AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (17.6 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A multi-affinity supramolecular nanolayer reinforced PVDF-LLZTO composite polymer electrolyte for stable solid-state lithium batteries

Changfei LiuSailong WangZhengyi LuJiaqing ZhaoYuchen WuChaojie RenRuizhi Yang( )Chao Jin( )
College of Energy, Soochow Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China
Show Author Information

Graphical Abstract

A multi-affinity 12C4-TFSI supramolecular nanolayer was introduced into the normal poly(vinylidene difluoride)-Li6.75La3Zr1.75Ta0.25O12 (PVDF-LLZTO) composite polymer electrolytes (CPEs). A reinforced electrochemical performances was achieved due to optimized interface contact among different components.

Abstract

Technical breakthrough of composite polymer electrolyte (CPE) is one of the key factors that determines the commercial process of the current solid-state lithium battery. However, high interface impedance limits its electrochemical performances. It is crucial to optimize the design of multiphase interfaces among different components in CPE for regulating Li+ transport. Herein, a multi-affinity self-assembled 12-crown-4-TFSI (12C4-TFSI) supramolecular nanolayer is introduced into poly(vinylidene difluoride)-Li6.75La3Zr1.75Ta0.25O12 (PVDF-LLZTO) CPE as interface modifier. As a result, enhanced Li+ conductivity of 4.29 × 10−4 S·cm−1, Li+ transfer number of 0.44, and stable electrochemical window voltage of 4.8 V vs. Li/Li+ at 30 °C are obtained. The symmetric Li||Li cell exhibits an improved critical current density (CCD) of 1.2 mA·cm−2 and steady cycling at 0.2 mA·cm−2 for over 850 h without visible voltage fluctuation. The assembled LiǁLiFePO4 coin solid-state cell delivers a high initial discharge capacity of 172.9 mAh·g−1 at 0.1 C, rate capability (up to 5.0 C) and outstanding cycling stability with a capacity retention of 87.2% after over 750 cycles at 1.0 C. The associated LiǁLiFePO4 pouch cell presents an initial specific discharge capacity of 112.3 mAh·g−1 and successfully runs 30 cycles with a final capacity of 101.8 mAh·g−1. This work offers a facile strategy to optimize multiphase interfaces of PVDF-LLZTO CPE for stable solid-state lithium battery.

Electronic Supplementary Material

Download File(s)
7087_ESM.pdf (1.4 MB)

References

[1]

Deng, Q.; Zhang, Q. M.; Chu, Y. Q.; Xu, Y. K.; You, S. Z.; Huang, K.; Yang, C. H.; Lu, J. Understanding improved stability of Co-free Ni-rich single crystal cathode materials by combined bulk and surface modifications. Mater. Today 2024, 74, 22–33.

[2]

Bi, Z. J.; Guo, X. X. Solidification for solid-state lithium batteries with high energy density and long cycle life. Energy Mater. 2022, 2, 200011.

[3]

Zhang, Q. M.; Deng, Q.; Zhong, W. T.; Li, J.; Wang, Z. M.; Dong, P. Y.; Huang, K.; Yang, C. H. Tungsten boride stabilized single-crystal LiNi0.83Co0.07Mn0.1O2 cathode for high energy density lithium-ion batteries: Performance and mechanisms. Adv. Funct. Mater. 2023, 33, 2301336.

[4]

Kong, M. J.; Wu, J. F. Nanometer scale lithium-ion conducting oxides: Li6.1Ga0.3La3Zr2O12 and Li0.3La0.57TiO3. Solid State Ionics 2024, 414, 116635.

[5]

Zhang, B. K.; Tan, R.; Yang, L. Y.; Zheng, J. X.; Zhang, K. C.; Mo, S. J.; Lin, Z.; Pan, F. Mechanisms and properties of ion-transport in inorganic solid electrolytes. Energy Storage Mater. 2018, 10, 139–159.

[6]

Dai, D. M.; Yang, L. F.; Zheng, S. M.; Niu, J.; Sun, Z.; Wang, B.; Yang, Y. F.; Li, B., Modified alginate dressing with high thermal stability as a new separator for Li-ion batteries. Chem. Commun. 2020, 56, 6149–6152.

[7]

Pei, F.; Wu, L.; Zhang, Y.; Liao, Y. Q.; Kang, Q.; Han, Y.; Zhang, H. W.; Shen, Y.; Xu, H. H.; Li, Z. et al. Interfacial self-healing polymer electrolytes for long-cycle solid-state lithium-sulfur batteries. Nat. Commun. 2024, 15, 351.

