. Synthetic ratiometric fluorescent probes for detection of ions. Chem. Soc. Rev. 2020, 49, 143–179.
Lei, Z. H.; Zhang, F. Molecular engineering of NIR-II fluorophores for improved biomedical detection. Angew. Chem., Int. Ed. 2021, 60, 16294–16308.
Yin, X. R.; Cheng, Y. F.; Feng, Y.; Stiles, W. R.; Park, S. H.; Kang, H.; Choi, H. S. Phototheranostics for multifunctional treatment of cancer with fluorescence imaging. Adv. Drug Delivery Rev. 2022, 189, 114483.
Cheng, H. B.; Li, Y. Y.; Tang, B. Z.; Yoon, J. Assembly strategies of organic-based imaging agents for fluorescence and photoacoustic bioimaging applications. Chem. Soc. Rev. 2020, 49, 21–31.
Han, X. Y.; Wang, Y.; Huang, Y.; Wang, X. Y.; Choo, J.; Chen, L. X. Fluorescent probes for biomolecule detection under environmental stress. J. Hazard. Mater. 2022, 431, 128527.
Hu, Z. Y.; Chen, X. Y.; Yang, Y. S.; Wang, S. J.; Hu, Z. G.; Wang, K. Recent advances in the development of fluorescent probes for γ-glutamyltranspeptidase. Coord. Chem. Rev. 2024, 501, 215562.
Zhang, X. N.; Li, S. S.; Ma, H. Z.; Wang, H.; Zhang, R. P.; Zhang, X. D. Activatable NIR-II organic fluorescent probes for bioimaging. Theranostics 2022, 12, 3345–3371.
Mei, J.; Tian, H. Most recent advances on enzyme-activatable optical probes for bioimaging. Aggregate 2021, 2, e32.
Fang, H. B.; Chen, Y. C.; Jiang, Z. Y.; He, W. J.; Guo, Z. J. Fluorescent probes for biological species and microenvironments: From rational design to bioimaging applications. Acc. Chem. Res. 2023, 56, 258–269.
Nguyen, V. N.; Ha, J.; Cho, M.; Li, H. D.; Swamy, K. M. K.; Yoon, J. Recent developments of BODIPY-based colorimetric and fluorescent probes for the detection of reactive oxygen/nitrogen species and cancer diagnosis. Coord. Chem. Rev. 2021, 439, 213936.
Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.
Li, C. Y.; Chen, G. C.; Zhang, Y. J.; Wu, F.; Wang, Q. B. Advanced fluorescence imaging technology in the near-infrared-II window for biomedical applications. J. Am. Chem. Soc. 2020, 142, 14789–14804.
Won, M.; Li, M. L.; Kim, H. S.; Liu, P.; Koo, S.; Son, S.; Seo, J. H.; Kim, J. S. Visible to mid IR: A library of multispectral diagnostic imaging. Coord. Chem. Rev. 2021, 426, 213608.
Yang, X.; Li, C. C.; Li, P. F.; Fu, Q. R. Ratiometric optical probes for biosensing. Theranostics 2023, 13, 2632–2656.
Dou, W. T.; Han, H. H.; Sedgwick, A. C.; Zhu, G. B.; Zang, Y.; Yang, X. R.; Yoon, J.; James, T. D.; Li, J.; He, X. P. Fluorescent probes for the detection of disease-associated biomarkers. Sci. Bull. 2022, 67, 853–878.
Yin, J. L.; Huang, L.; Wu, L. L.; Li, J. F.; James, T. D.; Lin, W. Y. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem. Soc. Rev. 2021, 50, 12098–12150.
Wang, K.; Liu, C. Y.; Zhu, H. C.; Zhang, Y.; Su, M. J.; Wang, X.; Liu, M. Y.; Rong, X. D.; Zhu, B. C. Recent advances in small-molecule fluorescent probes for diagnosis of cancer cells/tissues. Coord. Chem. Rev. 2023, 477, 214946.
