Self-rectifying memristor (SRM) arrays hold tremendous potential in high-density data storage and energy-efficient neuromorphic computing. However, SRM arrays are mostly developed on rigid substrates and lack mechanical flexibility, limiting their applications in intelligent electronic skin, wearable technologies, etc. Here, we present a high-performance SRM array based on Pt/HfO2/Ta2O5−x/Ti heterojunctions, which can be fabricated on a flexible polyimides (PI) substrate and demonstrates exceptional memristive performance under bending conditions (bending radius (R) = 1 cm, rectifying ratio > 104, retention time > 104 s and endurance > 105 cycles). We demonstrate a 16 × 16 flexible memristor array offering noise filtering and data storage capabilities, which can be used to accurately process and store the signals transmitted by a pressure sensor array. This research represents an important advancement towards the realization of next-generation high-performance flexible electronics.
Chen, S.; Lou, Z.; Chen, D.; Shen, G. Z. An artificial flexible visual memory system based on an UV-motivated memristor. Adv. Mater. 2018, 30, 1705400.
Huang, J. H.; Yang, S. D.; Tang, X.; Yang, L. L.; Chen, W. J.; Chen, Z. B.; Li, X. M.; Zeng, Z. P.; Tang, Z. K.; Gui, X. C. Flexible, transparent, and wafer-scale artificial synapse array based on TiO x /Ti3C2T x film for neuromorphic computing. Adv. Mater. 2023, 35, 2303737.
Liu, X. R.; Sun, C.; Ye, X. Y.; Zhu, X. J.; Hu, C.; Tan, H. W.; He, S.; Shao, M. J.; Li, R. W. Neuromorphic nanoionics for human–machine interaction: From materials to applications. Adv. Mater. 2024, 36, 2311472.
Xu, Z.; Li, Y. X.; Xia, Y.; Shi, C. Y.; Chen, S. J.; Ma, C. L.; Zhang, C.; Li, Y. Organic frameworks memristor: An emerging candidate for data storage, artificial synapse, and neuromorphic device. Adv. Funct. Mater. 2024, 34, 2312658.
Zhang, C.; Li, Y.; Li, Z.; Jiang, Y. C.; Zhang, J. L.; Zhao, R.; Zou, J. Y.; Wang, Y. N.; Wang, K. B.; Ma, C. L. et al. Nanofiber architecture engineering implemented by electrophoretic-induced self-assembly deposition technology for flash-type memristors. ACS Appl. Mater. Interfaces 2022, 14, 3111–3120.
Shi, X. L.; Wang, L. J.; Lyu, W. Y.; Cao, T. Y.; Chen, W. Y.; Hu, B. X.; Chen, Z. G. Advancing flexible thermoelectrics for integrated electronics. Chem. Soc. Rev. 2024, 53, 9254–9305.
Zhu, M.; Shi, X. L.; Wu, H.; Liu, Q. F.; Chen, Z. G. Advances in Ag2S-based thermoelectrics for wearable electronics: Progress and perspective. Chem. Eng. J. 2023, 475, 146194.
Li, Y.; Ling, S. T.; He, R. Y.; Zhang, C.; Dong, Y.; Ma, C. L.; Jiang, Y. C.; Gao, J.; He, J. H.; Zhang, Q. C. A robust graphene oxide memristor enabled by organic pyridinium intercalation for artificial biosynapse application. Nano Res. 2023, 16, 11278–11287.
Cai, F. X.; Correll, J. M.; Lee, S. H.; Lim, Y.; Bothra, V.; Zhang, Z. Y.; Flynn, M. P.; Lu, W. D. A fully integrated reprogrammable memristor-CMOS system for efficient multiply-accumulate operations. Nat. Electron. 2019, 2, 290–299.
Lanza, M.; Sebastian, A.; Lu, W. D.; Le Gallo, M.; Chang, M. F.; Akinwande, D.; Puglisi, F. M.; Alshareef, H. N.; Liu, M.; Roldan, J. B. Memristive technologies for data storage, computation, encryption, and radio-frequency communication. Science 2022, 376, eabj9979.
