Technical breakthrough of composite polymer electrolyte (CPE) is one of the key factors that determines the commercial process of the current solid-state lithium battery. However, high interface impedance limits its electrochemical performances. It is crucial to optimize the design of multiphase interfaces among different components in CPE for regulating Li+ transport. Herein, a multi-affinity self-assembled 12-crown-4-TFSI (12C4-TFSI) supramolecular nanolayer is introduced into poly(vinylidene difluoride)-Li6.75La3Zr1.75Ta0.25O12 (PVDF-LLZTO) CPE as interface modifier. As a result, enhanced Li+ conductivity of 4.29 × 10−4 S·cm−1, Li+ transfer number of 0.44, and stable electrochemical window voltage of 4.8 V vs. Li/Li+ at 30 °C are obtained. The symmetric Li||Li cell exhibits an improved critical current density (CCD) of 1.2 mA·cm−2 and steady cycling at 0.2 mA·cm−2 for over 850 h without visible voltage fluctuation. The assembled LiǁLiFePO4 coin solid-state cell delivers a high initial discharge capacity of 172.9 mAh·g−1 at 0.1 C, rate capability (up to 5.0 C) and outstanding cycling stability with a capacity retention of 87.2% after over 750 cycles at 1.0 C. The associated LiǁLiFePO4 pouch cell presents an initial specific discharge capacity of 112.3 mAh·g−1 and successfully runs 30 cycles with a final capacity of 101.8 mAh·g−1. This work offers a facile strategy to optimize multiphase interfaces of PVDF-LLZTO CPE for stable solid-state lithium battery.
Deng, Q.; Zhang, Q. M.; Chu, Y. Q.; Xu, Y. K.; You, S. Z.; Huang, K.; Yang, C. H.; Lu, J. Understanding improved stability of Co-free Ni-rich single crystal cathode materials by combined bulk and surface modifications. Mater. Today 2024, 74, 22–33.
Bi, Z. J.; Guo, X. X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater. 2022, 2, 200011.
Zhang, Q. M.; Deng, Q.; Zhong, W. T.; Li, J.; Wang, Z. M.; Dong, P. Y.; Huang, K.; Yang, C. H. Tungsten boride stabilized single-crystal LiNi0.83Co0.07Mn0.1O2 cathode for high energy density lithium-ion batteries: Performance and mechanisms. Adv. Funct. Mater. 2023, 33, 2301336.
Kong, M. J.; Wu, J. F. Nanometer scale lithium-ion conducting oxides: Li6.1Ga0.3La3Zr2O12 and Li0.3La0.57TiO3. Solid State Ionics 2024, 414, 116635.
Zhang, B. K.; Tan, R.; Yang, L. Y.; Zheng, J. X.; Zhang, K. C.; Mo, S. J.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018, 10, 139–159.
Dai, D. M.; Yang, L. F.; Zheng, S. M.; Niu, J.; Sun, Z.; Wang, B.; Yang, Y. F.; Li, B., Modified alginate dressing with high thermal stability as a new separator for Li-ion batteries. Chem. Commun. 2020, 56, 6149–6152.
Pei, F.; Wu, L.; Zhang, Y.; Liao, Y. Q.; Kang, Q.; Han, Y.; Zhang, H. W.; Shen, Y.; Xu, H. H.; Li, Z. et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 2024, 15, 351.
Li, J.; Yang, H.; Deng, Q.; Li, W. M.; Zhang, Q. M.; Zhang, Z. H.; Chu, Y. Q.; Yang, C. H. Stabilizing Ni-rich single-crystalline LiNi0.83Co0.07Mn0.10O2 cathodes using Ce/Gd Co-doped high-entropy composite surfaces. Angew. Chem., Int. Ed. 2024, 63, e202318042.
Li, B.; Wang, X. B.; Gao, Y. B.; Wang, B.; Qiu, J. X.; Cheng, X.; Dai, D. M. Improving rate performances of Li-rich layered oxide by the codoping of Sn and K ions. J. Materiomics 2019, 5, 149–155.
Lu, Z. Y.; Peng, L.; Rong, Y.; Wang, E. L.; Shi, R. H.; Yang, H. X.; Xu, Y. D.; Yang, R. Z.; Jin, C. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ. Mater. 2024, 7, e12498.
