AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (40.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Photothermal probiotics delivery of photodynamic agents for enhanced immunogenic cell death within hypoxia center of solid tumors

Wen Luo1Shiyu Du1Yateng Jiang1Bangshun He2( )Jun Tang3( )Jingjing Yang4( )Yujun Song1( )
Jiangsu Key Laboratory of Artificial Functional Materials, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
Department of Anesthesiology, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing 210023, China
Show Author Information

Graphical Abstract

The activation of photodynamic therapy-photothermal therapy promoted immunogenic cell death-based immunotherapy, where polydopamine-coated Escherichia coli Nissle 1917 (EcN) chlorin e6 (Ce6)-loaded and polyethyleneimine (PEI)-coated hollow manganese dioxide (shorted as EP-ChP) were applied for the enhanced immunotherapy in the hypoxia cores of solid tumors via inducing both adaptive and innate anticancer immune response.

Abstract

Resulting from harsh hypoxic environmental conditions, central cells in the core of solid tumors are usually more aggressive and malignant with a less stable genome. Therefore, therapeutic agents with improved penetration for the activation of immunity in tumor centers exhibit promising potential in immunotherapies. Here, polydopamine-coated Escherichia coli Nissle 1917 (EcN) bearing chlorin e6 (Ce6)-loaded and polyethyleneimine (PEI)-coated hollow manganese dioxide (shorted as EP-ChP) are applied for enhanced immunotherapy in deep tumors. After accumulation in tumor center through hypoxia targeting, manganese dioxide is degradated under the tumor microenvironment with released Ce6 and thus generates reactive oxygen species (ROS) upon 660 nm laser irradiation, which can further lower thermal-resistance of cancer cells via HSP90α downregulation. Owing to that, heating induced by polydopamine upon 808 nm laser irradiation can achieve effective tumor ablation. Phototherapy upon dual laser induces enhanced immunogenic cell death, while bacterial infections in tumor tissues also trigger innate immunity. This bacteria-based approach provides enhanced antitumor immune responses in deep tumors with great potential in the reshaping of immunosuppression tumor microenvironment.

Electronic Supplementary Material

Download File(s)
7081_ESM.pdf (1.1 MB)

References

[1]

Waldman, A. D.; Fritz, J. M.; Lenardo, M. J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668.

[2]

Singh, A. K.; McGuirk, J. P. CAR T cells: Continuation in a revolution of immunotherapy. Lancet Oncol. 2020, 21, e168–e178.

[3]

Vitale, I.; Shema, E.; Loi, S.; Galluzzi, L. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 2021, 27, 212–224.

[4]

Bonaventura, P.; Shekarian, T.; Alcazer, V.; Valladeau-Guilemond, J.; Valsesia-Wittmann, S.; Amigorena, S.; Caux, C.; Depil, S. Cold tumors: A therapeutic challenge for immunotherapy. Front. Immunol. 2019, 10, 168.

[5]

Binnewies, M.; Roberts, E. W.; Kersten, K.; Chan, V.; Fearon, D. F.; Merad, M.; Coussens, L. M.; Gabrilovich, D. I.; Ostrand-Rosenberg, S.; Hedrick, C. C. et al. Understanding the tumor immune microenvironment (TIME) for effective therapy. Nat. Med. 2018, 24, 541–550.

[6]

Yang, Z.; Gao, D.; Zhao, J.; Yang, G. J.; Guo, M.; Wang, Y.; Ren, X. C.; Kim, J. S.; Jin, L.; Tian, Z. M. et al. Thermal immuno-nanomedicine in cancer. Nat. Rev. Clin. Oncol. 2023, 20, 116–134.

[7]

Wang, J. R.; Zhang, W. L.; Xie, Z. Y.; Wang, X. Y.; Luo, Y.; Jiang, W. X.; Liu, Y.; Wang, Z. G.; Ran, H. T.; Song, W. X. et al. Magnetic nanodroplets for enhanced deep penetration of solid tumors and simultaneous magnetothermal-sensitized immunotherapy against tumor proliferation and metastasis. Adv. Healthc. Mater. 2022, 11, 2201399.

[8]

Drake, C. G.; Lipson, E. J.; Brahmer, J. R. Regulatory T cells-an important target for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2014, 11, 307.

[9]

Dane, E. L.; Belessiotis-Richards, A.; Backlund, C.; Wang, J. N.; Hidaka, K.; Milling, L. E.; Bhagchandani, S.; Melo, M. B.; Wu, S. W.; Li, N. et al. STING agonist delivery by tumour-penetrating PEG-lipid nanodiscs primes robust anticancer immunity. Nat. Mater. 2022, 21, 710–720.

[10]

Hao, M. X.; Zhu, L. L.; Hou, S. Y.; Chen, S. J.; Li, X. Q.; Li, K. M.; Zhu, N. C.; Chen, S. S.; Xue, L. J.; Ju, C. Y. et al. Sensitizing tumors to immune checkpoint blockage via STING agonists delivered by tumor-penetrating neutrophil cytopharmaceuticals. ACS Nano 2023, 17, 1663–1680.

