PDF (17.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Biomass-derived 2D Pb0/Pb2+ dual-center-site catalysts for efficient 5-hydroxymethylfurfural electroreduction

Haoran Wu1Haishan Xu2Zhenbing Xie3 ()Runlu Yang1Xin Wang1Xinwei Chen2Liang Wu2Chongyin Zhang4()Weixia Zhu1 ()Yiyong Mai2 ()
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University, Shanghai 200240, China
Department of Chemistry, Tangshan Normal University, Tangshan 063000, China
Shanghai Aerospace Equipments Manufacturer Co., Ltd., Shanghai 200245, China
Show Author Information

Graphical Abstract

View original image Download original image
Electron-deficient Pb0/Pb2+ dual-center-site catalysts anchored on biomass-based carbon nanosheets were synthesized for efficient 5-hydroxymethylfurfural electroreduction to 2,5-bis(hydroxymethyl)furan. The high coverage of active hydrogen (H*) species and the synergistic effect of dual-center sites substantially reduced the reaction energy barrier of H* and 5-hydroxymethylfurfural (HMF) and accelerated HMF reduction kinetics.

Abstract

Using natural resources to construct electrocatalysts for biomass conversion and elucidating their catalytic mechanisms are of great significance, but have remained challenging. Here, a series of two-dimensional (2D) biomass-based Pb/PbO@C catalysts with Pb/PbO nanoparticles anchored on carbon nanosheets were synthesized using natural-derived humate as the precursor. By adjusting the carbonization temperature, an electron-deficient Pb0/Pb2+ dual-center-site catalyst can be achieved. The optimized Pb/PbO@C catalyst showed an excellent performance for the electrochemical hydrogenation of 5-hydroxymethylfurfural (HMF) to high value-added 2,5-bis(hydroxymethyl)furan (BHMF), with high Faradaic efficiency (FE: 91.9%) and selectivity (Sel: 89.7%), achieving comparable performance to those of the reported noble metal-based electrocatalysts. Mechanism study revealed that the electron-deficient Pb0/Pb2+ dual-center-site provided abundant Lewis acidic sites and promoted the dissociation of water to the active hydrogen (H*) species, thus enhancing the adsorption of HMF on Pb2+ sites and the coverage of H* species on Pb0 sites. The high coverage of H* species and the synergistic effect of dual-center sites substantially promoted the binding of H* and HMF to form H-HMF* and inhibited the recombination of H* species, thereby accelerating the reaction kinetics of HMF reduction.

Electronic Supplementary Material

Download File(s)
7089_ESM.pdf (3.9 MB)

References

[1]

Chen, D. X.; Ding, Y. X.; Cao, X.; Wang, L. Q.; Lee, H.; Lin, G. X.; Li, W. L.; Ding, G. H.; Sun, L. C. Highly efficient biomass upgrading by a Ni-Cu electrocatalyst featuring passivation of water oxidation activity. Angew. Chem., Int. Ed. 2023, 62, e202309478.

[2]

Mooraj, S.; Qi, Z.; Zhu, C.; Ren, J.; Peng, S. Y.; Liu, L.; Zhang, S. B.; Feng, S.; Kong, F. Y.; Liu, Y. F. et al. 3D printing of metal-based materials for renewable energy applications. Nano Res. 2021, 14, 2105–2132.

[3]

Tian, C.; Dorakhan, R.; Wicks, J.; Chen, Z.; Choi, K. S.; Singh, N.; Schaidle, J. A.; Holewinski, A.; Vojvodic, A.; Vlachos, D. G. et al. Progress and roadmap for electro-privileged transformations of bio-derived molecules. Nat. Catal. 2024, 7, 350–360.

[4]

Zhang, Y. E.; Zhu, W.; Fang, J. J.; Xu, Z. Y.; Xue, Y. R.; Liu, D.; Sui, R.; Lv, Q. Q.; Liu, X. R.; Wang, Y. S. et al. Defective Ni3S2 nanowires as highly active electrocatalysts for ethanol oxidative upgrading. Nano Res. 2022, 15, 2987–2993.

[5]

Sendeku, M. G.; Harrath, K.; Dajan, F. T.; Wu, B. L.; Hussain, S.; Gao, N.; Zhan, X. Y.; Yang, Y.; Wang, Z. X.; Chen, C. et al. Deciphering in- situ surface reconstruction in two-dimensional CdPS3 nanosheets for efficient biomass hydrogenation. Nat. Commun. 2024, 15, 5174.