Li, C.; Hu, M.; Li, Y. N.; Jiang, H.; Ge, N.; Montgomery, E.; Zhang, J. M.; Song, W. H.; Dávila, N.; Graves, C. E. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 2017, 1, 52–59.
Avilov, V. I.; Tominov, R. V.; Vakulov, Z. E.; Zhavoronkov, L. G.; Smirnov, V. A. Titanium oxide artificial synaptic device: Nanostructure modeling and synthesis, memristive cross-bar fabrication, and resistive switching investigation. Nano Res. 2023, 16, 10222–10233.
Yan, S. A.; Zang, J. Y.; Xu, P.; Zhu, Y. F.; Li, G.; Chen, Q. L.; Chen, Z. J.; Zhang, Y.; Tang, M. H.; Zheng, X. J. Recent progress in ferroelectric synapses and their applications. Sci. China Mater. 2023, 66, 877–894.
Fu, T. D.; Fu, S.; Sun, L.; Gao, H. Y.; Yao, J. An effective sneak-path solution based on a transient-relaxation device. Adv. Mater. 2023, 35, 2207133.
Shi, L. Y.; Zheng, G. H.; Tian, B. B.; Dkhil, B.; Duan, C. G. Research progress on solutions to the sneak path issue in memristor crossbar arrays. Nanoscale Adv. 2020, 2, 1811–1827.
Huang, C. H.; Huang, J. S.; Lin, S. M.; Chang, W. Y.; He, J. H.; Chueh, Y. L. ZnO1− x nanorod arrays/ZnO thin film bilayer structure: From homojunction diode and high-performance memristor to complementary 1D1R application. ACS Nano 2012, 6, 8407–8414.
Chen, P. Y.; Yu, S. M. Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 2015, 62, 4022–4028.
Cho, B.; Kim, T. W.; Song, S.; Ji, Y.; Jo, M.; Hwang, H.; Jung, G. Y.; Lee, T. Rewritable Switching of one diode-one resistor nonvolatile organic memory devices. Adv. Mater. 2010, 22, 1228–1232.
Ren, J. Z.; Liang, H.; Li, J. C.; Li, Y. C.; Mi, W.; Zhou, L. W.; Sun, Z.; Xue, S.; Cai, G. R.; Zhao, J. S. Polyelectrolyte bilayer-based transparent and flexible memristor for emulating synapses. ACS Appl. Mater. Interfaces 2022, 14, 14541–14549.
Kim, S. E.; Lee, J. G.; Ling, L.; Liu, S. E.; Lim, H. K.; Sangwan, V. K.; Hersam, M. C.; Lee, H. S. Sodium-doped titania self-rectifying memristors for crossbar array neuromorphic architectures. Adv. Mater. 2022, 34, 2106913.
Yao, Z. Z.; Pan, L.; Liu, L. Z.; Zhang, J. D.; Lin, Q. J.; Ye, Y. X.; Zhang, Z. J.; Xiang, S. C.; Chen, B. L. Simultaneous implementation of resistive switching and rectifying effects in a metal-organic framework with switched hydrogen bond pathway. Sci. Adv. 2019, 5, eaaw4515.
Ren, S. G.; Dong, A. W.; Yang, L.; Xue, Y. B.; Li, J. C.; Yu, Y. J.; Zhou, H. J.; Zuo, W. B.; Li, Y.; Cheng, W. M. et al. Self-rectifying memristors for three-dimensional in-memory computing. Adv. Mater. 2024, 36, 2307218.
Lu, C.; Meng, J. L.; Yu, J. J.; Song, J. R.; Wang, T. Y.; Zhu, H.; Sun, Q. Q.; Zhang, D. W.; Chen, L. Novel three-dimensional artificial neural network based on an eight-layer vertical memristor with an ultrahigh rectify ratio (> 107) and an ultrahigh nonlinearity (> 105) for neuromorphic computing. Nano Lett. 2024, 24, 2018–2024.
