AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (47.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access

Microneedle technology in analgesic therapy

Jie Jiao1,2Ze Qiang Zhao1,2Yu Ting He1,2Bin Bin Yu1,2Kejun Chen3,4Youchen Xia5( )Ruixing Yu3( )Bo Zhi Chen1,2 ( )Xin Dong Guo1,2 ( )
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Department of Dermatology, China-Japan Friendship Hospital, Beijing 100029, China
Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
Department of Plastic Surgery, Peking University Third Hospital, Beijing 100191, China
Show Author Information

Graphical Abstract

Various types of microneedles are employed for both rapid and long-lasting analgesia.

Abstract

Pain management has become a prominent global health concern, affecting not only over the aspects of daily existence but also upon the holistic physical well-being. Conventional pain management methods have non-negligible limitations, such as the discomfort caused by needle injections and the low permeability of transdermal drug patches due to the skin barriers. Microneedle-based drug delivery is an emerging technique that utilizes microscopic needles to directly administer medication into the epidermis or dermis, offering the advantages of enhanced efficiency, rapid action, and minimally invasive delivery. Regarding to the analgesic therapy, microneedles are at the forefront, accelerating pain relief by localized delivery of analgesic substances directly to the site of discomfort. The targeted administration effectively reduces the broader dispersion of pharmacological agents within the circulatory system, thereby minimizing the occurrence of systemic adverse effects. This review focuses on the utilization of microneedle technology for both immediate and extended pain relief, its performance in clinical practice, and the prospects and challenges of microneedles in pain management therapy.

References

[1]

Reneman, M. F.; Selb, M.; Korwisi, B.; Barke, A.; Escorpizo, R. S.; Tu, S. W.; Treede, R. D. Towards harmonizing the concepts and definitions of pain in the world health organization’s family of international classifications. PAIN 2023, 164, 1240–1244.

[2]

Aydede, M.; Shriver, A. Recently introduced definition of “nociplastic pain” by the international association for the study of pain needs better formulation. PAIN 2018, 159, 1176–1177.

[3]

Fitzcharles, M. A.; Cohen, S. P.; Clauw, D. J.; Littlejohn, G.; Usui, C.; Häuser, W. Nociplastic pain: Towards an understanding of prevalent pain conditions. Lancet 2021, 397, 2098–2110.

[4]

Brose, W. G.; Cousins, M. J. Subcutaneous lidocaine for treatment of neuropathic cancer pain. PAIN 1991, 45, 145–148.

[5]

Yuan, Y. J.; Luo, X.; Xue, F. S. Oral acetaminophen and patient-controlled epidural analgesia. J. Anesth. 2022, 36, 328–328.

[6]

Muheem, A.; Shakeel, F.; Jahangir, M. A.; Anwar, M.; Mallick, N.; Jain, G. K.; Warsi, M. H.; Ahmad, F. J. A review on the strategies for oral delivery of proteins and peptides and their clinical perspectives. Saudi Pharm. J. 2016, 24, 413–428.

[7]

Ismail, R.; Csóka, I. Novel strategies in the oral delivery of antidiabetic peptide drugs-insulin, GLP 1 and its analogs. Eur. J. Pharm. Biopharm. 2017, 115, 257–267.

[8]

Usach, I.; Martinez, R.; Festini, T.; Peris, J. E. Subcutaneous injection of drugs: Literature review of factors influencing pain sensation at the injection site. Adv. Ther. 2019, 36, 2986–2996.

[9]

Guo, X. H.; Wang, W. Challenges and recent advances in the subcutaneous delivery of insulin. Expert Opin. Drug Deliv. 2017, 14, 727–734.

[10]

Rubin, R. R.; Peyrot, M.; Kruger, D. F.; Travis, L. B. Barriers to insulin injection therapy. Diabetes Educ. 2009, 35, 1014–1022.

[11]

Varghese, K. S.; Ahmed, A.; Mathew, D. M.; Fusco, P. J.; Abraham, M. N. Eutectic mixture of local anesthetics and amethocaine as topical anesthetics in pediatrics: A meta-analysis. Pediatr. Res. 2024, 96, 51–56.

[12]

Li, L. J.; Cai, B. L.; Li, H. Y.; Wei, J.; Tao, L.; Ma, P. C. Dermal effects and pharmacokinetic evaluation of the lidocaine/prilocaine cream in healthy Chinese volunteers. BMC Pharmacol. Toxicol. 2023, 24, 51.