Liu, C. Y.; Zhu, H. C.; Zhang, Y.; Su, M. J.; Liu, M. Y.; Zhang, X. H.; Wang, X.; Rong, X. D.; Wang, K.; Li, X. W. et al. Recent advances in Golgi-targeted small-molecule fluorescent probes. Coord. Chem. Rev. 2022, 462, 214504.
Huang, B. H.; Liang, B.; Zhang, R. S.; Xing, D. M. Molecule fluorescent probes for adenosine triphosphate imaging in cancer cells and in vivo. Coord. Chem. Rev. 2022, 452, 214302.
Wang, S.; Ren, W. X.; Hou, J. T.; Won, M.; An, J.; Chen, X. Y.; Shu, J.; Kim, J. S. Fluorescence imaging of pathophysiological microenvironments. Chem. Soc. Rev. 2021, 50, 8887–8902.
Chen, K.; Lu, P. W.; Beeraka, N. M.; Sukocheva, O. A.; Madhunapantula, S. V.; Liu, J. Q.; Sinelnikov, M. Y.; Nikolenko, V. N.; Bulygin, K. V.; Mikhaleva, L. M. et al. Mitochondrial mutations and mitoepigenetics: Focus on regulation of oxidative stress-induced responses in breast cancers. Semin. Cancer Biol. 2022, 83, 556–569.
Yin, J. L.; Lin, X. F.; Hu, Q. X.; Huang, S. H. Mitochondrial polarity-triggered fluorogenic optical agent for exploring breast cancer. Chem. Eng. J. 2022, 450, 138282.
Bouzriba, C.; Chavez Alvarez, A. C.; Gagné-Boulet, M.; Ouellette, V.; Lacroix, J.; Côté, M. F.; C.-Gaudreault, R.; Fortin, S. Branched alkyl of phenyl 4-(2-oxo-3-alkylimidazolidin-1-yl)benzenesulfonates as unique cytochrome P450 1A1-activated antimitotic prodrugs: Biological evaluation and mechanism of bioactivation. Eur. J. Med. Chem. 2022, 229, 114003.
Liu, T.; Xia, X.; Wang, R.; Rong, X.; Su, Z. H.; Du, J. J.; Fan, J. L.; Peng, X. J.; Sun, W. A fluorescent chemosensor for long-term tracking of cancer cell metastasis and invasion via enzyme-activated anchoring. Adv. Funct. Mater. 2023, 33, 2304347.
Xu, W.; Zeng, Z. B.; Jiang, J. H.; Chang, Y. T.; Yuan, L. Discerning the chemistry in individual organelles with small-molecule fluorescent probes. Angew. Chem., Int. Ed. 2016, 55, 13658–13699.
Mirza, Z.; Karim, S. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Semin. Cancer Biol. 2021, 69, 226–237.
Chen, W. Y.; Ni, D. L.; Rosenkrans, Z. T.; Cao, T. Y.; Cai, W. B. Smart H2S-triggered/therapeutic system (SHTS)-based nanomedicine. Adv. Sci. 2019, 6, 1901724.
Cheng, M. H. Y.; Mo, Y. L.; Zheng, G. Nano versus molecular: Optical imaging approaches to detect and monitor tumor hypoxia. Adv. Healthc. Mater. 2021, 10, 2001549.
Zhang, Y.; Li, M. Y.; Gao, X. M.; Chen, Y. H.; Liu, T. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. J. Hematol. Oncol. 2019, 12, 1–13.
Ju, J. X.; Xu, D. N.; Mo, X.; Miao, J. Q.; Xu, L.; Ge, G. B.; Zhu, X. Y.; Deng, H. P. Multifunctional polysaccharide nanoprobes for biological imaging. Carbohydr. Polym. 2023, 317, 121048.
Jouha, J.; Xiong, H. DNAzyme-functionalized nanomaterials: Recent preparation, current applications, and future challenges. Small 2021, 17, 2105439.