Zhang, H. J.; Jiang, B. Y.; Cheng, C. T.; Huang, B. J.; Zhang, H.; Chen, R.; Xu, J. Y.; Huang, Y. L.; Chen, H. D.; Pei, W. H. et al. A self-rectifying synaptic memristor array with ultrahigh weight potentiation linearity for a self-organizing-map neural network. Nano Lett. 2023, 23, 3107–3115.
Wang, T. Y.; Meng, J. L.; Rao, M. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Three-dimensional nanoscale flexible memristor networks with ultralow power for information transmission and processing application. Nano Lett. 2020, 20, 4111–4120.
Saleem, A.; Kumar, D.; Singh, A.; Rajasekaran, S.; Tseng, T. Y. Oxygen vacancy transition in HfO x -based flexible, robust, and synaptic Bi-layer memristor for neuromorphic and wearable applications. Adv. Mater. Technol. 2022, 7, 2101208.
Kumar, D.; Li, H. R.; Das, U. K.; Syed, A. M.; El-Atab, N. Flexible solution-processable black-phosphorus-based optoelectronic memristive synapses for neuromorphic computing and artificial visual perception applications. Adv. Mater. 2023, 35, 2300446.
Kim, C. H. Self-rectifying DNTT memristors. IEEE Electron Device Lett. 2018, 39, 1736–1739.
Yoon, J. H.; Kim, K. M.; Song, S. J.; Seok, J. Y.; Yoon, K. J.; Kwon, D. E.; Park, T. H.; Kwon, Y. J.; Shao, X. L.; Hwang, C. S. Pt/Ta2O5/HfO2− x /Ti resistive switching memory competing with multilevel NAND flash. Adv. Mater. 2015, 27, 3811–3816.
Ma, H. L.; Zhang, X. M.; Wu, F. C.; Luo, Q.; Gong, T. C.; Yuan, P.; Xu, X. X.; Liu, Y.; Zhao, S. J.; Zhang, K. P. et al. A self-rectifying resistive switching device based on HfO2/TaO x bilayer structure. IEEE Trans. Electron Devices 2019, 66, 924–928.
Meng, J. L.; Wang, T. Y.; He, Z. Y.; Chen, L.; Zhu, H.; Ji, L.; Sun, Q. Q.; Ding, S. J.; Bao, W. Z.; Zhou, P. et al. Flexible boron nitride-based memristor for in situ digital and analogue neuromorphic computing applications. Mater. Horiz. 2021, 8, 538–546.
Yoon, J. H.; Song, S. J.; Yoo, I. H.; Seok, J. Y.; Yoon, K. J.; Kwon, D. E.; Park, T. H.; Hwang, C. S. Highly uniform, electroforming-free, and self-rectifying resistive memory in the Pt/Ta2O5/HfO2− x /TiN structure. Adv. Funct. Mater. 2014, 24, 5086–5095.
Sung, J. H.; Park, J. H.; Jeon, D. S.; Kim, D.; Yu, M. J.; Khot, A. C.; Dongale, T. D.; Kim, T. G. Retention enhancement through capacitance–dependent voltage division analysis in 3D stackable TaO x /HfO2-based selectorless memristor. Mater. Design 2021, 207, 109845.
Ni, R.; Yang, L.; Huang, X. D.; Ren, S. G.; Wan, T. Q.; Li, Y.; Miao, X. S. Controlled majority-inverter graph logic with highly nonlinear, self-rectifying memristor. IEEE Trans. Electron Devices 2021, 68, 4897–4902.
Moo, J. G. S.; Awaludin, Z.; Okajima, T.; Ohsaka, T. An XPS depth-profile study on electrochemically deposited TaO x . J. Solid State Electrochem. 2013, 17, 3115–3123.
Yang, Y. C.; Choi, S.; Lu, W. Oxide heterostructure resistive memory. Nano Lett. 2013, 13, 2908–2915.
Ghenzi, N.; Park, T. W.; Kim, S. S.; Kim, H. J.; Jang, Y. H.; Woo, K. S.; Hwang, C. S. Heterogeneous reservoir computing in second-order Ta2O5/HfO2 memristors. Nanoscale Horiz. 2024, 9, 427–437.