[8]

Li, J.; Yang, H.; Deng, Q.; Li, W. M.; Zhang, Q. M.; Zhang, Z. H.; Chu, Y. Q.; Yang, C. H. Stabilizing Ni-rich single-crystalline LiNi0.83Co0.07Mn0.10O2 cathodes using Ce/Gd Co-doped high-entropy composite surfaces. Angew. Chem., Int. Ed. 2024, 63, e202318042.

[9]

Li, B.; Wang, X. B.; Gao, Y. B.; Wang, B.; Qiu, J. X.; Cheng, X.; Dai, D. M. Improving rate performances of Li-rich layered oxide by the codoping of Sn and K ions. J. Materiomics 2019, 5, 149–155.

[10]

Lu, Z. Y.; Peng, L.; Rong, Y.; Wang, E. L.; Shi, R. H.; Yang, H. X.; Xu, Y. D.; Yang, R. Z.; Jin, C. Enhanced electrochemical properties and optimized Li+ transmission pathways of PEO/LLZTO-based composite electrolytes modified by supramolecular combination. Energy Environ. Mater. 2024, 7, e12498.

[11]

Rong, Y.; Lu, Z. Y.; Jin, C.; Xu, Y. D.; Peng, L.; Shi, R. H.; Gu, T. Y.; Lu, C. Y.; Yang, R. Z. Tailoring of Li/LATP-PEO Interface via a functional organic layer for high-performance solid lithium metal batteries. ACS Sustain. Chem. Eng. 2023, 11, 785–795.

[12]

Lu, Z. Y.; Liu, C. F.; Wang, E. L.; Yang, R. Z.; Yang, H. X.; Jin, C. Two-step strategy to optimize interfacial compatibility of polyether sulfone-Li6.75La3Zr1.75Ta0.25O12 composite polymer electrolytes with Li anode for solid lithium battery with a wide working temperature range. J. Power Sources 2024, 596, 234101.

[13]

Zhang, X.; Liu, T.; Zhang, S. F.; Huang, X.; Xu, B. Q.; Lin, Y. H.; Xu, B.; Li, L. L.; Nan, C. W.; Shen, Y. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 2017, 139, 13779–13785.

[14]

Jiang, T. L.; He, P. G.; Wang, G. X.; Shen, Y.; Nan, C. W.; Fan, L. Z. Solvent-free synthesis of thin, flexible, nonflammable garnet-based composite solid electrolyte for all-solid-state lithium batteries. Adv. Energy Mater. 2020, 10, 1903376.

[15]

Dai, D. M.; Zhou, X. X.; Yan, P. Y.; Zhang, Z. Z.; Wang, L.; Wu, C. H.; Li, H. W.; Li, W. T.; Jia, M. M.; Li, B. et al. Interconnected three-dimensional porous alginate-based gel electrolytes for lithium metal batteries. ACS Appl. Mater. Interfaces 2024, 16, 2428–2437.

[16]

Seong, W. M.; Kim, Y.; Manthiram, A. Impact of residual lithium on the adoption of high-nickel layered oxide cathodes for lithium-ion batteries. Chem. Mater. 2020, 32, 9479–9489.

[17]

Li, Y. T.; Chen, X.; Dolocan, A.; Cui, Z. M.; Xin, S.; Xue, L. G.; Xu, H. H.; Park, K.; Goodenough, J. B. Garnet electrolyte with an ultralow interfacial resistance for Li-metal batteries. J. Am. Chem. Soc. 2018, 140, 6448–6455.

[18]

Jeong, W.; Park, S. S.; Yun, J.; Shin, H. R.; Moon, J.; Lee, J. W. Tailoring grain boundary structures and chemistry of Li7La3Zr2O12 solid electrolytes for enhanced air stability. Energy Storage Mater. 2023, 54, 543–552.

[19]

Deng, S. W.; Zhu, H. L.; Zheng, Z. Y.; Kong, Z. X.; Wang, Z. X.; Zhou, W.; Tang, R.; Wu, J. F.; Liu, J. L. Synergistically engineering grains and grain boundaries toward Li dendrite-free Li7La3Zr2O12. Nano Lett. 2024, 24, 9801–9807.

[20]

Yu, J.; Kwok, S. C. T.; Lu, Z. H.; Effat, M. B.; Lyu, Y. Q.; Yuen, M. M. F.; Ciucci, F. A ceramic-PVDF composite membrane with modified interfaces as an ion-conducting electrolyte for solid-state lithium-ion batteries operating at room temperature. ChemElectroChem 2018, 5, 2873–2881.

