PDF (15.7 MB)
Collect
Submit Manuscript
Research Article | Open Access

High-performance self-rectifying memristor array based on Pt/HfO2/Ta2O5−x/Ti structure for flexible electronics

Shang He1,2,3,§Xiaoyu Ye2,3,§Xiaojian Zhu2,3 ()Qing Zhong1Yulin Liu1Gang Li1Rui Liu1Xiaohan Meng2,3Yongguang Xiao1Shaoan Yan4 ()Minghua Tang1 ()
School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
School of Mechanical Engineering and Mechanics, Xiangtan University, Xiangtan 411105, China

§ Shang He and Xiaoyu Ye contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A high-performance self-rectifying memristor array based on Pt/HfO2/Ta2O5−x/Ti heterojunctions is presented. This array exhibits exceptional properties including forming-free operation, a high rectification ratio, long retention time, high endurance, etc. Fabricated on a flexible polyimide substrate, array demonstrates superior self-rectifying performance under bending conditions. It possesses noise filtering and data storage capabilities, enabling accurate processing and storage of signals transmitted by a pressure sensor array.

Abstract

Self-rectifying memristor (SRM) arrays hold tremendous potential in high-density data storage and energy-efficient neuromorphic computing. However, SRM arrays are mostly developed on rigid substrates and lack mechanical flexibility, limiting their applications in intelligent electronic skin, wearable technologies, etc. Here, we present a high-performance SRM array based on Pt/HfO2/Ta2O5−x/Ti heterojunctions, which can be fabricated on a flexible polyimides (PI) substrate and demonstrates exceptional memristive performance under bending conditions (bending radius (R) = 1 cm, rectifying ratio > 104, retention time > 104 s and endurance > 105 cycles). We demonstrate a 16 × 16 flexible memristor array offering noise filtering and data storage capabilities, which can be used to accurately process and store the signals transmitted by a pressure sensor array. This research represents an important advancement towards the realization of next-generation high-performance flexible electronics.

Electronic Supplementary Material

Download File(s)
7085_ESM.pdf (1.1 MB)

References

[1]

Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.

[2]

Huang, J. H.; Yang, S. D.; Tang, X.; Yang, L. L.; Chen, W. J.; Chen, Z. B.; Li, X. M.; Zeng, Z. P.; Tang, Z. K.; Gui, X. C. Flexible, transparent, and wafer-scale artificial synapse array based on TiO x /Ti3C2T x film for neuromorphic computing. Adv. Mater. 2023, 35, 2303737.

[3]

Liu, X. R.; Sun, C.; Ye, X. Y.; Zhu, X. J.; Hu, C.; Tan, H. W.; He, S.; Shao, M. J.; Li, R. W. Neuromorphic nanoionics for human–machine interaction: From materials to applications. Adv. Mater. 2024, 36, 2311472.

[4]

Xu, Z.; Li, Y. X.; Xia, Y.; Shi, C. Y.; Chen, S. J.; Ma, C. L.; Zhang, C.; Li, Y. Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 2024, 34, 2312658.

[5]

Zhang, C.; Li, Y.; Li, Z.; Jiang, Y. C.; Zhang, J. L.; Zhao, R.; Zou, J. Y.; Wang, Y. N.; Wang, K. B.; Ma, C. L. et al. Nanofiber architecture engineering implemented by electrophoretic-induced self-assembly deposition technology for flash-type memristors. ACS Appl. Mater. Interfaces 2022, 14, 3111–3120.

[6]

Shi, X. L.; Wang, L. J.; Lyu, W. Y.; Cao, T. Y.; Chen, W. Y.; Hu, B. X.; Chen, Z. G. Advancing flexible thermoelectrics for integrated electronics. Chem. Soc. Rev. 2024, 53, 9254–9305.

[7]

Zhu, M.; Shi, X. L.; Wu, H.; Liu, Q. F.; Chen, Z. G. Advances in Ag2S-based thermoelectrics for wearable electronics: Progress and perspective. Chem. Eng. J. 2023, 475, 146194.

