AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

CO adsorption, activation, and oxidation on CeO2(111)-supported Fe model catalyst surfaces

Xingwang Cheng1,§Yi Tu1,§Dongling Zhang1Dong Han1Luchao Huang1Jun Hu1Honghe Ding1Qian Xu1( )Junfa Zhu1,2 ( )
National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
Department of Chemical Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, and Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China

§ Xingwang Cheng and Yi Tu contributed equally to this work.

Show Author Information

Graphical Abstract

CO molecules adsorbed on Fe/CeO2 surfaces in a π-bonding state exhibit weak C–O bonds, which facilitate the dissociation of carbon monoxide at low temperatures. The resulting dissociated atomic oxygen is captured by Fe0, leading to the oxidation of Fe0 and a subsequent reduction in the reactivity of the atomic oxygen.

Abstract

Elucidating the synergistic effect of Fe on CeO2 is challenging in CO-related reactions but attractive owing to the improvement in the oxygen storage/release capacity of ceria with the addition of Fe. Here, using CeO2(111)-supported Fe model catalysts, CO adsorption, activation, and oxidation on catalyst surfaces was carefully investigated using synchrotron radiation photoemission spectroscopy (SRPES), temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRRAS). The precursor π-bonding state for CO dissociative adsorption has been identified through unusually low CO vibration frequencies and a low dissociation temperature on Fe/CeO2(111) surfaces. CO is oxidized by dissociated atomic O followed by the Langmuir–Hinshelwood mechanism, whereas the lattice oxygen of CeO2 exhibits low activity. The CO2 yield displays a volcanic curve as a function of Fe coverage. On the 0.6 ML Fe/CeO2 surface, weakly bound atomic O on Fe2+ results in the best catalytic activity. While on high Fe coverage surfaces, the CO2 yield is limited due to the capture of atomic O by Fe0. Our results provide comprehensive insights into the adsorption, activation, and oxidation of CO on Fe/CeO2 and identify the reaction mechanism, and the active site, which provides deeper insights into CO-related reaction mechanisms over CeO2-supported Fe catalysts.

Electronic Supplementary Material

Download File(s)
7093_ESM.pdf (911.6 KB)

References

[1]

Li, P.; Chen, X. Y.; Li, Y. D.; Schwank, J. W. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90–115.

[2]

van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.

[3]

Zhang, F.; Gutiérrez, R. A.; Lustemberg, P. G.; Liu, Z. Y.; Rui, N.; Wu, T. P.; Ramírez, P. J.; Xu, W. Q.; Idriss, H.; Ganduglia-Pirovano, M. V. et al. Metal-support interactions and C1 chemistry: Transforming Pt-CeO2 into a highly active and stable catalyst for the conversion of carbon dioxide and methane. ACS Catal. 2021, 11, 1613–1623.

[4]

Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.

[5]

Li, K. Z.; Haneda, M.; Ning, P. H.; Wang, H.; Ozawa, M. Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatment. Appl. Surf. Sci. 2014, 289, 378–383.

[6]

Li, M.; Pham, T. H. M.; Oveisi, E.; Ko, Y.; Luo, W.; Züttel, A. Revealing the surface chemistry for CO2 hydrogenation on Cu/CeO2– x using near-ambient-pressure X-ray photoelectron spectroscopy. ACS Appl. Energy Mater. 2021, 4, 12326–12335.

[7]

Piotrowski, M. J.; Tereshchuk, P.; Da Silva, J. L. F. Theoretical investigation of small transition-metal clusters supported on the CeO2(111) surface. J. Phys. Chem. C 2014, 118, 21438–21446.

[8]

Lambrou, P. S.; Efstathiou, A. M. The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst. J. Catal. 2006, 240, 182–193.