[13]

Chen, B. Z.; Zhang, L. Q.; Xia, Y. Y.; Zhang, X. P.; Guo, X. D. A basal-bolus insulin regimen integrated microneedle patch for intraday postprandial glucose control. Sci. Adv. 2020, 6, eaba7260.

[14]

Zeng, Z. Y.; Jiang, G. H.; Liu, T. Q.; Zhang, X. Y.; Sun, Y. F. Progress of polymer microneedles on transdermal drug delivery. Acta Polym. Sin. 2022, 53, 876–893.

[15]

Aldawood, F. K.; Andar, A.; Desai, S. A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers 2021, 13, 2815.

[16]
Zeng, Y. N.; Wang, C. Y.; Lei, J. P.; Jiang, X.; Lei, K.; Jin, Y. L.; Hao, T. S.; Zhang, W.; Huang, J. Y.; Li, W. Spatiotemporally responsive cascade bilayer microneedles integrating local glucose depletion and sustained nitric oxide release for accelerated diabetic wound healing. Acta Pharm. Sin. B 2024 , in press, https://doi.org/10.1016/j.apsb.2024.06.014.
[17]

Wang, C. Y.; He, G. Q.; Zhao, H. H.; Lu, Y.; Jiang, P.; Li, W. Enhancing deep-seated melanoma therapy through wearable self-powered microneedle patch. Adv. Mater. 2024, 36, 2311246.

[18]

Zhang, X. P.; Zhang, B. L.; Chen, B. Z.; Zhao, Z. Q.; Fei, W. M.; Cui, Y.; Guo, X. D. Dissolving microneedle rollers for rapid transdermal drug delivery. Drug Deliv. Transl. Res. 2022, 12, 459–471.

[19]

Aich, K.; Singh, T.; Dang, S. Advances in microneedle-based transdermal delivery for drugs and peptides. Drug Delivery Transl. Res. 2022, 12, 1556–1568.

[20]

Howells, O.; Blayney, G. J.; Gualeni, B.; Birchall, J. C.; Eng, P. F.; Ashraf, H.; Sharma, S.; Guy, O. J. Design, fabrication, and characterisation of a silicon microneedle array for transdermal therapeutic delivery using a single step wet etch process. Eur. J. Pharm. Biopharm. 2022, 171, 19–28.

[21]

Waghule, T.; Singhvi, G.; Dubey, S. K.; Pandey, M. M.; Gupta, G.; Singh, M.; Dua, K. Microneedles: A smart approach and increasing potential for transdermal drug delivery system. Biomed. Pharmacother. 2019, 109, 1249–1258.

[22]

Davies, L. B.; Gateley, C.; Holland, P.; Coulman, S. A.; Birchall, J. C. Accelerating topical anaesthesia using microneedles. Skin Pharmacol. Physiol. 2017, 30, 277–283.

[23]

Liu, Y.; Zhao, Z. Q.; Liang, L.; Jing, L. Y.; Wang, J. H.; Dai, Y.; Chen, B. Z.; Guo, X. D. Toward a solid microneedle patch for rapid and enhanced local analgesic action. Drug Deliv. Transl. Res. 2024, 14, 1810–1819.

[24]

Ghasempour, A.; Dehghan, H.; Ataee, M.; Chen, B. Z.; Zhao, Z. Q.; Sedighi, M.; Guo, X. D.; Shahbazi, M. A. Cadmium sulfide nanoparticles: Preparation, characterization, and biomedical applications. Molecules 2023, 28, 3857.

[25]

Liu, Y.; Cheng, M. S.; Zhao, J. Q.; Zhang, X. Y.; Huang, Z.; Zang, Y. H.; Ding, Y.; Zhang, J. F.; Ding, Z. Transdermal delivery of lidocaine-loaded elastic nano-liposomes with microneedle array pretreatment. Biomedicines 2021, 9, 592.

[26]

Ovsianikov, A.; Chichkov, B.; Mente, P.; Monteiro-Riviere, N. A.; Doraiswamy, A.; Narayan, R. J. Two photon polymerization of polymer-ceramic hybrid materials for transdermal drug delivery. Int. J. Appl. Ceram. Technol. 2007, 4, 22–29.