[8]

Li, Y.; Ling, S. T.; He, R. Y.; Zhang, C.; Dong, Y.; Ma, C. L.; Jiang, Y. C.; Gao, J.; He, J. H.; Zhang, Q. C. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Res. 2023, 16, 11278–11287.

[9]

Cai, F. X.; Correll, J. M.; Lee, S. H.; Lim, Y.; Bothra, V.; Zhang, Z. Y.; Flynn, M. P.; Lu, W. D. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations. Nat. Electron. 2019, 2, 290–299.

[10]

Lanza, M.; Sebastian, A.; Lu, W. D.; Le Gallo, M.; Chang, M. F.; Akinwande, D.; Puglisi, F. M.; Alshareef, H. N.; Liu, M.; Roldan, J. B. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 2022, 376, eabj9979.

[11]

Li, C.; Hu, M.; Li, Y. N.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J. M.; Song, W. H.; Dávila, N.; Graves, C. E. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2017, 1, 52–59.

[12]

Avilov, V. I.; Tominov, R. V.; Vakulov, Z. E.; Zhavoronkov, L. G.; Smirnov, V. A. Titanium oxide artificial synaptic device: Nanostructure modeling and synthesis, memristive cross-bar fabrication, and resistive switching investigation. Nano Res. 2023, 16, 10222–10233.

[13]

Yan, S. A.; Zang, J. Y.; Xu, P.; Zhu, Y. F.; Li, G.; Chen, Q. L.; Chen, Z. J.; Zhang, Y.; Tang, M. H.; Zheng, X. J. Recent progress in ferroelectric synapses and their applications. Sci. China Mater. 2023, 66, 877–894.

[14]

Fu, T. D.; Fu, S.; Sun, L.; Gao, H. Y.; Yao, J. An effective sneak-path solution based on a transient-relaxation device. Adv. Mater. 2023, 35, 2207133.

[15]

Shi, L. Y.; Zheng, G. H.; Tian, B. B.; Dkhil, B.; Duan, C. G. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2020, 2, 1811–1827.

[16]

Huang, C. H.; Huang, J. S.; Lin, S. M.; Chang, W. Y.; He, J. H.; Chueh, Y. L. ZnO1− x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 2012, 6, 8407–8414.

[17]

Chen, P. Y.; Yu, S. M. Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 2015, 62, 4022–4028.

[18]

Cho, B.; Kim, T. W.; Song, S.; Ji, Y.; Jo, M.; Hwang, H.; Jung, G. Y.; Lee, T. Rewritable Switching of one diode-one resistor nonvolatile organic memory devices. Adv. Mater. 2010, 22, 1228–1232.

[19]

Ren, J. Z.; Liang, H.; Li, J. C.; Li, Y. C.; Mi, W.; Zhou, L. W.; Sun, Z.; Xue, S.; Cai, G. R.; Zhao, J. S. Polyelectrolyte bilayer-based transparent and flexible memristor for emulating synapses. ACS Appl. Mater. Interfaces 2022, 14, 14541–14549.

[20]

Kim, S. E.; Lee, J. G.; Ling, L.; Liu, S. E.; Lim, H. K.; Sangwan, V. K.; Hersam, M. C.; Lee, H. S. Sodium-doped titania self-rectifying memristors for crossbar array neuromorphic architectures. Adv. Mater. 2022, 34, 2106913.

[21]

Yao, Z. Z.; Pan, L.; Liu, L. Z.; Zhang, J. D.; Lin, Q. J.; Ye, Y. X.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 2019, 5, eaaw4515.

[22]

Ren, S. G.; Dong, A. W.; Yang, L.; Xue, Y. B.; Li, J. C.; Yu, Y. J.; Zhou, H. J.; Zuo, W. B.; Li, Y.; Cheng, W. M. et al. Self-rectifying memristors for three-dimensional in-memory computing. Adv. Mater. 2024, 36, 2307218.