Wang, J. J.; Liu, Y.; Ding, Z.; Zhang, L.; Han, C. Q.; Yan, C. C.; Amador, E.; Yuan, L. Q.; Wu, Y.; Song, C. Y. et al. The exploration of quantum dot-molecular beacon based MoS2 fluorescence probing for myeloma-related Mirnas detection. Bioact. Mater. 2022, 17, 360–368.
Sengupta, D.; Deb, M.; Kar, S.; Pradhan, N.; Parbin, S.; Kirtana, R.; Singh, S. P.; Suma, S. G.; Niharika; Roy, A. et al. Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention. Semin. Cancer Biol. 2021, 72, 46–64.
Wang, Y. Y.; Yang, Q. Q.; Gao, Z. Q.; Dong, H. F. Recent advance of RNA aptamers and DNAzymes for MicroRNA detection. Biosens. Bioelectron. 2022, 212, 114423.
Lee, Y.; Ni, J.; Beretov, J.; Wasinger, V. C.; Graham, P.; Li, Y. Recent advances of small extracellular vesicle biomarkers in breast cancer diagnosis and prognosis. Mol. Cancer 2023, 22, 33.
Zhao, J. X.; Liu, C.; Li, Y. K.; Ma, Y.; Deng, J. Q.; Li, L. L.; Sun, J. S. Thermophoretic detection of exosomal microRNAs by nanoflares. J. Am. Chem. Soc. 2020, 142, 4996–5001.
Chen, J. Y.; Oudeng, G.; Feng, H. T.; Liu, S. X.; Li, H. W.; Ho, Y. P.; Chen, Y.; Tan, Y.; Yang, M. 2D MOF nanosensor-integrated digital droplet microfluidic flow cytometry for in situ detection of multiple miRNAs in single CTC cells. Small 2022, 18, 2201779.
Zhang, Z.; Zhang, Y. Orthogonal emissive upconversion nanoparticles: Material design and applications. Small 2021, 17, 2004552.
Zhang, Z.; Chen, Y. M.; Zhang, Y. Self-assembly of upconversion nanoparticles based materials and their emerging applications. Small 2022, 18, 2103241.
Wu, X.; Li, Y.; Yang, M. Y.; Mao, C. B. Simultaneous ultrasensitive detection of two breast cancer microRNA biomarkers by using a dual nanoparticle/nanosheet fluorescence resonance energy transfer sensor. Mater. Today Adv. 2021, 12, 100163.
Dhas, N.; Pastagia, M.; Sharma, A.; Khera, A.; Kudarha, R.; Kulkarni, S.; Soman, S.; Mutalik, S.; Barnwal, R. P.; Singh, G. et al. Organic quantum dots: An ultrasmall nanoplatform for cancer theranostics. J. Controlled Release 2022, 348, 798–824.
Kwon, J.; Jun, S. W.; Choi, S. I.; Mao, X.; Kim, J.; Koh, E. K.; Kim, Y. H.; Kim, S. K.; Hwang, D. Y.; Kim, C. S. et al. FeSe quantum dots for in vivo multiphoton biomedical imaging. Sci. Adv. 2019, 5, eaay0044.
Guo, Z. C.; Xing, R. R.; Zhao, M. H.; Li, Y.; Lu, H. F.; Liu, Z. Controllable engineering and functionalizing of nanoparticles for targeting specific proteins towards biomedical applications. Adv. Sci. 2021, 8, 2101713.
Yue, D. F.; Wang, M. L.; Deng, F.; Yin, W. T.; Zhao, H. D.; Zhao, X. M.; Xu, Z. C. Biomarker-targeted fluorescent probes for breast cancer imaging. Chin. Chem. Lett. 2018, 29, 648–656.
Tang, C.; Tong, H. J.; Liu, B.; Wang, X. N.; Jin, Y. S.; Tian, E. L.; Wang, F. Robust ERα-targeted near-infrared fluorescence probe for selective hydrazine imaging in breast cancer. Anal. Chem. 2022, 94, 14012–14020.