Rong, Y.; Lu, Z. Y.; Jin, C.; Xu, Y. D.; Peng, L.; Shi, R. H.; Gu, T. Y.; Lu, C. Y.; Yang, R. Z. Tailoring of Li/LATP-PEO Interface via a functional organic layer for high-performance solid lithium metal batteries. ACS Sustain. Chem. Eng. 2023, 11, 785–795.
Lu, Z. Y.; Liu, C. F.; Wang, E. L.; Yang, R. Z.; Yang, H. X.; Jin, C. Two-step strategy to optimize interfacial compatibility of polyether sulfone-Li6.75La3Zr1.75Ta0.25O12 composite polymer electrolytes with Li anode for solid lithium battery with a wide working temperature range. J. Power Sources 2024, 596, 234101.
Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.
Jiang, T. L.; He, P. G.; Wang, G. X.; Shen, Y.; Nan, C. W.; Fan, L. Z. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 2020, 10, 1903376.
Dai, D. M.; Zhou, X. X.; Yan, P. Y.; Zhang, Z. Z.; Wang, L.; Wu, C. H.; Li, H. W.; Li, W. T.; Jia, M. M.; Li, B. et al. Interconnected three-dimensional porous alginate-based gel electrolytes for lithium metal batteries. ACS Appl. Mater. Interfaces 2024, 16, 2428–2437.
Seong, W. M.; Kim, Y.; Manthiram, A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries. Chem. Mater. 2020, 32, 9479–9489.
Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 2018, 140, 6448–6455.
Jeong, W.; Park, S. S.; Yun, J.; Shin, H. R.; Moon, J.; Lee, J. W. Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability. Energy Storage Mater. 2023, 54, 543–552.
Deng, S. W.; Zhu, H. L.; Zheng, Z. Y.; Kong, Z. X.; Wang, Z. X.; Zhou, W.; Tang, R.; Wu, J. F.; Liu, J. L. Synergistically engineering grains and grain boundaries toward Li dendrite-free Li7La3Zr2O12. Nano Lett. 2024, 24, 9801–9807.
Yu, J.; Kwok, S. C. T.; Lu, Z. H.; Effat, M. B.; Lyu, Y. Q.; Yuen, M. M. F.; Ciucci, F. A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature. ChemElectroChem 2018, 5, 2873–2881.
Zhang, Q. M.; Wang, Y. Z.; Deng, Q.; Chu, Y. Q.; Dong, P. Y.; Chen, C. D.; Wang, Z. M.; Xia, Z. G.; Yang, C. H. In situ and real-time monitoring the chemical and thermal evolution of lithium-ion batteries with single-crystalline Ni-rich layered oxide cathode. Angew. Chem., Int. Ed. 2024, 63, e202401716.
Kuhnert, E.; Ladenstein, L.; Jodlbauer, A.; Slugovc, C.; Trimmel, G.; Wilkening, H. M. R.; Rettenwander, D. Lowering the interfacial resistance in Li6.4La3Zr1.4Ta0.6O12. poly(ethylene oxide) composite electrolytes. Cell Rep. Phys. Sci. 2020, 1, 100214.
Wu, Y. C.; Chao, M.; Lu, C. Y.; Xu, H. Y.; Zeng, K.; Li, D. C.; Yang, R. Z. Surface-functionalized Li1.3Al0.3Ti1.7(PO4)3 with synergetic silane coupling agent and ionic liquid modification for PEO-based all-solid-state lithium metal batteries. J. Power Sources 2024, 599, 234206.
Zhao, L.; Yu, X. N.; Jiao, J. Y.; Song, X.; Cheng, X.; Liu, M.; Wang, L. L.; Zheng, J. X.; Lv, W.; Zhong, G. M. et al. Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte. Cell Rep. Phys. Sci. 2023, 4, 101382.
Peng, L.; Lu, Z. Y.; Zhong, L.; Jian, J. J.; Rong, Y.; Yang, R. Z.; Xu, Y. D.; Jin, C. Enhanced ionic conductivity and interface compatibility of PVDF-LLZTO composite solid electrolytes by interfacial maleic acid modification. J. Colloid Interface Sci. 2022, 613, 368–375.