[9]

Pham, C. N.; Van Trinh, Q.; Van Thai, D.; Dao, N. N.; Nguyen, B. Q.; Doan, D. T.; Le, H. B.; Van Nguyen, V.; Duong, L. T.; Tran, L. D. Synthesis of CeO2-Fe2O3 mixed oxides for low-temperature carbon monoxide oxidation. Adsorpt. Sci. Technol. 2022, 2022, 5945169.

[10]

Lei, Z. P.; Yan, J. C.; Fang, J.; Shui, H. F.; Ren, S. B.; Wang, Z. C.; Li, Z. K.; Kong, Y.; Kang, S. G. Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe-CaO and Fe-CeO2. Energy 2021, 216, 119246.

[11]

Wu, X.; Qian, W. X.; Zhang, H. T.; Han, Z. H.; Zhang, H. W.; Ma, H. F.; Liu, D. H.; Sun, Q. W.; Ying, W. Y. Mn-decorated CeO2 nanorod supported iron-based catalyst for high-temperature Fischer-Tropsch synthesis of light olefins. Catal. Sci. Technol. 2021, 11, 2577–2588.

[12]

Li, H. C.; Li, K. Z.; Wang, H.; Zhu, X.; Wei, Y. G.; Yan, D. X.; Cheng, X. M.; Zhai, K. Soot combustion over Ce1– x Fe x O2– δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides. Appl. Surf. Sci. 2016, 390, 513–525.

[13]

Galvita, V.; Rihko-Struckmann, L. K.; Sundmacher, K. The CO adsorption on a Fe2O3-Ce0.5Zr0.5O2 catalyst studied by TPD, isotope exchange and FTIR spectroscopy. J. Mol. Catal. A: Chem. 2008, 283, 43–51.

[14]

Chen, H. T.; Chang, J. G. Computational investigation of CO adsorption and oxidation on iron-modified cerium oxide. J. Phys. Chem. C 2011, 115, 14745–14753.

[15]

Tian, D.; Li, K. Z.; Wei, Y. G.; Zhu, X.; Zeng, C. H.; Cheng, X. M.; Zheng, Y. Z.; Wang, H. DFT insights into oxygen vacancy formation and CH4 activation over CeO2 surfaces modified by transition metals (Fe, Co and Ni). Phys. Chem. Chem. Phys. 2018, 20, 11912–11929.

[16]

Lykaki, M.; Stefa, S.; Carabineiro, S. A. C.; Pandis, P. K.; Stathopoulos, V. N.; Konsolakis, M. Facet-dependent reactivity of Fe2O3/CeO2 nanocomposites: Effect of ceria morphology on CO oxidation. Catalysts 2019, 9, 371.

[17]

Ge, C. Y.; Yu, Y. X.; An, D. Q.; Tong, Q.; Tang, C. J.; Gao, F.; Sun, J. F.; Dong, L. Surface configuration modulation for FeO x -CeO2/γ-Al2O3 catalysts and its influence in CO oxidation. J. Catal. 2020, 386, 139–150.

[18]

Cheng, X. W.; Tu, Y.; Zhang, D. L.; Huang, L. C.; Xu, Q.; Hu, J.; Cao, X.; Ding, H. H.; Han, D.; Ye, Y. F. et al. Unraveling the interaction between Fe and CeO2(111) through growth, structure, and thermal stability studies. J. Phys. Chem. C 2024, 128, 11773–11783.

[19]

Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F. Growth, structure, and stability of Ag on CeO2(111): Synchrotron radiation photoemission studies. J. Phys. Chem. C 2011, 115, 6715–6725.

[20]

Zhang, D. L.; Cao, X.; Tu, Y.; Cheng, X. W.; Huang, L. C.; Ding, H. H.; Hu, J.; Xu, Q.; Ye, Y. F.; Zhu, J. F. Unraveling the surface structure of ceria-supported bimetal Co-Cu nanoparticles. J. Phys. Chem. C 2024, 128, 9051–9059.