Barman, S.; Ghosh, S.; Roy, R.; Gupta, V.; Ghosh, S.; Ghosh, S. A potent estrogen receptor and microtubule specific purine-benzothiazole-based fluorescent molecular probe induces apoptotic death of breast cancer cells. Sci. Rep. 2022, 12, 10772.
Zhang, G.; Dong, M.; Yao, X. L.; Xia, Y. K.; Yu, H.; Zhou, Y.; Lian, C.; Zhang, Y. L.; Cui, Y. Y. Advancing breast cancer diagnosis with a near-infrared fluorescence imaging smart sensor for estrogen/progesterone receptor detection. Sci. Rep. 2023, 13, 21086.
Li, W.; Han, Y. N.; Sun, C. M.; Li, X.; Zheng, J. H.; Che, J. P.; Yao, X. D.; Kufe, D. Novel insights into the roles and therapeutic implications of MUC1 oncoprotein via regulating proteins and non-coding RNAs in cancer. Theranostics 2022, 12, 999–1011.
Venetis, K.; Invernizzi, M.; Sajjadi, E.; Curigliano, G.; Fusco, N. Cellular immunotherapy in breast cancer: The quest for consistent biomarkers. Cancer Treatm. Rev. 2020, 90, 102089.
Li, X. Q.; Li, J. W.; Xu, J. R.; Chen, K.; Zhang, Z.; Duan, J. L.; Luo, Q.; Du, Y. F.; Chen, S. Y.; Xie, Y. et al. Nanostructure of functional larotaxel liposomes decorated with guanine-rich quadruplex nucleotide-lipid derivative for treatment of resistant breast cancer. Small 2021, 17, 2007391.
Cao, Y.; Dai, Y. H.; Chen, H.; Tang, Y. Y.; Chen, X.; Wang, Y.; Zhao, J.; Zhu, X. L. Integration of fluorescence imaging and electrochemical biosensing for both qualitative location and quantitative detection of cancer cells. Biosens. Bioelectron. 2019, 130, 132–138.
Li, H. N.; Xu, F. X.; Gao, G.; Gao, X.; Wu, B.; Zheng, C.; Wang, P.; Li, Z. L.; Hua, H. M.; Li, D. H. Hydrogen sulfide and its donors: Novel antitumor and antimetastatic therapies for triple-negative breast cancer. Redox Biol. 2020, 34, 101564.
Cheng, Z. Q.; Jin, Y. S.; Li, J. Q.; Shi, G. Y.; Yu, L. Y.; Shao, B.; Tian, J.; Du, Y.; Yuan, Z. Fibronectin-targeting and metalloproteinase-activatable smart imaging probe for fluorescence imaging and image-guided surgery of breast cancer. J. Nanobiotechnol. 2023, 21, 112.
Zheng, F. C.; Du, F.; Zhao, J. D.; Wang, X.; Si, Y. R.; Jin, P.; Qian, H. L.; Xu, B. H.; Yuan, P. The emerging role of RNA N6-methyladenosine methylation in breast cancer. Biomark. Res. 2021, 9, 39.
Zhao, N. N.; Zhang, X. Y.; Zou, X. R.; Zhang, Y.; Zhang, C. Y. Controllable assembly of dendritic DNA nanostructures for ultrasensitive detection of METTL3-METTL14 m6A methyltransferase activity in cancer cells and human breast tissues. Biosens. Bioelectron. 2023, 228, 115217.
Liu, M. H.; Zhang, Z.; Yang, Y. C.; Chan, Y. H. Polymethine-based semiconducting polymer dots with narrow-band emission and absorption/emission maxima at NIR-II for bioimaging. Angew. Chem., Int. Ed. 2021, 60, 983–989.