[21]

Zhang, Q. M.; Wang, Y. Z.; Deng, Q.; Chu, Y. Q.; Dong, P. Y.; Chen, C. D.; Wang, Z. M.; Xia, Z. G.; Yang, C. H. In situ and real-time monitoring the chemical and thermal evolution of lithium-ion batteries with single-crystalline Ni-rich layered oxide cathode. Angew. Chem., Int. Ed. 2024, 63, e202401716.

[22]

Kuhnert, E.; Ladenstein, L.; Jodlbauer, A.; Slugovc, C.; Trimmel, G.; Wilkening, H. M. R.; Rettenwander, D. Lowering the interfacial resistance in Li6.4La3Zr1.4Ta0.6O12. poly(ethylene oxide) composite electrolytes. Cell Rep. Phys. Sci. 2020, 1, 100214.

[23]

Wu, Y. C.; Chao, M.; Lu, C. Y.; Xu, H. Y.; Zeng, K.; Li, D. C.; Yang, R. Z. Surface-functionalized Li1.3Al0.3Ti1.7(PO4)3 with synergetic silane coupling agent and ionic liquid modification for PEO-based all-solid-state lithium metal batteries. J. Power Sources 2024, 599, 234206.

[24]

Zhao, L.; Yu, X. N.; Jiao, J. Y.; Song, X.; Cheng, X.; Liu, M.; Wang, L. L.; Zheng, J. X.; Lv, W.; Zhong, G. M. et al. Building cross-phase ion transport channels between ceramic and polymer for highly conductive composite solid-state electrolyte. Cell Rep. Phys. Sci. 2023, 4, 101382.

[25]

Peng, L.; Lu, Z. Y.; Zhong, L.; Jian, J. J.; Rong, Y.; Yang, R. Z.; Xu, Y. D.; Jin, C. Enhanced ionic conductivity and interface compatibility of PVDF-LLZTO composite solid electrolytes by interfacial maleic acid modification. J. Colloid Interface Sci. 2022, 613, 368–375.

[26]

Tong, R. A.; Chen, L. H.; Shao, G.; Wang, H. L.; Wang, C. A. An integrated solvent-free modification and composite process of Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide) solid electrolytes: Enhanced compatibility and cycle performance. J. Power Sources 2021, 492, 229672.

[27]

Wang, Y.; Chen, Z.; Wu, Y. X.; Li, Y.; Yue, Z. Y.; Chen, M. H. PVDF-HFP/PAN/PDA@LLZTO composite solid electrolyte enabling reinforced safety and outstanding low-temperature performance for quasi-solid-state lithium metal batteries. ACS Appl. Mater. Interfaces 2023, 15, 21526–21536.

[28]

Lu, Z. Y.; Guo, Y.; Zhang, S. W.; Wu, S. C.; Meng, R. W.; Hong, S.; Li, J. X.; Xue, H. Y.; Zhang, B. Y.; Fan, D. H. et al. Crowning metal ions by supramolecularization as a general remedy toward a dendrite-free alkali-metal battery. Adv. Mater. 2021, 33, 2101745.

[29]

Dillon, R. E. A.; Shriver, D. F. Ion transport in cryptand and crown ether lithium salt complexes. Chem. Mater. 1999, 11, 3296–3301.

[30]

Chen, J.; Deng, X. T.; Gao, Y. Y.; Zhao, Y. J.; Kong, X. P.; Rong, Q.; Xiong, J. Q.; Yu, D. M.; Ding, S. J. Multiple dynamic bonds-driven integrated cathode/polymer electrolyte for stable all-solid-state lithium metal batteries. Angew. Chem., Int. Ed. 2023, 62, e202307255.

[31]

Han, Q. Y.; Wang, S. Q.; Jiang, Z. Y.; Hu, X. C.; Wang, H. H. Composite polymer electrolyte incorporating metal-organic framework nanosheets with improved electrochemical stability for all-solid-state Li metal batteries. ACS Appl. Mater. Interfaces 2020, 12, 20514–20521.

[32]

Shen, Y.; Deng, K. M.; Chen, Q. H.; Gao, G.; Li, L. Crowning lithium ions in hole-transport layer toward stable perovskite solar cells. Adv. Mater. 2022, 34, 2200978.

[33]

Yusim, Y.; Moryson, Y.; Seipp, K.; Sann, J.; Henss, A. Challenges in XPS analysis of PEO-LiTFSI-based solid electrolytes: How to overcome X-ray-induced photodecomposition. Batter. Supercaps 2024, 7, e202400161.