[6]

Tian, C.; Yu, J. Q.; Zhou, D. J.; Ze, H.; Liu, H. Z.; Chen, Y. J.; Xia, R.; Ou, P. F.; Ni, W. Y.; Xie, K. et al. Reduction of 5-hydroxymethylfurfural to 2,5-bis(hydroxymethyl)furan at high current density using a Ga-doped AgCu: Cationomer hybrid electrocatalyst. Adv. Mater. 2024, 36, 2312778.

[7]

Zheng, Y. N.; Wang, L. Q.; Liu, H. Y.; Yang, J. Q.; Zhang, R.; Zhang, L.; Qiao, Z. A. A modular co-assembly strategy for ordered mesoporous perovskite oxides with abundant surface active sites. Angew. Chem., Int. Ed. 2022, 61, e202209038.

[8]

Deng, Q.; Hou, X. M.; Zhong, Y.; Zhu, J. W.; Wang, J.; Cai, J. X.; Zeng, Z. L.; Zou, J. J.; Deng, S. G.; Yoskamtorn, T. et al. 2D MOF with compact catalytic sites for the one-pot synthesis of 2,5-dimethylfuran from saccharides via tandem catalysis. Angew. Chem. 2022, 134, e202205453.

[9]

Duan, Y.; Zhang, C.; Deng, D. S.; Sui, D.; Gao, X. H.; Yang, Y. L. Hydrogenation of BHMF with controllable selectivity to tetrahydropyranone and 1-hydroxy-2,5-hexanedione under atmospheric H2 pressure. Green Chem. 2023, 25, 1823–1834.

[10]

Yuan, X.; Lee, K.; Schmidt, J. R.; Choi, K. S. Halide adsorption enhances electrochemical hydrogenolysis of 5-hydroxymethylfurfural by suppressing hydrogenation. J. Am. Chem. Soc. 2023, 145, 20473–20484.

[11]

Li, Y.; Jiao, Y. Q.; Yan, H. J.; Tian, C. G.; Wu, A. P.; Fu, H. G. Recent progress in synergistic electrocatalysis for generation of valuable products based on water cycle. Nano Res. 2023, 16, 6444–6476.

[12]

Chimentão, R. J.; Oliva, H.; Belmar, J.; Morales, K.; Mäki-Arvela, P.; Wärnå, J.; Murzin, D. Y.; Fierro, J. L. G.; Llorca, J.; Ruiz, D. Selective hydrodeoxygenation of biomass derived 5-hydroxymethylfurfural over silica supported iridium catalysts. Appl. Catal. B: Environ. 2019, 241, 270–283.

[13]

Kumar, R.; Lee, H. H.; Chen, E.; Du, Y. P.; Lin, C. Y.; Prasanseang, W.; Solos, T.; Choojun, K.; Sooknoi, T.; Xie, R. K. et al. Facile synthesis of the atomically dispersed hydrotalcite oxide supported copper catalysts for the selective hydrogenation of 5-hydroxymethylfurfural into 2,5-bis(hydroxymethyl)furan. Appl. Catal. B: Environ. 2023, 329, 122547.

[14]

Wu, Y. D.; Jiang, Y. M.; Chen, W.; Yue, X.; Dong, C. L.; Qiu, M. Y.; Nga, T. T. T.; Yang, M.; Xia, Z. C.; Xie, C. et al. Selective electroreduction of 5-hydroxymethylfurfural to dimethylfuran in neutral electrolytes via hydrogen spillover and adsorption configuration adjustment. Adv. Mater. 2024, 36, 2307799.

[15]

Li, J.; Ji, K. Y.; Li, B. Y.; Xu, M.; Wang, Y.; Zhou, H.; Shi, Q. J.; Duan, H. H. Rechargeable biomass battery for electricity storage/generation and concurrent valuable chemicals production. Angew. Chem., Int. Ed. 2023, 62, e202304852.

[16]

Xu, H.; Xu, G. X.; Huang, B. J.; Yan, J. B.; Wang, M.; Chen, L. S.; Shi, J. L. Zn-organic batteries for the semi-hydrogenation of biomass aldehyde derivatives and concurrently enhanced power output. Angew. Chem., Int. Ed. 2023, 62, e202218603.

[17]

You, B.; Jiang, N.; Liu, X.; Sun, Y. J. Simultaneous H2 generation and biomass upgrading in water by an efficient noble-metal-free bifunctional electrocatalyst. Angew. Chem., Int. Ed. 2016, 55, 9913–9917.

[18]

Wu, W. J.; Wang, Y. F.; Du, K. M.; Liu, Q. S.; Zhou, T.; Wei, N.; Liu, G. H.; Guo, J. Enhancing the performance of catalytic membranes for simultaneous degradation of dissolved organic phosphonates and phosphorous recovery: A fit-for-purpose loose nanofiltration design. Appl. Catal. B: Environ. Energy 2024, 354, 124118.