Bai, X. N.; Wang, K.; Chen, L.; Zhou, J. H.; Wang, J. S. Semiconducting polymer dots as fluorescent probes for in vitro biosensing. J. Mater. Chem. B 2022, 10, 6248–6262.
Szabo, I.; Zoratti, M.; Biasutto, L. Targeting mitochondrial ion channels for cancer therapy. Redox Biol. 2021, 42, 101846.
Shamsipur, M.; Chabok, A.; Molaabasi, F.; Seyfoori, A.; Hajipour-Verdom, B.; Shojaedin-Givi, B.; Sedghi, M.; Naderi-Manesh, H.; Yeganeh-Faal, A. Label free phosphate functionalized semiconducting polymer dots for detection of iron(III) and cytochrome c with application to apoptosis imaging. Biosens. Bioelectron. 2019, 141, 111337.
Fitzgerald, R. C.; Antoniou, A. C.; Fruk, L.; Rosenfeld, N. The future of early cancer detection. Nat. Med. 2022, 28, 666–677.
Li, M. Y.; Zhao, J.; Chu, H. Q.; Mi, Y. S.; Zhou, Z. H.; Di, Z. H.; Zhao, M. P.; Li, L. L. Light-activated nanoprobes for biosensing and imaging. Adv. Mater. 2019, 31, 1804745.
Zhang, N. N.; Lu, C. Y.; Chen, M. J.; Xu, X. L.; Shu, G. F.; Du, Y. Z.; Ji, J. S. Recent advances in near-infrared II imaging technology for biological detection. J. Nanobiotechnol. 2021, 19, 132.
Li, B. H.; Zhao, M. Y.; Lin, J.; Huang, P.; Chen, X. Y. Management of fluorescent organic/inorganic nanohybrids for biomedical applications in the NIR-II region. Chem. Soc. Rev. 2022, 51, 7692–7714.
Wang, Z. A.; Wang, X.; Wan, J. B.; Xu, F. J.; Zhao, N. N.; Chen, M. W. Optical imaging in the second near infrared window for vascular bioimaging. Small 2021, 17, 2103780.
Feng, X.; Li, Y. H.; Zhang, S. Y.; Li, C. J.; Tian, J. Quantitative hypoxia mapping using a self-calibrated activatable nanoprobe. J. Nanobiotechnol. 2022, 20, 142.
Kang, H.; Shamim, M.; Yin, X. R.; Adluru, E.; Fukuda, T.; Yokomizo, S.; Chang, H.; Park, S. H.; Cui, Y. N.; Moy, A. J. et al. Tumor-associated immune-cell-mediated tumor-targeting mechanism with NIR-II fluorescence imaging. Adv. Mater. 2022, 34, 2106500.
Zhu, Y. Y.; Song, L.; Zhang, Y. Q.; Liu, W. L.; Chen, W. L.; Gao, W. L.; Zhang, L. X.; Wang, J. Z.; Ming, Z. H.; Zhang, Y. et al. Development of a rare earth nanoprobe enables in vivo real-time detection of sentinel lymph node metastasis of breast cancer using NIR-IIb imaging. Cancer Res. 2023, 83, 3428–3441.
Meng, X. D.; Pang, X. J.; Zhang, K.; Gong, C. C.; Yang, J. Y.; Dong, H. F.; Zhang, X. J. Recent advances in near-infrared-II fluorescence imaging for deep-tissue molecular analysis and cancer diagnosis. Small 2022, 18, 2202035.
Sun, J. R.; Cao, X. L.; Lu, W. J.; Wei, Y. C.; Kong, L. X.; Chen, W.; Shao, X. T.; Wang, Y. F. Recent advances in fluorescent probes of peroxynitrite: Structural, strategies and biological applications. Theranostics 2023, 13, 1716–1744.
Qi, Y. L.; Li, Y. Z.; Tan, M. J.; Yuan, F. F.; Murthy, N.; Duan, Y. T.; Zhu, H. L.; Yang, S. Y. Recent advances in organic near-infrared ratiometric small-molecule fluorescent probes. Coord. Chem. Rev. 2023, 486, 215130.
