PDF (25.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Decoding ripple formation in single-layer transition metal chalcogenide lateral heterojunctions towards novel optoelectronic properties

Haitao Yu1,2Mingzi Sun3Xiao Wu1,2Zhiguo Xing1,2Jiahao Kou1,2Shipeng Liang1,2Bolong Huang1,2,3,4 ()Zhong Lin Wang1,2,5()
CAS Center for Excellence in Nanoscience, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong 999077, China
Research Centre for Carbon-Strategic Catalysis, The Hong Kong Polytechnic University, Hong Kong 999077, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
Show Author Information

Graphical Abstract

View original image Download original image
This work systematically explores the transition metal dichalcogenides (TMDCs) lateral heterojunctions with three types of ripples (unilateral, decaying, and bilateral ripples) from the computational perspective for the first time. The ripple formation process has been classified into different stages and its influences on different optoelectronic properties have been demonstrated, which is highly critical for achieving advanced photoelectric devices in broad applications.

Abstract

For the ultrathin two-dimensional (2D) materials and lateral heterojunction, the formation of unstable but elastic ripples is commonly observed but is rarely studied, especially their correlations with different material properties. To fill the knowledge gap in this field, this work systematically explores transition metal dichalcogenides (TMDCs) in a single component and lateral heterojunction with a series of ripple structures. The ripple formation energy is quantitatively classified into the initial elastic strain stage and fracture threshold stage based on Fermi-like distribution. Electronic structures reveal that the formation of ripples is accompanied by electron accumulations from flat surfaces to ripples. By comparing the unilateral, decaying, and bilateral ripples in 2D lateral heterojunction, we confirm that Fermi-like distribution is still valid regardless of the shape of the ripples, where the thermodynamic and electronic properties are modulated by ripples-induced uneven strain. The main features of optical properties are not affected while the sensitivity to ripple-induced strains is distinguished. More importantly, the phonon properties further demonstrate the potential of ripples in promoting thermal conductivity, which are strongly correlated with the optical branch of anion vibrations. This work provides important theoretical guidance for the design and optimization of high-performance optoelectronic devices based on TMDC heterojunctions.

Electronic Supplementary Material

Download File(s)
7091_ESM.pdf (5.4 MB)

References

[1]

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

[2]

Wang, X. M.; Lan, S. F. Optical properties of black phosphorus. Adv. Opt. Photonics 2016, 8, 618–655.

[3]

Wei, Y.; Zhang, P.; Soomro, R. A.; Zhu, Q. Z.; Xu, B. Advances in the synthesis of 2D MXenes. Adv. Mater. 2021, 33, 2103147.

[4]

Zhang, Y. F.; Lv, Q.; Wang, H. D.; Zhao, S. Y.; Xiong, Q. H.; Lv, R. T.; Zhang, X. Simultaneous electrical and thermal rectification in a monolayer lateral heterojunction. Science 2022, 378, 169–175.

[5]

Pandey, M.; Pandey, C.; Ahuja, R.; Kumar, R. Straining techniques for strain engineering of 2D materials towards flexible straintronic applications. Nano Energy 2023, 109, 108278.

[6]

Wada, N.; Pu, J.; Takaguchi, Y.; Zhang, W. J.; Liu, Z.; Endo, T.; Irisawa, T.; Matsuda, K.; Miyauchi, Y.; Takenobu, T. et al. Efficient and chiral electroluminescence from in-plane heterostructure of transition metal dichalcogenide monolayers. Adv. Funct. Mater. 2022, 32, 2203602.

[7]

Zhang, Z. W.; Huang, Z. W.; Li, J.; Wang, D.; Lin, Y.; Yang, X. D.; Liu, H.; Liu, S.; Wang, Y. L.; Li, B. et al. Endoepitaxial growth of monolayer mosaic heterostructures. Nat. Nanotechnol. 2022, 17, 493–499.

[8]

Zhu, J. T.; Li, W.; Huang, R.; Ma, L.; Sun, H. M.; Choi, J. H.; Zhang, L. Q.; Cui, Y.; Zou, G. F. One-pot selective epitaxial growth of large WS2/MoS2 lateral and vertical heterostructures. J. Am. Chem. Soc. 2020, 142, 16276–16284.

[9]

Pomerantseva, E.; Gogotsi, Y. Two-dimensional heterostructures for energy storage. Nat. Energy 2017, 2, 17089.