[21]

Hu, S. W.; Wang, Y.; Wang, W. J.; Han, Y.; Fan, Q. T.; Feng, X. F.; Xu, Q.; Zhu, J. F. Ag nanoparticles on reducible CeO2(111) thin films: Effect of thickness and stoichiometry of ceria. J. Phys. Chem. C 2015, 119, 3579–3588.

[22]

Abbott, H. L.; Aumer, A.; Lei, Y.; Asokan, C.; Meyer, R. J.; Sterrer, M.; Shaikhutdinov, S.; Freund, H. J. CO adsorption on monometallic and bimetallic Au–Pd nanoparticles supported on oxide thin films. J. Phys. Chem. C 2010, 114, 17099–17104.

[23]

Seip, U.; Tsai, M. C.; Christmann, K.; Küppers, J.; Ertl, G. Interaction of CO with an Fe(111) surface. Surf. Sci. 1984, 139, 29–42.

[24]

Jiang, D. E.; Carter, E. A. Adsorption and dissociation of CO on Fe(110) from first principles. Surf. Sci. 2004, 570, 167–177.

[25]

Cameron, S. D.; Dwyer, D. J. A study of. pi. -bonded carbon monoxide on iron(100). Langmuir 1988, 4, 282–288.

[26]

Li, J. B.; He, X.; Peng, C.; Ahuja, R. Chemical bonding of unique CO on Fe(100). J. Phys. Chem. C 2018, 122, 9062–9074.

[27]

Wang, T.; Tian, X. X.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations. ACS Catal. 2014, 4, 1991–2005.

[28]

Wang, T.; Tian, X. X.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. High coverage CO activation mechanisms on Fe(100) from computations. J. Phys. Chem. C 2014, 118, 1095–1101.

[29]

Nassir, M. H.; Frühberger, B.; Dwyer, D. J. Coverage dependence of Co dissociation on clean and hydrogen presaturated Fe(100) surface. Surf. Sci. 1994, 312, 115–123.

[30]

Lu, K.; He, Y. R.; Huo, C. F.; Guo, W. P.; Peng, Q.; Yang, Y.; Li, Y. W.; Wen, X. D. Developing ReaxFF to visit CO adsorption and dissociation on iron surfaces. J. Phys. Chem. C 2018, 122, 27582–27589.

[31]

Oh, J.; Kondo, T.; Hatake, D.; Arakawa, K.; Suzuki, T.; Sekiba, D.; Nakamura, J. Adsorption of CO on iron clusters on graphite. J. Phys. Chem. C 2012, 116, 7741–7747.

[32]

Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Fernández Sanz, J. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.

[33]

Vayssilov, G. N.; Mihaylov, M.; St. Petkov, P. ; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454.

[34]

Moon, D. W.; Bernasek, S. L.; Lu, J. P.; Gland, J. L.; Dwyer, D. J. Activation of carbon monoxide on clean and sulfur modified Fe(100). Surf. Sci. 1987, 184, 90–108.

[35]

Bartosch, C. E.; Whitman, L. J.; Ho, W. The adsorption, interconversion, and dissociation of CO on Fe(111). J. Chem. Phys. 1986, 85, 1052–1060.

[36]

Wielers, A. F. H.; Kock, A. J. H. M.; Hop, C. E. C. A.; Geus, J. W.; van Der Kraan, A. M. The reduction behavior of silica-supported and alumina-supported iron catalysts: A mossbauer and infrared spectroscopic study. J. Catal. 1989, 117, 1–18.

[37]

Benziger, J. B.; Larson, L. R. An infrared spectroscopy study of the adsorption of CO on Fe/MgO. J. Catal. 1982, 77, 550–553.

[38]

Happel, M.; Mysliveček, J.; Johánek, V.; Dvořák, F.; Stetsovych, O.; Lykhach, Y.; Matolín, V.; Libuda, J. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. J. Catal. 2012, 289, 118–126.