[23]

Lu, C.; Meng, J. L.; Yu, J. J.; Song, J. R.; Wang, T. Y.; Zhu, H.; Sun, Q. Q.; Zhang, D. W.; Chen, L. Novel three-dimensional artificial neural network based on an eight-layer vertical memristor with an ultrahigh rectify ratio (> 107) and an ultrahigh nonlinearity (> 105) for neuromorphic computing. Nano Lett. 2024, 24, 2018–2024.

[24]

Zhang, H. J.; Jiang, B. Y.; Cheng, C. T.; Huang, B. J.; Zhang, H.; Chen, R.; Xu, J. Y.; Huang, Y. L.; Chen, H. D.; Pei, W. H. et al. A self-rectifying synaptic memristor array with ultrahigh weight potentiation linearity for a self-organizing-map neural network. Nano Lett. 2023, 23, 3107–3115.

[25]

Wang, T. Y.; Meng, J. L.; Rao, M. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020, 20, 4111–4120.

[26]

Saleem, A.; Kumar, D.; Singh, A.; Rajasekaran, S.; Tseng, T. Y. Oxygen vacancy transition in HfO x -based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 2022, 7, 2101208.

[27]

Kumar, D.; Li, H. R.; Das, U. K.; Syed, A. M.; El-Atab, N. Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 2023, 35, 2300446.

[28]

Kim, C. H. Self-rectifying DNTT memristors. IEEE Electron Device Lett. 2018, 39, 1736–1739.

[29]

Yoon, J. H.; Kim, K. M.; Song, S. J.; Seok, J. Y.; Yoon, K. J.; Kwon, D. E.; Park, T. H.; Kwon, Y. J.; Shao, X. L.; Hwang, C. S. Pt/Ta2O5/HfO2− x /Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 2015, 27, 3811–3816.

[30]

Ma, H. L.; Zhang, X. M.; Wu, F. C.; Luo, Q.; Gong, T. C.; Yuan, P.; Xu, X. X.; Liu, Y.; Zhao, S. J.; Zhang, K. P. et al. A self-rectifying resistive switching device based on HfO2/TaO x bilayer structure. IEEE Trans. Electron Devices 2019, 66, 924–928.

[31]

Meng, J. L.; Wang, T. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Ji, L.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 2021, 8, 538–546.

[32]

Yoon, J. H.; Song, S. J.; Yoo, I. H.; Seok, J. Y.; Yoon, K. J.; Kwon, D. E.; Park, T. H.; Hwang, C. S. Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2− x /TiN structure. Adv. Funct. Mater. 2014, 24, 5086–5095.

[33]

Sung, J. H.; Park, J. H.; Jeon, D. S.; Kim, D.; Yu, M. J.; Khot, A. C.; Dongale, T. D.; Kim, T. G. Retention enhancement through capacitance–dependent voltage division analysis in 3D stackable TaO x /HfO2-based selectorless memristor. Mater. Design 2021, 207, 109845.

[34]

Ni, R.; Yang, L.; Huang, X. D.; Ren, S. G.; Wan, T. Q.; Li, Y.; Miao, X. S. Controlled majority-inverter graph logic with highly nonlinear, self-rectifying memristor. IEEE Trans. Electron Devices 2021, 68, 4897–4902.

[35]

Moo, J. G. S.; Awaludin, Z.; Okajima, T.; Ohsaka, T. An XPS depth-profile study on electrochemically deposited TaO x . J. Solid State Electrochem. 2013, 17, 3115–3123.

[36]

Yang, Y. C.; Choi, S.; Lu, W. Oxide heterostructure resistive memory. Nano Lett. 2013, 13, 2908–2915.

[37]

Ghenzi, N.; Park, T. W.; Kim, S. S.; Kim, H. J.; Jang, Y. H.; Woo, K. S.; Hwang, C. S. Heterogeneous reservoir computing in second-order Ta2O5/HfO2 memristors. Nanoscale Horiz. 2024, 9, 427–437.