Wang, J.; Li, D. Q.; Ye, Y. X.; Qiu, Y.; Liu, J. W.; Huang, L.; Liang, B.; Chen, B. L. A fluorescent metal-organic framework for food real-time visual monitoring. Adv. Mater. 2021, 33, 2008020.
Egloff, S.; Melnychuk, N.; Reisch, A.; Martin, S.; Klymchenko, A. S. Enzyme-free amplified detection of cellular microRNA by light-harvesting fluorescent nanoparticle probes. Biosens. Bioelectron. 2021, 179, 113084.
de Heer, E. C.; Jalving, M.; Harris, A. L. HIFs, angiogenesis, and metabolism: Elusive enemies in breast cancer. J. Clin. Invest. 2020, 130, 5074–5087.
Yu, F. Y.; Shang, X. W.; Zhu, Y.; Lou, H. Y.; Liu, Y. P.; Meng, T. T.; Hong, Y.; Yuan, H.; Hu, F. Q. Self-preparation system using glucose oxidase-inspired nitroreductase amplification for cascade-responsive drug release and multidrug resistance reversion. Biomaterials 2021, 275, 120927.
Faucher, F. F.; Liu, K. J.; Cosco, E. D.; Widen, J. C.; Sorger, J.; Guerra, M.; Bogyo, M. Protease Activated Probes for Real-Time Ratiometric Imaging of Solid Tumors. ACS Cent. Sci. 2023, 9, 1059–1069.
Shin, W. S.; Oh, S. W.; Park, H. N.; Kim, J. H.; Lee, S. T. Knockdown of PTK7 reduces the oncogenic potential of breast cancer cells by impeding receptor tyrosine kinase signaling. Int. J. Mol. Sci. 2023, 24, 12173.
Shi, L. J.; Li, J.; Xiang, Q.; Tan, Y. P.; Zhang, H. Y.; Liu, S. H.; Guo, X. Q.; Zhang, W. J.; Yang, D. Z.; Ma, Y. S. A dual-ratio fluorescent probe with a single excitation triple-signal to synchronously detect PTK7 and miRNA-21 for breast cancer early diagnosis. Biosens. Bioelectron. 2023, 237, 115529.
Fu, Q. R.; Yang, X.; Wang, M. Z.; Zhu, K.; Wang, Y.; Song, J. B. Activatable probes for ratiometric imaging of endogenous biomarkers in vivo. ACS Nano 2024, 18, 3916–3968.
Fu, Q. R.; Feng, H. J.; Su, L. C.; Zhang, X.; Liu, L. T.; Fu, F. F.; Yang, H. H.; Song, J. B. An activatable hybrid organic-inorganic nanocomposite as early evaluation system of therapy effect. Angew. Chem., Int. Ed. 2022, 61, e202112237.
Yuan, M.; Wu, Y.; Zhao, C. Y.; Chen, Z. X.; Su, L. C.; Yang, H. H.; Song, J. B. Activated molecular probes for enzyme recognition and detection. Theranostics 2022, 12, 1459–1485.
Wu, L. Y.; Ishigaki, Y.; Zeng, W. H.; Harimoto, T.; Yin, B. L.; Chen, Y. H.; Liao, S. Y.; Liu, Y. C.; Sun, Y. D.; Zhang, X. B. et al. Generation of hydroxyl radical-activatable ratiometric near-infrared bimodal probes for early monitoring of tumor response to therapy. Nat. Commun. 2021, 12, 6145.
Jiang, Y. W.; Tang, W. J.; Gao, G.; Geng, Y. Q.; Wu, F. G.; Min, Q. H.; Zhu, J. J. Lipid droplet-hitchhiking probe creates Trojan foam cells for fluorescence/photoacoustic imaging of atherosclerotic plaques. Biosens. Bioelectron. 2022, 216, 114613.