Kim, G.; Son, S.; Song, H. C.; Jeon, J. B.; Lee, J.; Cheong, W. H.; Choi, S.; Kim, K. M. Retention secured nonlinear and self-rectifying analog charge trap memristor for energy-efficient neuromorphic hardware. Adv. Sci. 2023, 10, 2205654.
Wei, T. T.; Lu, Y. Y.; Zhang, F.; Tang, J. S.; Gao, B.; Yu, P.; Qian, H.; Wu, H. Q. Three-dimensional reconstruction of conductive filaments in HfO x -based memristor. Adv. Mater. 2023, 35, 2209925.
Gao, S.; Zeng, F.; Li, F.; Wang, M. J.; Mao, H. J.; Wang, G. Y.; Song, C.; Pan, F. Forming-free and self-rectifying resistive switching of the simple Pt/TaO x /n-Si structure for access device-free high-density memory application. Nanoscale 2015, 7, 6031–6038.
Li, J. C.; Ren, S. G.; Li, Y.; Yang, L.; Yu, Y. J.; Ni, R.; Zhou, H. J.; Bao, H.; He, Y. H.; Chen, J. et al. Sparse matrix multiplication in a record-low power self-rectifying memristor array for scientific computing. Sci. Adv. 2023, 9, eadf7474.
Gao, B.; Lin, B. H.; Pang, Y. C.; Xu, F.; Lu, Y. Y.; Chiu, Y. C.; Liu, Z. W.; Tang, J. S.; Chang, M. F.; Qian, H. et al. Concealable physically unclonable function chip with a memristor array. Sci. Adv. 2022, 8, eabn7753.
Wang, R.; Shi, T.; Zhang, X. M.; Wei, J. S.; Lu, J.; Zhu, J. X.; Wu, Z. H.; Liu, Q.; Liu, M. Implementing in-situ self-organizing maps with memristor crossbar arrays for data mining and optimization. Nat. Commun. 2022, 13, 2289.
Shen, Y. Q.; Zheng, W. W.; Zhu, K. C.; Xiao, Y. P.; Wen, C.; Liu, Y. W.; Jing, X.; Lanza, M. Variability and yield in H-BN-based memristive circuits: The role of each type of defect. Adv. Mater. 2021, 33, 2103656.
Park, S. O.; Jeong, H.; Park, J.; Bae, J.; Choi, S. Experimental demonstration of highly reliable dynamic memristor for artificial neuron and neuromorphic computing. Nat. Commun. 2022, 13, 2888.
Yun, M. J.; Lee, D.; Kim, S.; Wenger, C.; Kim, H. D. A nonlinear resistive switching behaviors of Ni/HfO2/TiN memory structures for self-rectifying resistive switching memory. Mater. Charact. 2021, 182, 111578.
Desai, T. R.; Goud, R. S. P.; Dongale, T. D.; Gurnani, C. Evaluation of nanostructured NiS2 thin films from a single-source precursor for flexible memristive devices. ACS Omega 2023, 8, 48873–48883.
Wu, C. J.; Li, X. L.; Xu, X. H.; Lee, B. W.; Chae, S. C.; Liu, C. L. Self-rectifying resistance switching memory based on a dynamic p–n junction. Nanotechnology 2021, 32, 085203.
Wang, M.; Tu, J. Q.; Huang, Z. C.; Wang, T.; Liu, Z. H.; Zhang, F. L.; Li, W. L.; He, K.; Pan, L.; Zhang, X. M. et al. Tactile near-sensor analogue computing for ultrafast responsive artificial skin. Adv. Mater. 2022, 34, 2201962.
Xiao, Y. Y.; Jiang, B.; Zhang, Z. H.; Ke, S. W.; Jin, Y. Y.; Wen, X.; Ye, C. A review of memristor: Material and structure design, device performance, applications and prospects. Sci. Technol. Adv. Mater. 2023, 24, 2162323.