[38]

Kim, G.; Son, S.; Song, H. C.; Jeon, J. B.; Lee, J.; Cheong, W. H.; Choi, S.; Kim, K. M. Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware. Adv. Sci. 2023, 10, 2205654.

[39]

Wei, T. T.; Lu, Y. Y.; Zhang, F.; Tang, J. S.; Gao, B.; Yu, P.; Qian, H.; Wu, H. Q. Three-dimensional reconstruction of conductive filaments in HfO x -based memristor. Adv. Mater. 2023, 35, 2209925.

[40]

Gao, S.; Zeng, F.; Li, F.; Wang, M. J.; Mao, H. J.; Wang, G. Y.; Song, C.; Pan, F. Forming-free and self-rectifying resistive switching of the simple Pt/TaO x /n-Si structure for access device-free high-density memory application. Nanoscale 2015, 7, 6031–6038.

[41]

Li, J. C.; Ren, S. G.; Li, Y.; Yang, L.; Yu, Y. J.; Ni, R.; Zhou, H. J.; Bao, H.; He, Y. H.; Chen, J. et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 2023, 9, eadf7474.

[42]

Gao, B.; Lin, B. H.; Pang, Y. C.; Xu, F.; Lu, Y. Y.; Chiu, Y. C.; Liu, Z. W.; Tang, J. S.; Chang, M. F.; Qian, H. et al. Concealable physically unclonable function chip with a memristor array. Sci. Adv. 2022, 8, eabn7753.

[43]

Wang, R.; Shi, T.; Zhang, X. M.; Wei, J. S.; Lu, J.; Zhu, J. X.; Wu, Z. H.; Liu, Q.; Liu, M. Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization. Nat. Commun. 2022, 13, 2289.

[44]

Shen, Y. Q.; Zheng, W. W.; Zhu, K. C.; Xiao, Y. P.; Wen, C.; Liu, Y. W.; Jing, X.; Lanza, M. Variability and yield in H-BN-based memristive circuits: The role of each type of defect. Adv. Mater. 2021, 33, 2103656.

[45]

Park, S. O.; Jeong, H.; Park, J.; Bae, J.; Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 2022, 13, 2888.

[46]
Xu, X. X.; Luo, Q.; Gong, T. C.; Lv, H. B.; Long, S. B.; Liu, Q.; Chung, S. S.; Li, J.; Liu, M. Fully CMOS compatible 3D vertical RRAM with self-aligned self-selective cell enabling sub-5 nm scaling. In Proceedings of 2016 IEEE Symposium on VLSI Technology, Honolulu, USA, 2016, pp 1–2.
[47]

Yun, M. J.; Lee, D.; Kim, S.; Wenger, C.; Kim, H. D. A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory. Mater. Charact. 2021, 182, 111578.

[48]

Desai, T. R.; Goud, R. S. P.; Dongale, T. D.; Gurnani, C. Evaluation of nanostructured NiS2 thin films from a single-source precursor for flexible memristive devices. ACS Omega 2023, 8, 48873–48883.

[49]

Wu, C. J.; Li, X. L.; Xu, X. H.; Lee, B. W.; Chae, S. C.; Liu, C. L. Self-rectifying resistance switching memory based on a dynamic p–n junction. Nanotechnology 2021, 32, 085203.

[50]

Wang, M.; Tu, J. Q.; Huang, Z. C.; Wang, T.; Liu, Z. H.; Zhang, F. L.; Li, W. L.; He, K.; Pan, L.; Zhang, X. M. et al. Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv. Mater. 2022, 34, 2201962.

[51]

Xiao, Y. Y.; Jiang, B.; Zhang, Z. H.; Ke, S. W.; Jin, Y. Y.; Wen, X.; Ye, C. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323.

Nano Research
Article number: 94907085
Cite this article:
He S, Ye X, Zhu X, et al. High-performance self-rectifying memristor array based on Pt/HfO2/Ta2O5−x/Ti structure for flexible electronics. Nano Research, 2025, 18(2): 94907085. https://doi.org/10.26599/NR.2025.94907085
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return