[19]

Yang, F.; Antonietti, M. Artificial humic acids: Sustainable materials against climate change. Adv. Sci. 2020, 7, 1902992.

[20]

Yang, F.; Zhang, S. S.; Song, J. P.; Du, Q.; Li, G. X.; Tarakina, N. V.; Antonietti, M. Synthetic humic acids solubilize otherwise insoluble phosphates to improve soil fertility. Angew. Chem., Int. Ed. 2019, 58, 18813–18816.

[21]

Klüpfel, L.; Piepenbrock, A.; Kappler, A.; Sander, M. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci. 2014, 7, 195–200.

[22]

Zha, K.; Xiong, Y.; Zhang, W. Q.; Tan, M. J.; Hu, W. X.; Lin, Z.; Cheng, P.; Lu, L.; Cai, K. Y.; Mi, B. B. et al. Waste to wealth: Near-infrared/pH dual-responsive copper-humic acid hydrogel films for bacteria-infected cutaneous wound healing. ACS Nano 2023, 17, 17199–17216.

[23]

Han, J.; Park, J.; Bak, S. M.; Son, S. B.; Gim, J.; Villa, C.; Hu, X. B.; Dravid, V. P.; Su, C. C.; Kim, Y. et al. New high-performance Pb-based nanocomposite anode enabled by wide-range Pb redox and zintl phase transition. Adv. Funct. Mater. 2021, 31, 2005362.

[24]

Lan, T.; Wu, P.; Yin, X. Y.; Zhao, Y. F.; Liao, J. L.; Wang, D. Q.; Liu, N. Rigidity and flexibility: Unraveling the role of fulvic acid in uranyl sorption on graphene oxide using molecular dynamics simulations. Environ. Sci. Technol. 2023, 57, 10339–10347.

[25]

Tana, T.; Han, P. F.; Brock, A. J.; Mao, X.; Sarina, S.; Waclawik, E. R.; Du, A. J.; Bottle, S. E.; Zhu, H. Y. Photocatalytic conversion of sugars to 5-hydroxymethylfurfural using aluminium(III) and fulvic acid. Nat. Commun. 2023, 14, 4609.

[26]

Dong, Y. T.; Zhang, Z. M.; Yan, W.; Hu, X. R.; Zhan, C. H.; Xu, Y.; Huang, X. Q. Pb-modified ultrathin RuCu nanoflowers for active, stable, and CO-resistant alkaline electrocatalytic hydrogen oxidation. Angew. Chem., Int. Ed. 2023, 62, e202311722.

[27]

Inaguma, Y.; Tanaka, K.; Tsuchiya, T.; Mori, D.; Katsumata, T.; Ohba, T.; Hiraki, K. I.; Takahashi, T.; Saitoh, H. Synthesis, structural transformation, thermal stability, valence state, and magnetic and electronic properties of PbNiO3 with perovskite- and LiNbO3-type structures. J. Am. Chem. Soc. 2011, 133, 16920–16929.

[28]

Li, J.; Xie, L. S.; Pu, Z. W.; Liu, C.; Yang, M. J.; Meng, Y. Y.; Han, B.; Bu, S. X.; Wang, Y. H.; Zhang, X. L. et al. The synergistic effect of pemirolast potassium on carrier management and strain release for high-performance inverted perovskite solar cells. Adv. Funct. Mater. 2023, 33, 2301956.

[29]

Du, Q.; Zhang, S. S.; Song, J. P.; Zhao, Y.; Yang, F. Activation of porous magnetized biochar by artificial humic acid for effective removal of lead ions. J. Hazard. Mater. 2020, 389, 122115.

[30]

Feng, Z. Y.; Zheng, Y. H.; Wang, H. S.; Feng, C. P.; Chen, N.; Wang, S. Z. Sodium humate based double network hydrogel for Cu and Pb removal. Chemosphere 2023, 313, 137558.

[31]

Ji, K. Y.; Xu, M.; Xu, S. M.; Wang, Y.; Ge, R. X.; Hu, X. Y.; Sun, X. M.; Duan, H. H. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209849.

[32]

Xiao, X. F.; Tian, X. C.; Li, J. P.; Yang, F.; Bai, R.; Zhao, F. Self-doping active sites in microbe-derived carbonaceous electrocatalysts for the oxygen reduction reaction performance. Nano Res. 2024, 17, 6803–6819.

[33]

Guo, Y. L.; Li, Y. Y.; Du, X. R.; Li, L.; Jiang, Q. K.; Qiao, B. T. Pd single-atom catalysts derived from strong metal-support interaction for selective hydrogenation of acetylene. Nano Res. 2022, 15, 10037–10043.