[27]

Bystrova, S.; Luttge, R. Micromolding for ceramic microneedle arrays. Microelectron. Eng. 2011, 88, 1681–1684.

[28]

Skoog, S. A.; Miller, P. R.; Boehm, R. D.; Sumant, A. V.; Polsky, R.; Narayan, R. J. Nitrogen-incorporated ultrananocrystalline diamond microneedle arrays for electrochemical biosensing. Diamond Relat. Mater. 2015, 54, 39–46.

[29]

Koyani, R. D. Synthetic polymers for microneedle synthesis: From then to now. J. Drug Deliv. Sci. Technol. 2020, 60, 102071.

[30]

Zhang, L. Y.; Guo, R. R.; Wang, S. Q.; Yang, X. T.; Ling, G. X.; Zhang, P. Fabrication, evaluation and applications of dissolving microneedles. Int. J. Pharm. 2021, 604, .

[31]

Leone, M.; Mönkäre, J.; Bouwstra, J. A.; Kersten, G. Dissolving microneedle patches for dermal vaccination. Pharm. Res. 2017, 34, 2223–2240.

[32]

Ito, Y.; Ohta, J.; Imada, K.; Akamatsu, S.; Tsuchida, N.; Inoue, G.; Inoue, N.; Takada, K. Dissolving microneedles to obtain rapid local anesthetic effect of lidocaine at skin tissue. J. Drug Target. 2013, 21, 770–775.

[33]

Lee, B. M.; Lee, C.; Lahiji, S. F.; Jung, U. W.; Chung, G.; Jung, H. Dissolving microneedles for rapid and painless local anesthesia. Pharmaceutics 2020, 12, 366.

[34]

Jin, L. L.; He, M.; Chen, Y.; Liu, C. S.; He, H. Y. Reverse milling-sputtering technology to develop scalable microneedle patches for analgesia. Mater. Today Commun. 2023, 36, 106611.

[35]

Li, Q. P.; Yu, X. Q.; Zheng, X. Y.; Yang, J.; Hui, J. F.; Fan, D. D. Rapid dissolution microneedle based on polyvinyl alcohol/chitosan for local oral anesthesia. Int. J. Biol. Macromol. 2024, 257, 128629.

[36]

Zhu, T. T.; Yu, X. X.; Yi, X.; Guo, X. L.; Li, L. H.; Hao, Y. P.; Wang, W. C. Lidocaine-loaded hyaluronic acid adhesive microneedle patch for oral mucosal topical anesthesia. Pharmaceutics 2022, 14, 686.

[37]

Zhang, X. P.; He, Y. T.; Li, W. X.; Chen, B. Z.; Zhang, C. Y.; Cui, Y.; Guo, X. D. An update on biomaterials as microneedle matrixes for biomedical applications. J. Mater. Chem. B 2022, 10, 6059–6077.

[38]

Yang, H.; Kang, G.; Jang, M.; Um, D. J.; Shin, J.; Kim, H.; Hong, J.; Jung, H.; Ahn, H.; Gong, S. et al. Development of lidocaine-loaded dissolving microneedle for rapid and efficient local anesthesia. Pharmaceutics 2020, 12, 1067.

[39]

Yu, J. J.; Xia, Y. L.; Zhang, H. N.; Pu, X. M.; Gong, T.; Zhang, Z. R.; Deng, L. A semi-interpenetrating network-based microneedle for rapid local anesthesia. J. Drug Deliv. Sci. Technol. 2022, 78, 103984.

[40]

Yang, Y.; Chu, H. Q.; Zhang, Y.; Xu, L. L.; Luo, R. Z.; Zheng, H.; Yin, T. L.; Li, Z. Rapidly separable bubble microneedle patch for effective local anesthesia. Nano Res. 2022, 15, 8336–8344.

[41]

Ito, Y.; Kobuchi, S.; Inoue, G.; Kakumu, E.; Aoki, M.; Sakaeda, T.; Takada, K. Dissolving microneedles for enhanced local delivery of capsaicin to rat skin tissue. J. Drug Target. 2017, 25, 420–424.

[42]

Tas, C.; Joyce, J. C.; Nguyen, H. X.; Eangoor, P.; Knaack, J. S.; Banga, A. K.; Prausnitz, M. R. Dihydroergotamine mesylate-loaded dissolving microneedle patch made of polyvinylpyrrolidone for management of acute migraine therapy. J. Control. Release 2017, 268, 159–165.