[11]

Chen, H.; Shi, T.; Wang, Y.; Liu, Z. Y.; Liu, F. C.; Zhang, H. Y.; Wang, X. W.; Miao, Z. Y.; Liu, B. R.; Wan, M. M. et al. Deep penetration of nanolevel drugs and micrometer-level T Cells promoted by nanomotors for cancer immunochemotherapy. J. Am. Chem. Soc. 2021, 143, 12025–12037.

[12]

Zhao, Y.; Fu, X.; Lopez, J. I.; Rowan, A.; Au, L.; Fendler, A.; Hazell, S.; Xu, H.; Horswell, S.; Shepherd, S. T. C. et al. Selection of metastasis competent subclones in the tumour interior. Nat. Ecol. Evol. 2021, 5, 1033–1045.

[13]

Brown, J. M.; Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. Nat. Rev. Cancer 2004, 4, 437–447.

[14]

Sepich-Poore, G. D.; Zitvogel, L.; Straussman, R.; Hasty, J.; Wargo, J. A.; Knight, R. The microbiome and human cancer. Science 2021, 371, eabc4552.

[15]

Luo, C. H.; Huang, C. T.; Su, C. H.; Yeh, C. S. Bacteria-mediated hypoxia-specific delivery of nanoparticles for tumors imaging and therapy. Nano Lett. 2016, 16, 3493–3499.

[16]

Chen, Q. W.; Liu, X. H.; Fan, J. X.; Peng, S. Y.; Wang, J. W.; Wang, X. N.; Zhang, C.; Liu, C. J.; Zhang, X. Z. Self-mineralized photothermal bacteria hybridizing with mitochondria-targeted metal-organic frameworks for augmenting photothermal tumor therapy. Adv. Funct. Mater. 2020, 30, 1909806.

[17]

Singh, A. V.; Hosseinidoust, Z.; Park, B. W.; Yasa, O.; Sitti, M. Microemulsion-based soft bacteria-driven microswimmers for active cargo delivery. ACS Nano 2017, 11, 9759–9769.

[18]

Chu, B. B.; Yang, Y. M.; Tang, J. L.; Song, B.; He, Y.; Wang, H. Y. Trojan nanobacteria system for photothermal programmable destruction of deep tumor tissues. Angew. Chem., Int. Ed. 2022, 61, e202208422.

[19]

Zheng, D. W.; Chen, Y.; Li, Z. H.; Xu, L.; Li, C. X.; Li, B.; Fan, J. X.; Cheng, S. X.; Zhang, X. Z. Optically-controlled bacterial metabolite for cancer therapy. Nat. Commun. 2018, 9, 1680.

[20]

Felfoul, O.; Mohammadi, M.; Taherkhani, S.; De Lanauze, D.; Xu, Y. Z.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M. et al. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol. 2016, 11, 941–947.

[21]

Kim, O. Y.; Park, H. T.; Dinh, N. T. H.; Choi, S. J.; Lee, J.; Kim, J. H.; Lee, S. W.; Gho, Y. S. Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 2017, 8, 626.

[22]

Geng, Z. M.; Cao, Z. P.; Liu, R.; Liu, K.; Liu, J. Y.; Tan, W. H. Aptamer-assisted tumor localization of bacteria for enhanced biotherapy. Nat. Commun. 2021, 12, 6584.

[23]

Arias-Alpizar, G.; Kong, L.; Vlieg, R. C.; Rabe, A.; Papadopoulou, P.; Meijer, M. S.; Bonnet, S.; Vogel, S.; Van Noort, J.; Kros, A. et al. Light-triggered switching of liposome surface charge directs delivery of membrane impermeable payloads in vivo. Nat. Commun. 2020, 11, 3638.

[24]

Liu, J.; Chang, J.; Jiang, Y.; Meng, X. D.; Sun, T. M.; Mao, L. Q.; Xu, Q. B.; Wang, M. Fast and efficient CRISPR/Cas9 genome editing in vivo enabled by bioreducible lipid and messenger RNA nanoparticles. Adv. Mater. 2019, 31, 1902575.

[25]

Wu, X. L.; Yue, H.; Zhang, Y. Y.; Gao, X. Y.; Li, X. Y.; Wang, L. C.; Cao, Y. F.; Hou, M.; An, H. X.; Zhang, L. et al. Packaging and delivering enzymes by amorphous metal-organic frameworks. Nat. Commun. 2019, 10, 5165.

[26]

Alyami, M. Z.; Alsaiari, S. K.; Li, Y. Y.; Qutub, S. S.; Aleisa, F. A.; Sougrat, R.; Merzaban, J. S.; Khashab, N. M. Cell-type-specific CRISPR/Cas9 delivery by biomimetic metal organic frameworks. J. Am. Chem. Soc. 2020, 142, 1715–1720.

[27]

Minchinton, A. I.; Tannock, I. F. Drug penetration in solid tumours. Nat. Rev. Cancer 2006, 6, 583–592.

[28]

Wilson, W. R.; Hay, M. P. Targeting hypoxia in cancer therapy. Nat. Rev. Cancer 2011, 11, 393–410.