Chen, B. B.; Liu, M. L.; Huang, C. Z. Recent advances of carbon dots in imaging-guided theranostics. TrAC Trends Anal. Chem. 2021, 134, 116116.
Li, Q.; Li, S. H.; He, S. S.; Chen, W.; Cheng, P. H.; Zhang, Y.; Miao, Q. Q.; Pu, K. Y. An activatable polymeric reporter for near-infrared fluorescent and photoacoustic imaging of invasive cancer. Angew. Chem., Int. Ed. 2020, 59, 7018–7023.
Nel, J.; Elkhoury, K.; Velot, É.; Bianchi, A.; Acherar, S.; Francius, G.; Tamayol, A.; Grandemange, S.; Arab-Tehrany, E. Functionalized liposomes for targeted breast cancer drug delivery. Bioact. Mater. 2023, 24, 401–437.
Yin, L.; Sun, H.; Zhang, H.; He, L.; Qiu, L.; Lin, J. G.; Xia, H. W.; Zhang, Y. Q.; Ji, S. J.; Shi, H. B. et al. Quantitatively visualizing tumor-related protease activity in vivo using a ratiometric photoacoustic probe. J. Am. Chem. Soc. 2019, 141, 3265–3273.
Matulionyte, M.; Skripka, A.; Ramos-Guerra, A.; Benayas, A.; Vetrone, F. The coming of age of neodymium: Redefining its role in rare earth doped nanoparticles. Chem. Rev. 2023, 123, 515–554.
Wei, Z. X.; Duan, G. X.; Huang, B. X.; Qiu, S. S.; Zhou, D. D.; Zeng, J. F.; Cui, J. B.; Hu, C. H.; Wang, X. M.; Wen, L. et al. Rapidly liver-clearable rare-earth core-shell nanoprobe for dual-modal breast cancer imaging in the second near-infrared window. J. Nanobiotechnol. 2021, 19, 369.
Zhao, J. H.; Chen, J. W.; Ma, S. N.; Liu, Q. Q.; Huang, L. X.; Chen, X. N.; Lou, K. Y.; Wang, W. Recent developments in multimodality fluorescence imaging probes. Acta Pharm. Sin. B 2018, 8, 320–338.
Mao, D.; Liu, B. Biology-oriented design strategies of AIE theranostic probes. Matter 2021, 4, 350–376.
Dai, Y.; Mei, J. W.; Li, Z.; Kong, L. T.; Zhu, W. B.; Li, Q. M.; Wu, K. R.; Huang, Y.; Shang, X. F.; Zhu, C. Acidity-activatable nanoparticles with glucose oxidase-enhanced photoacoustic imaging and photothermal effect, and macrophage-related immunomodulation for synergistic treatment of biofilm infection. Small 2022, 18, 2204377.
Yan, C. X.; Zhang, Y. T.; Guo, Z. Q. Recent progress on molecularly near-infrared fluorescent probes for chemotherapy and phototherapy. Coord. Chem. Rev. 2021, 427, 213556.
Cheng, Q.; Tian, Y. L.; Dang, H. P.; Teng, C. C.; Xie, K.; Yin, D. L.; Yan, L. F. Antiquenching macromolecular NIR-II probes with high-contrast brightness for imaging-guided photothermal therapy under 1064 nm irradiation. Adv. Healthc. Mater. 2022, 11, 2101697.
Yin, F. X.; Zhao, R.; Gorja, D. R.; Fu, X. R.; Lu, N.; Huang, H.; Xu, B. B.; Chen, H. Y.; Shim, J. H.; Liu, K. D. et al. Novel dual inhibitor for targeting PIM1 and FGFR1 kinases inhibits colorectal cancer growth in vitro and patient-derived xenografts in vivo. Acta Pharm. Sin. B 2022, 12, 4122–4137.