[39]

Couble, J.; Bianchi, D. Heats of adsorption of linear CO species adsorbed on reduced Fe/Al2O3 catalysts using the AEIR method in diffuse reflectance mode. Appl. Catal. A: Gen. 2011, 409–410, 28–38.

[40]

Guglielminotti, E. Spectroscopic characterization of the Fe/ZrO2 system: 1. CO adsorption. J. Phys. Chem. 1994, 98, 4884–4891.

[41]

Zhao, J. Q.; Yang, Q.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. FeO-CeO2 nanocomposites: An efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. 2020, 12, 5.

[42]

Benndorf, C.; Krüger, B.; Thieme, F. Unusually low stretching frequency for CO adsorbed on Fe(100). Surf. Sci. Lett. 1985, 163, L675–L680.

[43]

Zhang, X. L.; Peng, Q. Q.; Chen, L.; Lu, Z. S.; Yang, Z. X.; Hermansson, K. A new Mars-van Krevelen mechanism for CO oxidation on a Ti-decorated MXene. Adv. Mater. Interfaces 2023, 10, 2300070.

[44]

Rafaj, Z.; Krutel, J.; Nehasil, V. Oxygen exchange between catalyst and active support during CO oxidation on Rh/CeO2(111) and Rh/CeO2(110): Isotope labeled 18O study. J. Phys. Chem. C 2021, 125, 15959–15966.

[45]

Zhou, X.; Mannie, G. J. A.; Yin, J. Q.; Yu, X.; Weststrate, C. J.; Wen, X. D.; Wu, K.; Yang, Y.; Li, Y. W.; Niemantsverdriet, J. W. Iron carbidization on thin-film silica and silicon: A near-ambient-pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy study. ACS Catal. 2018, 8, 7326–7333.

[46]

Hunt, J.; Ferrari, A.; Lita, A.; Crosswhite, M.; Ashley, B.; Stiegman, A. E. Microwave-specific enhancement of the carbon-carbon dioxide (Boudouard) Reaction. J. Phys. Chem. C 2013, 117, 26871–26880.

[47]

Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.

[48]

Droubay, T. C.; Chambers, S. A. Surface sensitive Fe 2p photoemission spectra for α-Fe2O3 (0001)-The influence of symmetry and crystal-field strength. Phys. Rev. B 2001, 64, 205414.

[49]

Gupta, R. P.; Sen, S. K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B 1975, 12, 15–19.

[50]

Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.

[51]

Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R. et al. Importance of the metal-oxide interface in catalysis: In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem., Int. Ed. 2013, 52, 5101–5105.

[52]

Simonovis, J. P.; Zhang, H.; Rui, N.; Hunt, A.; Orozco, I.; Liu, P.; Senanayake, S. D.; Rodriguez, J. A.; Waluyo, I. Investigating the elusive nature of atomic O from CO2 dissociation on Pd(111): The role of surface hydrogen. J. Phys. Chem. C 2022, 126, 7870–7879.

[53]

Shipilin, M.; Degerman, D.; Lömker, P.; Goodwin, C. M.; Rodrigues, G. L. S.; Wagstaffe, M.; Gladh, J.; Wang, H. Y.; Stierle, A.; Schlueter, C. et al. In situ surface-sensitive investigation of multiple carbon phases on Fe(110) in the Fischer-Tropsch synthesis. ACS Catal. 2022, 12, 7609–7621.

[54]

Jagannathan, K.; Srinivasan, A.; Hegde, M. S.; Rao, C. N. R. Interaction of carbon monoxide with transition metal surfaces. Surf. Sci. 1980, 99, 309–319.

Nano Research
Article number: 94907093
Cite this article:
Cheng X, Tu Y, Zhang D, et al. CO adsorption, activation, and oxidation on CeO2(111)-supported Fe model catalyst surfaces. Nano Research, 2025, 18(2): 94907093. https://doi.org/10.26599/NR.2025.94907093

294

Views

67

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 September 2024
Revised: 16 October 2024
Accepted: 24 October 2024
Published: 03 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return