[10]

Rhodes, D.; Chae, S. H.; Ribeiro-Palau, R.; Hone, J. Disorder in van der Waals heterostructures of 2D materials. Nat. Mater. 2019, 18, 541–549.

[11]

Duan, X. D.; Wang, C.; Shaw, J. C.; Cheng, R.; Chen, Y.; Li, H. L.; Wu, X. P.; Tang, Y.; Zhang, Q. L.; Pan, A. L. et al. Lateral epitaxial growth of two-dimensional layered semiconductor heterojunctions. Nat. Nanotechnol. 2014, 9, 1024–1030.

[12]

Han, Y. M.; Nguyen, K.; Cao, M.; Cueva, P.; Xie, S. E.; Tate, M. W.; Purohit, P.; Gruner, S. M.; Park, J.; Muller, D. A. Strain mapping of two-dimensional heterostructures with subpicometer precision. ">Nano Lett. 2018, 18, 3746–3751.

[13]

Zhou, W.; Zhang, Y. Y.; Chen, J. Y.; Li, D. D.; Zhou, J. D.; Liu, Z.; Chisholm, M. F.; Pantelides, S. T.; Loh, K. P. Dislocation-driven growth of two-dimensional lateral quantum-well superlattices. Sci. Adv. 2018, 4, eaap9096.

[14]

Wang, Y. N.; Gao, X.; Yang, K. N.; Gu, P. F.; Lu, X.; Zhang, S. H.; Gao, Y. C.; Ren, N. J.; Dong, B. J.; Jiang, Y. H. et al. Quantum Hall phase in graphene engineered by interfacial charge coupling. Nat. Nanotechnol. 2022, 17, 1272–1279.

[15]

He, Q. L.; Liu, H. C.; He, M. Q.; Lai, Y. H.; He, H. T.; Wang, G.; Law, K. T.; Lortz, R.; Wang, J. N.; Sou, I. K. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 2014, 5, 4247.

[16]

Gibertini, M.; Koperski, M.; Morpurgo, A. F.; Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 2019, 14, 408–419.

[17]

Novoselov, K. S.; Mishchenko, A.; Carvalho, A.; Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439.

[18]

Xie, S. E.; Tu, L. J.; Han, Y. M.; Huang, L. J.; Kang, K.; Lao, K. U.; Poddar, P.; Park, C.; Muller, D. A.; DiStasio, R. A. Jr. et al. Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 2018, 359, 1131–1136.

[19]

Tian, X. Z.; Yan, X. X.; Varnavides, G.; Yuan, Y. K.; Kim, D. S.; Ciccarino, C. J.; Anikeeva, P.; Li, M. Y.; Li, L. J.; Narang, P. et al. Capturing 3D atomic defects and phonon localization at the 2D heterostructure interface. Sci. Adv. 2021, 7, eabi6699.

[20]

Tian, X. Z.; Kim, D. S.; Yang, S. Z.; Ciccarino, C. J.; Gong, Y. J.; Yang, Y.; Yang, Y.; Duschatko, B.; Yuan, Y. K.; Ajayan, P. M. et al. Correlating the three-dimensional atomic defects and electronic properties of two-dimensional transition metal dichalcogenides. Nat. Mater. 2020, 19, 867–873.

[21]

Herbig, C.; Zhang, C. X.; Mujid, F.; Xie, S. E.; Pedramrazi, Z.; Park, J.; Crommie, M. F. Local electronic properties of coherent single-layer WS2/WSe2 lateral heterostructures. Nano Lett. 2021, 21, 2363–2369.

[22]

Sun, Y. G.; Choi, W. M.; Jiang, H. Q.; Huang, Y. Y.; Rogers, J. A. Controlled buckling of semiconductor nanoribbons for stretchable electronics. Nat. Nanotechnol. 2006, 1, 201–207.

[23]

Zhong, Y.; Zhang, L. N.; Park, J. H.; Cruz, S.; Li, L.; Guo, L.; Kong, J.; Wang, E. N. A unified approach and descriptor for the thermal expansion of two-dimensional transition metal dichalcogenide monolayers. Sci. Adv. 2022, 8, eabo3783.

[24]

Kum, H.; Lee, D.; Kong, W.; Kim, H.; Park, Y.; Kim, Y.; Baek, Y.; Bae, S. H.; Lee, K.; Kim, J. Epitaxial growth and layer-transfer techniques for heterogeneous integration of materials for electronic and photonic devices. Nat. Electron. 2019, 2, 439–450.