[29]

Li, X. S.; Lovell, J. F.; Yoon, J.; Chen, X. Y. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol. 2020, 17, 657–674.

[30]

Deng, S. H.; Li, X. X.; Liu, S.; Chen, J. F.; Li, M. Q.; Chew, S. Y.; Leong, K. W.; Cheng, D. Codelivery of CRISPR-Cas9 and chlorin e6 for spatially controlled tumor-specific gene editing with synergistic drug effects. Sci. Adv. 2020, 6, eabb4005.

[31]

Yang, J. X.; Hou, M. F.; Sun, W. S.; Wu, Q. H.; Xu, J.; Xiong, L. Q.; Chai, Y. M.; Liu, Y. X.; Yu, M. H.; Wang, H. L. et al. Sequential PDT and PTT using dual-modal single-walled carbon nanohorns synergistically promote systemic immune responses against tumor metastasis and relapse. Adv. Sci. 2020, 7, 2001088.

[32]

Li, W.; Yang, J.; Luo, L. H.; Jiang, M. S.; Qin, B.; Yin, H.; Zhu, C. Q.; Yuan, X. L.; Zhang, J. L.; Luo, Z. Y. et al. Targeting photodynamic and photothermal therapy to the endoplasmic reticulum enhances immunogenic cancer cell death. Nat. Commun. 2019, 10, 3349.

[33]

Cheng, Q.; Li, Z. H.; Sun, Y. X.; Zhang, X. Z. Controlled synthesis of a core–shell nanohybrid for effective multimodal image-guided combined photothermal/photodynamic therapy of tumors. NPG Asia Mater. 2019, 11, 63.

[34]

Wen, Z. F.; Liu, F. Y.; Liu, G. X.; Sun, Q. Y.; Zhang, Y. H.; Muhammad, M.; Xu, Y. Q.; Li, H. J.; Sun, S. G. Assembly of multifunction dyes and heat shock protein 90 inhibitor coupled to bovine serum albumin in nanoparticles for multimodal photodynamic/photothermal/chemo-therapy. J. Colloid Interface Sci. 2021, 590, 290–300.

[35]

Wei, J. P.; Li, J. C.; Sun, D.; Li, Q.; Ma, J. Y.; Chen, X. L.; Zhu, X.; Zheng, N. F. A novel theranostic nanoplatform based on Pd@Pt-PEG-Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 2018, 28, 1706310.

[36]

Yang, G. B.; Xu, L. G.; Chao, Y.; Xu, J.; Sun, X. Q.; Wu, Y. F.; Peng, R.; Liu, Z. Hollow MnO2 as a tumor-microenvironment-responsive biodegradable nano-platform for combination therapy favoring antitumor immune responses. Nat. Commun. 2017, 8, 902.

[37]

Chen, W. F.; Wang, Y.; Qin, M.; Zhang, X. D.; Zhang, Z. R.; Sun, X.; Gu, Z. Bacteria-driven hypoxia targeting for combined biotherapy and photothermal therapy. ACS Nano 2018, 12, 5995–6005.

[38]

Li, J. J.; Xia, Q.; Guo, H. Y.; Fu, Z. Z.; Liu, Y.; Lin, S. S.; Liu, J. Y. Decorating bacteria with triple immune nanoactivators generates tumor-resident living immunotherapeutics. Angew. Chem., Int. Ed. 2022, 61, e202202409.

[39]

Huang, C. L.; Zhang, L.; Guo, Q.; Zuo, Y. Y.; Wang, N. N.; Wang, H.; Kong, D. L.; Zhu, D. W.; Zhang, L. H. Robust nanovaccine based on polydopamine-coated mesoporous silica nanoparticles for effective photothermal-immunotherapy against melanoma. Adv. Funct. Mater. 2021, 31, 2010637.

[40]

Wei, R. X.; Gong, X. Q.; Lin, H. Y.; Zhang, K.; Li, A.; Liu, K.; Shan, H.; Chen, X. Y.; Gao, J. H. Versatile octapod-shaped hollow porous manganese(II) oxide nanoplatform for real-time visualization of cargo delivery. Nano Lett. 2019, 19, 5394–5402.

[41]

Chouaib, S.; Noman, M. Z.; Kosmatopoulos, K.; Curran, M. A. Hypoxic stress: Obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 2017, 36, 439–445.

[42]

Chang, C. H.; Qiu, J.; O'Sullivan, D.; Buck, M. D.; Noguchi, T.; Curtis, J. D.; Chen, Q. Y.; Gindin, M.; Gubin, M. M.; Van Der Windt, G. J. W. et al. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell 2015, 162, 1229–1241.

Nano Research
Article number: 94907081
Cite this article:
Luo W, Du S, Jiang Y, et al. Photothermal probiotics delivery of photodynamic agents for enhanced immunogenic cell death within hypoxia center of solid tumors. Nano Research, 2025, 18(1): 94907081. https://doi.org/10.26599/NR.2025.94907081
Topics:

200

Views

29

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 24 July 2024
Revised: 12 September 2024
Accepted: 17 October 2024
Published: 25 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return