Tong, R. A.; Chen, L. H.; Shao, G.; Wang, H. L.; Wang, C. A. An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance. J. Power Sources 2021, 492, 229672.
Wang, Y.; Chen, Z.; Wu, Y. X.; Li, Y.; Yue, Z. Y.; Chen, M. H. PVDF-HFP/PAN/PDA@LLZTO composite solid electrolyte enabling reinforced safety and outstanding low-temperature performance for quasi-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2023, 15, 21526–21536.
Lu, Z. Y.; Guo, Y.; Zhang, S. W.; Wu, S. C.; Meng, R. W.; Hong, S.; Li, J. X.; Xue, H. Y.; Zhang, B. Y.; Fan, D. H. et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery. Adv. Mater. 2021, 33, 2101745.
Dillon, R. E. A.; Shriver, D. F. Ion transport in cryptand and crown ether lithium salt complexes. Chem. Mater. 1999, 11, 3296–3301.
Chen, J.; Deng, X. T.; Gao, Y. Y.; Zhao, Y. J.; Kong, X. P.; Rong, Q.; Xiong, J. Q.; Yu, D. M.; Ding, S. J. Multiple dynamic bonds-driven integrated cathode/polymer electrolyte for stable all-solid-state lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202307255.
Han, Q. Y.; Wang, S. Q.; Jiang, Z. Y.; Hu, X. C.; Wang, H. H. Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 20514–20521.
Shen, Y.; Deng, K. M.; Chen, Q. H.; Gao, G.; Li, L. Crowning lithium ions in hole-transport layer toward stable perovskite solar cells. Adv. Mater. 2022, 34, 2200978.
Yusim, Y.; Moryson, Y.; Seipp, K.; Sann, J.; Henss, A. Challenges in XPS analysis of PEO-LiTFSI-based solid electrolytes: How to overcome X-ray-induced photodecomposition. Batter. Supercaps 2024, 7, e202400161.
Whba, R.; Su'ait, M. S.; TianKhoon, L.; Ibrahim, S.; Mohamed, N. S.; Ahmad, A. In-situ UV cured acrylonitrile grafted epoxidized natural rubber (ACN- g-ENR)-LiTFSI solid polymer electrolytes for lithium-ion rechargeable batteries. React. Funct. Polym. 2021, 164, 104938.
Yu, C. H.; Cho, C. S.; Li, C. C. Well-dispersed garnet crystallites for applications in solid-state Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 11995–12005.
Sun, Y.; Zhan, X. W.; Hu, J. Z.; Wang, Y. K.; Gao, S.; Shen, Y. H.; Cheng, Y. T. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl. Mater. Interfaces 2019, 11, 12467–12475.
Zhang, S. S.; Li, Z.; Guo, Y.; Cai, L. R.; Manikandan, P.; Zhao, K. J.; Li, Y.; Pol, V. G. Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study. Chem. Eng. J. 2020, 400, 125996.
Xu, Y. N.; Wang, K.; Zhang, X. D.; Ma, Y. B.; Peng, Q. F.; Gong, Y.; Yi, S.; Guo, H.; Zhang, X.; Sun, X. Z. et al. Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 2023, 13, 2204377.
Fan, K. B.; Lai, X. X.; Zhang, Z. Q.; Chai, L. L.; Yang, Q. C.; He, G. H.; Liu, S.; Sun, L.; Zhao, Y.; Hu, Z. G. et al. Poly(vinylidene fluoride)-based dual-salt composite polymer electrolytes for superior room-temperature solid-state lithium batteries. J. Power Sources 2023, 580, 233342.
Luo, B.; Wu, J. T.; Zhang, M.; Zhang, Z. H.; Zhang, X. W.; Fang, Z. X.; Xu, Z. Q.; Wu, M. Q. Surface modification of garnet fillers with a polymeric sacrificial agent enables compatible interfaces of composite solid-state electrolytes. Chem. Sci. 2023, 14, 13067–13079.
Hu, J. K.; He, P. G.; Zhang, B. C.; Wang, B. Y.; Fan, L. Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020, 26, 283–289.
Lu, J.; Liu, Y. C.; Yao, P. H.; Ding, Z. Y.; Tang, Q. M.; Wu, J. W.; Ye, Z. R.; Huang, K.; Liu, X. J. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem. Eng. J. 2019, 367, 230–238.
Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.
Duan, T.; Cheng, H. W.; Sun, Q. C.; Liu, Y. B.; Nie, W.; Chu, Y. H.; Xu, Q.; Lu, X. G. Reinforcing interfacial compatibility of LLZTO/PVDF-HFP composite electrolytes by chemical interaction for solid-state lithium metal batteries. J. Power Sources 2024, 589, 233789.
Zhang, S. Q. Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 2020, 12, 158.
Zeng, F. Y.; Sun, Y. Y.; Hui, B.; Xia, Y. Z.; Zou, Y. H.; Zhang, X. L.; Yang, D. J. Three-dimensional porous alginate fiber membrane reinforced PEO-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 43805–43812.
Wu, M. J.; Song, J. P.; Lei, J. H.; Tang, H. L. An artificial interphase enables stable PVDF-based solid-state Li metal batteries. Nano Res. 2024, 17, 1482–1490.
Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 27304–27312.
Zhou, J. Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 2004, 166, 275–293.
Zhang, Q. M.; Chu, Y. Q.; Wu, J. X.; Dong, P. Y.; Deng, Q.; Chen, C. D.; Huang, K.; Yang, C. H.; Lu, J. Mitigating planar gliding in single-crystal nickel-rich cathodes through multifunctional composite surface engineering. Adv. Energy Mater. 2024, 14, 2303764.
Juan, J.; Fernández-Werner, L.; Jasen, P. V.; Bechthold, P.; Faccio, R.; González, E. A. Theoretical study of Li intercalation in TiO2(B) surfaces. Appl. Surf. Sci. 2020, 526, 146460.
Guo, Q.; Cheng, X. P.; Shi, Y. W.; Sheng, Z. M.; Chang, C. K. Bluish Li4Ti5O12 with enhanced rate performance. J. Alloys Compd. 2017, 710, 383–392.
Yang, B. B.; Deng, C. L.; Chen, N.; Zhang, F. L.; Hu, K. K.; Gui, B. S.; Zhao, L. Y.; Wu, F.; Chen, R. J. Super-ionic conductor soft filler promotes Li+ transport in integrated cathode-electrolyte for solid-state battery at room temperature. Adv. Mater. 2024, 36, 2403078.
Guan, S. D.; Wen, K. H.; Liang, Y.; Xue, C. J.; Liu, S. J.; Yu, J. Y.; Zhang, Z.; Wu, X. B.; Yuan, H. V.; Lin, Z. Y. et al. An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes. J. Mater. Chem. A 2022, 10, 24269–24279.
Pei, R. J.; Song, T. Y.; Sun, L. L.; Li, Y. F.; Yang, R. Stable composite electrolytes of PVDF modified by inorganic particles for solid-state lithium batteries. J. Am. Ceram. Soc. 2022, 105, 5262–5273.
Yeh, S. M.; Li, C. C. Enhancing Li+ transport efficiency in solid-state Li-ion batteries with a ceramic-array-based composite electrolyte. J. Mater. Chem. A 2023, 11, 24390–24402.
Pan, X. W.; Sun, J. W.; Jin, C.; Wang, Z. J.; Xiao, R. J.; Peng, L.; Shen, L. W.; Li, C.; Yang, R. Z. A flexible composite electrolyte membrane with ultrahigh LLZTO garnet content for quasi solid state Li-air batteries. Solid State Ionics 2020, 351, 115340.
Fritsch, C.; Zinkevich, T.; Indris, S.; Etter, M.; Baran, V.; Bergfeldt, T.; Knapp, M.; Ehrenberg, H.; Hansen, A. L. Garnet to hydrogarnet: Effect of post synthesis treatment on cation substituted LLZO solid electrolyte and its effect on Li ion conductivity. RSC Adv. 2021, 11, 30283–30294.
Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A. et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378–19392.
van Wüllen, L.; Echelmeyer, T.; Meyer, H. W.; Wilmer, D. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. Phys. Chem. Chem. Phys. 2007, 9, 3298–3303.
Wang, D. W.; Zhong, G. M.; Pang, W. K.; Guo, Z. P.; Li, Y. X.; McDonald, M. J.; Fu, R. Q.; Mi, J. X.; Yang, Y. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 2015, 27, 6650–6659.