[25]

Sun, M. Z.; Wu, T.; Huang, B. L. Anion charge density disturbance induces in-plane instabilities within 2D lateral heterojunction of TMD: An atomic view. Nano Energy 2020, 70, 104484.

[26]

Zhang, Z. W.; Chen, P.; Duan, X. D.; Zang, K. T.; Luo, J.; Duan, X. F. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 2017, 357, 788–792.

[27]

Li, J.; Yang, X. D.; Liu, Y.; Huang, B. L.; Wu, R. X.; Zhang, Z. W.; Zhao, B.; Ma, H. F.; Dang, W. Q.; Wei, Z. et al. General synthesis of two-dimensional van der Waals heterostructure arrays. Nature 2020, 579, 368–374.

[28]

Zhang, C. D.; Li, M. Y.; Tersoff, J.; Han, Y. M.; Su, Y. S.; Li, L. J.; Muller, D. A.; Shih, C. K. Strain distributions and their influence on electronic structures of WSe2–MoS2 laterally strained heterojunctions. Nat. Nanotechnol. 2018, 13, 152–158.

[29]

Ghosh, R.; Papnai, B.; Chen, Y. S.; Yadav, K.; Sankar, R.; Hsieh, Y. P.; Hofmann, M.; Chen, Y. F. Exciton manipulation for enhancing photoelectrochemical hydrogen evolution reaction in wrinkled 2D heterostructures. Adv. Mater. 2023, 35, 2210746.

[30]

Li, M. Y.; Shi, Y. M.; Cheng, C. C.; Lu, L. S.; Lin, Y. C.; Tang, H. L.; Tsai, M. L.; Chu, C. W.; Wei, K. H.; He, J. H. et al. Epitaxial growth of a monolayer WSe2–MoS2 lateral p-n junction with an atomically sharp interface. Science 2015, 349, 524–528.

[31]

Chaurasiya, R.; Dixit, A.; Pandey, R. Strain-mediated stability and electronic properties of WS2, Janus WSSe and WSe2 monolayers. Superlattices Microstruct. 2018, 122, 268–279.

[32]

Wang, F.; Li, S. H.; Bissett, M. A.; Kinloch, I. A.; Li, Z. L.; Young, R. J. Strain engineering in monolayer WS2 and WS2 nanocomposites. 2D Mater. 2020, 7, 045022.

[33]

Tang, M. C.; Zhang, D. Z.; Wang, D. Y.; Deng, J.; Kong, D. T.; Zhang, H. Performance prediction of 2D vertically stacked MoS2–WS2 heterostructures base on first-principles theory and Pearson correlation coefficient. Appl. Surf. Sci. 2022, 596, 153498.

[34]

Yu, H. T.; Sun, M. Z.; Wu, X.; Chan, C. H.; Huang, B. L.; Wang, Z. L. Atomscopic of ripple origins for two-dimensional monolayer transition metal dichalcogenides. Nano Res. 2024, 17, 2136–2144.

[35]

Li, J. L.; Duan, H. M.; Zeng, B. W.; Jing, Q.; Cao, B. B.; Chen, F. J.; Long, M. Q. Strain-induced band structure modulation in hexagonal boron phosphide/blue phosphorene vdW heterostructure. J. Phys. Chem. C 2018, 122, 26120–26129.

[36]

Wu, T.; Sun, M. Z.; Huang, B. L. Probing the irregular lattice strain-induced electronic structure variations on late transition metals for boosting the electrocatalyst activity. Small 2020, 16, e2002434.

[37]

Hu, S.; Lozada-Hidalgo, M.; Wang, F. C.; Mishchenko, A.; Schedin, F.; Nair, R. R.; Hill, E. W.; Boukhvalov, D. W.; Katsnelson, M. I.; Dryfe, R. A. et al. Proton transport through one-atom-thick crystals. Nature 2014, 516, 227–230.

[38]

Wahab, O. J.; Daviddi, E.; Xin, B.; Sun, P. Z.; Griffin, E.; Colburn, A. W.; Barry, D.; Yagmurcukardes, M.; Peeters, F. M.; Geim, A. K. et al. Proton transport through nanoscale corrugations in two-dimensional crystals. Nature 2023, 620, 782–786.

[39]

Kumar, A.; Ahluwalia, P. K. Mechanical strain dependent electronic and dielectric properties of two-dimensional honeycomb structures of MoX2 (X = S, Se, Te). Phys. B: Condens. Matter 2013, 419, 66–75.