[34]

Whba, R.; Su'ait, M. S.; TianKhoon, L.; Ibrahim, S.; Mohamed, N. S.; Ahmad, A. In-situ UV cured acrylonitrile grafted epoxidized natural rubber (ACN- g-ENR)-LiTFSI solid polymer electrolytes for lithium-ion rechargeable batteries. React. Funct. Polym. 2021, 164, 104938.

[35]

Yu, C. H.; Cho, C. S.; Li, C. C. Well-dispersed garnet crystallites for applications in solid-state Li-S batteries. ACS Appl. Mater. Interfaces 2021, 13, 11995–12005.

[36]

Sun, Y.; Zhan, X. W.; Hu, J. Z.; Wang, Y. K.; Gao, S.; Shen, Y. H.; Cheng, Y. T. Improving ionic conductivity with bimodal-sized Li7La3Zr2O12 fillers for composite polymer electrolytes. ACS Appl. Mater. Interfaces 2019, 11, 12467–12475.

[37]

Zhang, S. S.; Li, Z.; Guo, Y.; Cai, L. R.; Manikandan, P.; Zhao, K. J.; Li, Y.; Pol, V. G. Room-temperature, high-voltage solid-state lithium battery with composite solid polymer electrolyte with in-situ thermal safety study. Chem. Eng. J. 2020, 400, 125996.

[38]

Xu, Y. N.; Wang, K.; Zhang, X. D.; Ma, Y. B.; Peng, Q. F.; Gong, Y.; Yi, S.; Guo, H.; Zhang, X.; Sun, X. Z. et al. Improved Li-ion conduction and (electro)chemical stability at garnet-polymer interface through metal-nitrogen bonding. Adv. Energy Mater. 2023, 13, 2204377.

[39]

Fan, K. B.; Lai, X. X.; Zhang, Z. Q.; Chai, L. L.; Yang, Q. C.; He, G. H.; Liu, S.; Sun, L.; Zhao, Y.; Hu, Z. G. et al. Poly(vinylidene fluoride)-based dual-salt composite polymer electrolytes for superior room-temperature solid-state lithium batteries. J. Power Sources 2023, 580, 233342.

[40]

Luo, B.; Wu, J. T.; Zhang, M.; Zhang, Z. H.; Zhang, X. W.; Fang, Z. X.; Xu, Z. Q.; Wu, M. Q. Surface modification of garnet fillers with a polymeric sacrificial agent enables compatible interfaces of composite solid-state electrolytes. Chem. Sci. 2023, 14, 13067–13079.

[41]

Hu, J. K.; He, P. G.; Zhang, B. C.; Wang, B. Y.; Fan, L. Z. Porous film host-derived 3D composite polymer electrolyte for high-voltage solid state lithium batteries. Energy Storage Mater. 2020, 26, 283–289.

[42]

Lu, J.; Liu, Y. C.; Yao, P. H.; Ding, Z. Y.; Tang, Q. M.; Wu, J. W.; Ye, Z. R.; Huang, K.; Liu, X. J. Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries. Chem. Eng. J. 2019, 367, 230–238.

[43]

Zhang, W. Q.; Nie, J. H.; Li, F.; Wang, Z. L.; Sun, C. W. A durable and safe solid-state lithium battery with a hybrid electrolyte membrane. Nano Energy 2018, 45, 413–419.

[44]

Duan, T.; Cheng, H. W.; Sun, Q. C.; Liu, Y. B.; Nie, W.; Chu, Y. H.; Xu, Q.; Lu, X. G. Reinforcing interfacial compatibility of LLZTO/PVDF-HFP composite electrolytes by chemical interaction for solid-state lithium metal batteries. J. Power Sources 2024, 589, 233789.

[45]

Zhang, S. Q. Suppressing Li dendrites via electrolyte engineering by crown ethers for lithium metal batteries. Nano-Micro Lett. 2020, 12, 158.

[46]

Zeng, F. Y.; Sun, Y. Y.; Hui, B.; Xia, Y. Z.; Zou, Y. H.; Zhang, X. L.; Yang, D. J. Three-dimensional porous alginate fiber membrane reinforced PEO-based solid polymer electrolyte for safe and high-performance lithium ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 43805–43812.

[47]

Wu, M. J.; Song, J. P.; Lei, J. H.; Tang, H. L. An artificial interphase enables stable PVDF-based solid-state Li metal batteries. Nano Res. 2024, 17, 1482–1490.

[48]

Li, W. W.; Sun, C. Z.; Jin, J.; Li, Y. P.; Chen, C. H.; Wen, Z. Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries. J. Mater. Chem. A 2019, 7, 27304–27312.

[49]

Zhou, J. Ionic conductivity of composite electrolytes based on oligo(ethylene oxide) and fumed oxides. Solid State Ionics 2004, 166, 275–293.