[43]

Silva, A. C. Q.; Pereira, B.; Lameirinhas, N. S.; Costa, P. C.; Almeida, I. F.; Dias-Pereira, P.; Correia-Sá, I.; Oliveira, H.; Silvestre, A. J. D.; Vilela, C. et al. Dissolvable carboxymethylcellulose microneedles for noninvasive and rapid administration of diclofenac sodium. Macromol. Biosci. 2023, 23, 2200323.

[44]

Demuth, P. C.; Moon, J. J.; Suh, H.; Hammond, P. T.; Irvine, D. J. Releasable layer-by-layer assembly of stabilized lipid nanocapsules on microneedles for enhanced transcutaneous vaccine delivery. ACS Nano 2012, 6, 8041–8051.

[45]

Zhang, Y.; Brown, K.; Siebenaler, K.; Determan, A.; Dohmeier, D.; Hansen, K. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm. Res. 2012, 29, 170–177.

[46]

Baek, S. H.; Shin, J. H.; Kim, Y. C. Drug-coated microneedles for rapid and painless local anesthesia. Biomed. Microdevices 2017, 19, 2.

[47]

Ingrole, R. S. J.; Gill, H. S. Microneedle coating methods: A review with a perspective. J. Pharmacol. Exp. Ther. 2019, 370, 555–569.

[48]

Zhang, Y.; Siebenaler, K.; Brown, K.; Dohmeier, D.; Hansen, K. Adjuvants to prolong the local anesthetic effects of coated microneedle products. Int. J. Pharm. 2012, 439, 187–192.

[49]

Abdalla, H. B.; Jain, A. K.; Napimoga, M. H.; Clemente-Napimoga, J. T.; Gill, H. S. Microneedles coated with tramadol exhibit antinociceptive effect in a rat model of temporomandibular hypernociception. J. Pharmacol. Exp. Ther. 2019, 370, 834–842.

[50]

Castilla-Casadiego, D. A.; Miranda-Munoz, K. A.; Roberts, J. L.; Crowell, A. D.; Gonzalez-Nino, D.; Choudhury, D.; Aparicio-Solis, F. O.; Servoss, S. L.; Rosales, A. M.; Prinz, G. et al. Biodegradable microneedle patch for delivery of meloxicam for managing pain in cattle. PLoS One 2022, 17, e0272169.

[51]

Zhao, Z. Q.; Zhang, B. L.; Chu, H. Q.; Liang, L.; Chen, B. Z.; Zheng, H.; Guo, X. D. A high-dosage microneedle for programmable lidocaine delivery and enhanced local long-lasting analgesia. Biomater. Adv. 2022, 133, 112620.

[52]

Kovaliov, M.; Li, S. H.; Korkmaz, E.; Cohen-Karni, D.; Tomycz, N.; Ozdoganlar, O. B.; Averick, S. Extended-release of opioids using fentanyl-based polymeric nanoparticles for enhanced pain management. RSC Adv. 2017, 7, 47904–47912.

[53]

Zhang, A. N.; Zeng, Y. N.; Xiong, B. R.; Jiang, X.; Jin, Y. L.; Wang, S. Y.; Yuan, Y. K.; Li, W.; Peng, M. A pH-responsive core–shell microneedle patch with self-monitoring capability for local long-lasting analgesia. Adv. Funct. Mater. 2024, 34, 2314048.

[54]

Song, K. C.; Hao, Y. M.; Tan, X. C.; Huang, H. D.; Wang, L. L.; Zheng, W. S. Microneedle-mediated delivery of ziconotide-loaded liposomes fused with exosomes for analgesia. J. Control. Release 2023, 356, 448–462.

[55]

Xie, X.; Pascual, C.; Lieu, C.; Oh, S.; Wang, J.; Zou, B. D.; Xie, J. L.; Li, Z. H.; Xie, J.; Yeomans, D. C. et al. Analgesic microneedle patch for neuropathic pain therapy. ACS Nano 2017, 11, 395–406.

Nano Research
Article number: 94907083
Cite this article:
Jiao J, Zhao ZQ, He YT, et al. Microneedle technology in analgesic therapy. Nano Research, 2025, 18(2): 94907083. https://doi.org/10.26599/NR.2025.94907083

176

Views

23

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 July 2024
Revised: 11 September 2024
Accepted: 17 October 2024
Published: 02 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return