Xu, Z.; Zheng, Y.; Qiao, R. R.; Cao, S. R.; Fang, Y.; Bo, X. M.; Zhu, H. L.; Ying, C. J.; Sun, Y.; Zheng, J. N. Organic fluorescent probe for concurrent imaging and apoptosis induction in cancer cells in vivo and in vitro by utilizing endogenous hydrogen sulfide. Chem. Eng. J. 2023, 456, 141000.
Petroni, G.; Cantley, L. C.; Santambrogio, L.; Formenti, S. C.; Galluzzi, L. Radiotherapy as a tool to elicit clinically actionable signalling pathways in cancer. Nat. Rev. Clin. Oncol. 2022, 19, 114–131.
Xie, J. N.; Gong, L. J.; Zhu, S.; Yong, Y.; Gu, Z. J.; Zhao, Y. L. Emerging strategies of nanomaterial-mediated tumor radiosensitization. Adv. Mater. 2019, 31, 1802244.
Scaranti, M.; Cojocaru, E.; Banerjee, S.; Banerji, U. Exploiting the folate receptor α in oncology. Nat. Rev. Clin. Oncol. 2020, 17, 349–359.
Wei, M.; Bai, J. W.; Shen, X.; Lou, K. L.; Gao, Y. Y.; Lv, R. C.; Wang, P. Y.; Liu, X. L.; Zhang, G. J. Glutathione-exhausting nanoprobes for NIR-II fluorescence imaging-guided surgery and boosting radiation therapy efficacy via ferroptosis in breast cancer. ACS Nano 2023, 17, 11345–11361.
Zhu, Y. X.; Hu, Y. X.; Tang, C. J.; Guan, X. X.; Zhang, W. W. Platinum-based systematic therapy in triple-negative breast cancer. Biochim. Biophys. Acta (BBA) - Rev. Cancer 2022, 1877, 188678.
Shashni, B.; Nishikawa, Y.; Nagasaki, Y. Management of tumor growth and angiogenesis in triple-negative breast cancer by using redox nanoparticles. Biomaterials 2021, 269, 120645.
Zhang, Y. Q.; Liu, W. L.; Luo, X. J.; Shi, J. P.; Zeng, Y. Z.; Chen, W. L.; Huang, W. H.; Zhu, Y. Y.; Gao, W. L.; Li, R. H. et al. Novel self-assembled multifunctional nanoprobes for second-near-infrared-fluorescence-image-guided breast cancer surgery and enhanced radiotherapy efficacy. Adv. Sci. 2023, 10, 2205294.
Sharma, A.; Verwilst, P.; Li, M. L.; Ma, D. D.; Singh, N.; Yoo, J.; Kim, Y.; Yang, Y.; Zhu, J. H.; Huang, H. Q. et al. Theranostic fluorescent probes. Chem. Rev. 2024, 124, 2699–2804.
Liu, H. W.; Chen, L. L.; Xu, C. Y.; Li, Z.; Zhang, H. Y.; Zhang, X. B.; Tan, W. H. Recent progresses in small-molecule enzymatic fluorescent probes for cancer imaging. Chem. Soc. Rev. 2018, 47, 7140–7180.
Zhang, Y.; Zhang, G. P.; Zeng, Z. L.; Pu, K. Y. Activatable molecular probes for fluorescence-guided surgery, endoscopy and tissue biopsy. Chem. Soc. Rev. 2022, 51, 566–593.
Liu, R. F.; Xu, Y. X.; Xu, K.; Dai, Z. F. Current trends and key considerations in the clinical translation of targeted fluorescent probes for intraoperative navigation. Aggregate 2021, 2, e23.
Seah, D.; Cheng, Z. M.; Vendrell, M. Fluorescent probes for imaging in humans: Where are we now. ACS Nano 2023, 17, 19478–19490.
Hernot, S.; van Manen, L.; Debie, P.; Mieog, J. S. D.; Vahrmeijer, A. L. Latest developments in molecular tracers for fluorescence image-guided cancer surgery. Lancet Oncol 2019, 20, e354–e367.