[50]

Zhang, Q. M.; Chu, Y. Q.; Wu, J. X.; Dong, P. Y.; Deng, Q.; Chen, C. D.; Huang, K.; Yang, C. H.; Lu, J. Mitigating planar gliding in single-crystal nickel-rich cathodes through multifunctional composite surface engineering. Adv. Energy Mater. 2024, 14, 2303764.

[51]

Juan, J.; Fernández-Werner, L.; Jasen, P. V.; Bechthold, P.; Faccio, R.; González, E. A. Theoretical study of Li intercalation in TiO2(B) surfaces. Appl. Surf. Sci. 2020, 526, 146460.

[52]

Guo, Q.; Cheng, X. P.; Shi, Y. W.; Sheng, Z. M.; Chang, C. K. Bluish Li4Ti5O12 with enhanced rate performance. J. Alloys Compd. 2017, 710, 383–392.

[53]

Yang, B. B.; Deng, C. L.; Chen, N.; Zhang, F. L.; Hu, K. K.; Gui, B. S.; Zhao, L. Y.; Wu, F.; Chen, R. J. Super-ionic conductor soft filler promotes Li+ transport in integrated cathode-electrolyte for solid-state battery at room temperature. Adv. Mater. 2024, 36, 2403078.

[54]

Guan, S. D.; Wen, K. H.; Liang, Y.; Xue, C. J.; Liu, S. J.; Yu, J. Y.; Zhang, Z.; Wu, X. B.; Yuan, H. V.; Lin, Z. Y. et al. An organic additive assisting with high ionic conduction and dendrite resistance of polymer electrolytes. J. Mater. Chem. A 2022, 10, 24269–24279.

[55]

Pei, R. J.; Song, T. Y.; Sun, L. L.; Li, Y. F.; Yang, R. Stable composite electrolytes of PVDF modified by inorganic particles for solid-state lithium batteries. J. Am. Ceram. Soc. 2022, 105, 5262–5273.

[56]

Yeh, S. M.; Li, C. C. Enhancing Li+ transport efficiency in solid-state Li-ion batteries with a ceramic-array-based composite electrolyte. J. Mater. Chem. A 2023, 11, 24390–24402.

[57]

Pan, X. W.; Sun, J. W.; Jin, C.; Wang, Z. J.; Xiao, R. J.; Peng, L.; Shen, L. W.; Li, C.; Yang, R. Z. A flexible composite electrolyte membrane with ultrahigh LLZTO garnet content for quasi solid state Li-air batteries. Solid State Ionics 2020, 351, 115340.

[58]

Fritsch, C.; Zinkevich, T.; Indris, S.; Etter, M.; Baran, V.; Bergfeldt, T.; Knapp, M.; Ehrenberg, H.; Hansen, A. L. Garnet to hydrogarnet: Effect of post synthesis treatment on cation substituted LLZO solid electrolyte and its effect on Li ion conductivity. RSC Adv. 2021, 11, 30283–30294.

[59]

Buschmann, H.; Dölle, J.; Berendts, S.; Kuhn, A.; Bottke, P.; Wilkening, M.; Heitjans, P.; Senyshyn, A.; Ehrenberg, H.; Lotnyk, A. et al. Structure and dynamics of the fast lithium ion conductor “Li7La3Zr2O12”. Phys. Chem. Chem. Phys. 2011, 13, 19378–19392.

[60]

van Wüllen, L.; Echelmeyer, T.; Meyer, H. W.; Wilmer, D. The mechanism of Li-ion transport in the garnet Li5La3Nb2O12. Phys. Chem. Chem. Phys. 2007, 9, 3298–3303.

[61]

Wang, D. W.; Zhong, G. M.; Pang, W. K.; Guo, Z. P.; Li, Y. X.; McDonald, M. J.; Fu, R. Q.; Mi, J. X.; Yang, Y. Toward understanding the lithium transport mechanism in garnet-type solid electrolytes: Li+ ion exchanges and their mobility at octahedral/tetrahedral sites. Chem. Mater. 2015, 27, 6650–6659.

Nano Research
Article number: 94907087
Cite this article:
Liu C, Wang S, Lu Z, et al. A multi-affinity supramolecular nanolayer reinforced PVDF-LLZTO composite polymer electrolyte for stable solid-state lithium batteries. Nano Research, 2025, 18(2): 94907087. https://doi.org/10.26599/NR.2025.94907087

320

Views

50

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 August 2024
Revised: 17 October 2024
Accepted: 18 October 2024
Published: 31 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return