[34]

Conings, B.; Babayigit, A.; Boyen, H. G. Fire safety of lead halide perovskite photovoltaics. ACS Energy Lett. 2019, 4, 873–878.

[35]

Gao, P.; Xue, Z. H.; Zhang, S. N.; Xu, D.; Zhai, G. Y.; Li, Q. Y.; Chen, J. S.; Li, X. H. Schottky barrier-induced surface electric field boosts universal reduction of NO x in water to ammonia. Angew. Chem., Int. Ed. 2021, 60, 20711–20716.

[36]

Tao, L.; Wang, Y. Q.; Zou, Y. Q.; Zhang, N. N.; Zhang, Y. Q.; Wu, Y. J.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Charge transfer modulated activity of carbon-based electrocatalysts. Adv. Energy Mater. 2020, 10, 1901227.

[37]

Yan, Q. Q.; Yin, P.; Liang, H. W. Engineering the electronic interaction between metals and carbon supports for oxygen/hydrogen electrocatalysis. ACS Mater. Lett. 2021, 3, 1197–1212.

[38]

Lu, Y. X.; Dong, C. L.; Huang, Y. C.; Zou, Y. Q.; Liu, Z. J.; Liu, Y. B.; Li, Y. Y.; He, N. H.; Shi, J. Q.; Wang, S. Y. Identifying the geometric site dependence of spinel oxides for the electrooxidation of 5-hydroxymethylfurfural. Angew. Chem., Int. Ed. 2020, 59, 19215–19221.

[39]

Zhang, D. F.; Chen, J. X.; Hao, Z. J.; Jiao, L.; Ge, Q. F.; Fu, W. F.; Lv, X. J. Highly efficient electrochemical hydrogenation of acetonitrile to ethylamine for primary amine synthesis and promising hydrogen storage. Chem Catal. 2021, 1, 393–406.

[40]

Sanyal, U.; Yuk, S. F.; Koh, K.; Lee, M. S.; Stoerzinger, K.; Zhang, D. F.; Meyer, L. C.; Lopez-Ruiz, J. A.; Karkamkar, A.; Holladay, J. D. et al. Hydrogen bonding enhances the electrochemical hydrogenation of benzaldehyde in the aqueous phase. Angew. Chem., Int. Ed. 2021, 60, 290–296.

[41]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[42]

Zhang, W. F.; Qi, Y. B.; Zhao, Y.; Ge, W. X.; Dong, L.; Shen, J. H.; Jiang, H. L.; Li, C. Z. Rh-dispersed Cu nanowire catalyst for boosting electrocatalytic hydrogenation of 5-hydroxymethylfurfural. Sci. Bull. 2023, 68, 2190–2199.

[43]

Cao, X.; Ding, Y. X.; Chen, D. X.; Ye, W. T.; Yang, W. X.; Sun, L. C. Cluster-level heterostructure of PMo12/Cu for efficient and selective electrocatalytic hydrogenation of high-concentration 5-hydroxymethylfurfural. J. Am. Chem. Soc. 2024, 146, 25125–25136.

[44]

de Luna, G. S.; Sacco, A.; Hernandez, S.; Ospitali, F.; Albonetti, S.; Fornasari, G.; Benito, P. Insights into the electrochemical reduction of 5-hydroxymethylfurfural at high current densities. ChemSusChem 2022, 15, e202102504.

[45]

Xie, C.; Chen, W.; Du, S. Q.; Yan, D. F.; Zhang, Y. Q.; Chen, J.; Liu, B.; Wang, S. Y. In- situ phase transition of WO3 boosting electron and hydrogen transfer for enhancing hydrogen evolution on Pt. Nano Energy 2020, 71, 104653.

[46]

Yang, Y.; Xiong, Y.; Zeng, R.; Lu, X. Y.; Krumov, M.; Huang, X.; Xu, W. X.; Wang, H. S.; DiSalvo, F. J.; Brock, J. D. et al. Operando methods in electrocatalysis. ACS Catal. 2021, 11, 1136–1178.

[47]

Wu, H. R.; Chen, X. W.; Xu, H. S.; Yang, R. L.; Wang, X.; Chen, J. Y.; Xie, Z. B.; Wu, L.; Mai, Y. Insight into the mechanism of 5-hydroxymethylfurfural electroreduction to 2,5-bis(hydroxymethyl)furan over Cu anchored N-doped carbon nanosheets. Nano Res. 2024, 17, 7991–7999.

Nano Research
Article number: 94907089
Cite this article:
Wu H, Xu H, Xie Z, et al. Biomass-derived 2D Pb0/Pb2+ dual-center-site catalysts for efficient 5-hydroxymethylfurfural electroreduction. Nano Research, 2025, 18(2): 94907089. https://doi.org/10.26599/NR.2025.94907089
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return