[40]
Shi, D.; Guo, Z.; Bedford, N. 4-Semiconductor quantum dots. In Nanomaterials and Devices. Shi, D.; Guo, Z.; Bedford, N., Eds.; Elsevier: Amsterdam, 2015; pp 83–104.
[41]

Lau, K. W.; Calvin; Gong, Z. R.; Yu, H. Y.; Yao, W. Interface excitons at lateral heterojunctions in monolayer semiconductors; Phys. Rev. B 2018, 98, 115427.

[42]

Jiang, Y.; Chen, S. L.; Zheng, W. H.; Zheng, B. Y.; Pan, A. L. Interlayer exciton formation, relaxation, and transport in TMD van der Waals heterostructures. Light: Sci. Appl. 2021, 10, 72.

[43]

Calman, E. V.; Fogler, M. M.; Butov, L. V.; Hu, S.; Mishchenko, A.; Geim, A. K. Indirect excitons in van der Waals heterostructures at room temperature. Nat. Commun. 2018, 9, 1895.

[44]

Song, B. K.; Gu, H. G.; Fang, M. S.; Chen, X. G.; Jiang, H.; Wang, R. Y.; Zhai, T. Y.; Ho, Y. T.; Liu, S. Y. Layer-dependent dielectric function of wafer-scale 2D MoS2. Adv. Opt. Mater. 2019, 7, 1801250.

[45]

Tikuišis, K. K.; Dubroka, A.; Uhlířová, K.; Speck, F.; Seyller, T.; Losurdo, M.; Orlita, M.; Veis, M. Dielectric function of epitaxial quasi-freestanding monolayer graphene on Si-face 6H-SiC in a broad spectral range. Phys. Rev. Mater. 2023, 7, 044201.

[46]

Carrascoso, F.; Li, H.; Obrero-Perez, J. M.; Aparicio, F. J.; Borras, A.; Island, J. O.; Barranco, A.; Castellanos-Gomez, A. Improved strain engineering of 2D materials by adamantane plasma polymer encapsulation. npj 2D Mater. Appl. 2023, 7, 24.

[47]

Çakıroğlu, O.; Island, J. O.; Xie, Y.; Frisenda, R.; Castellanos-Gomez, A. An automated system for strain engineering and straintronics of 2D materials. Adv. Mater. Technol. 2023, 8, 2201091.

[48]

Lin, P.; Zhu, L. P.; Li, D.; Xu, L.; Pan, C. F.; Wang, Z. L. Piezo-phototronic effect for enhanced flexible MoS2/WSe2 van der Waals photodiodes. Adv. Funct. Mater. 2018, 28, 1802849.

[49]

Jiang, D. T.; Liu, Z. Y.; Xiao, Z.; Qian, Z. F.; Sun, Y. L.; Zeng, Z. Y.; Wang, R. H. Flexible electronics based on 2D transition metal dichalcogenides. J. Mater. Chem. A 2022, 10, 89–121.

[50]

Sheng, H. H.; Long, H. X.; Zou, G. Z.; Bai, D. M.; Zhang, J. T.; Wang, J. L. Magnetic and phonon transport properties of two-dimensional room-temperature ferromagnet VSe2. J. Mater. Sci. 2021, 56, 15844–15858.

[51]

Lai, J. M.; Farooq, M. U.; Sun, Y. J.; Tan, P. H.; Zhang, J. Multiphonon process in Mn-doped ZnO nanowires. Nano Lett. 2022, 22, 5385–5391.

[52]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

[53]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[54]

Hasnip, P. J.; Pickard, C. J. Electronic energy minimisation with ultrasoft pseudopotentials. Comput. Phys. Commun. 2006, 174, 24–29.

[55]

Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 1992, 46, 6671–6687.

[56]

Head, J. D.; Zerner, M. C. A broyden-fletcher-goldfarb-shanno optimization procedure for molecular geometries. Chem. Phys. Lett. 1985, 122, 264–270.

[57]

Probert, M. I. J.; Payne, M. C. Improving the convergence of defect calculations in supercells: An ab initio study of the neutral silicon vacancy. Phys. Rev. B 2003, 67, 075204.

Nano Research
Article number: 94907091
Cite this article:
Yu H, Sun M, Wu X, et al. Decoding ripple formation in single-layer transition metal chalcogenide lateral heterojunctions towards novel optoelectronic properties. Nano Research, 2025, 18(2): 94907091. https://doi.org/10.26599/NR.2025.94907091
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return