Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Elucidating the synergistic effect of Fe on CeO2 is challenging in CO-related reactions but attractive owing to the improvement in the oxygen storage/release capacity of ceria with the addition of Fe. Here, using CeO2(111)-supported Fe model catalysts, CO adsorption, activation, and oxidation on catalyst surfaces was carefully investigated using synchrotron radiation photoemission spectroscopy (SRPES), temperature-programmed desorption (TPD), and infrared reflection absorption spectroscopy (IRRAS). The precursor π-bonding state for CO dissociative adsorption has been identified through unusually low CO vibration frequencies and a low dissociation temperature on Fe/CeO2(111) surfaces. CO is oxidized by dissociated atomic O followed by the Langmuir–Hinshelwood mechanism, whereas the lattice oxygen of CeO2 exhibits low activity. The CO2 yield displays a volcanic curve as a function of Fe coverage. On the 0.6 ML Fe/CeO2 surface, weakly bound atomic O on Fe2+ results in the best catalytic activity. While on high Fe coverage surfaces, the CO2 yield is limited due to the capture of atomic O by Fe0. Our results provide comprehensive insights into the adsorption, activation, and oxidation of CO on Fe/CeO2 and identify the reaction mechanism, and the active site, which provides deeper insights into CO-related reaction mechanisms over CeO2-supported Fe catalysts.
Li, P.; Chen, X. Y.; Li, Y. D.; Schwank, J. W. A review on oxygen storage capacity of CeO2-based materials: Influence factors, measurement techniques, and applications in reactions related to catalytic automotive emissions control. Catal. Today 2019, 327, 90–115.
van Deelen, T. W.; Hernández Mejía, C.; de Jong, K. P. Control of metal-support interactions in heterogeneous catalysts to enhance activity and selectivity. Nat. Catal. 2019, 2, 955–970.
Zhang, F.; Gutiérrez, R. A.; Lustemberg, P. G.; Liu, Z. Y.; Rui, N.; Wu, T. P.; Ramírez, P. J.; Xu, W. Q.; Idriss, H.; Ganduglia-Pirovano, M. V. et al. Metal-support interactions and C1 chemistry: Transforming Pt-CeO2 into a highly active and stable catalyst for the conversion of carbon dioxide and methane. ACS Catal. 2021, 11, 1613–1623.
Muravev, V.; Spezzati, G.; Su, Y. Q.; Parastaev, A.; Chiang, F. K.; Longo, A.; Escudero, C.; Kosinov, N.; Hensen, E. J. M. Interface dynamics of Pd-CeO2 single-atom catalysts during CO oxidation. Nat. Catal. 2021, 4, 469–478.
Li, K. Z.; Haneda, M.; Ning, P. H.; Wang, H.; Ozawa, M. Microstructure and oxygen evolution of Fe-Ce mixed oxides by redox treatment. Appl. Surf. Sci. 2014, 289, 378–383.
Li, M.; Pham, T. H. M.; Oveisi, E.; Ko, Y.; Luo, W.; Züttel, A. Revealing the surface chemistry for CO2 hydrogenation on Cu/CeO2– x using near-ambient-pressure X-ray photoelectron spectroscopy. ACS Appl. Energy Mater. 2021, 4, 12326–12335.
Piotrowski, M. J.; Tereshchuk, P.; Da Silva, J. L. F. Theoretical investigation of small transition-metal clusters supported on the CeO2(111) surface. J. Phys. Chem. C 2014, 118, 21438–21446.
Lambrou, P. S.; Efstathiou, A. M. The effects of Fe on the oxygen storage and release properties of model Pd-Rh/CeO2-Al2O3 three-way catalyst. J. Catal. 2006, 240, 182–193.
Pham, C. N.; Van Trinh, Q.; Van Thai, D.; Dao, N. N.; Nguyen, B. Q.; Doan, D. T.; Le, H. B.; Van Nguyen, V.; Duong, L. T.; Tran, L. D. Synthesis of CeO2-Fe2O3 mixed oxides for low-temperature carbon monoxide oxidation. Adsorpt. Sci. Technol. 2022, 2022, 5945169.
Lei, Z. P.; Yan, J. C.; Fang, J.; Shui, H. F.; Ren, S. B.; Wang, Z. C.; Li, Z. K.; Kong, Y.; Kang, S. G. Catalytic combustion of coke and NO reduction in-situ under the action of Fe, Fe-CaO and Fe-CeO2. Energy 2021, 216, 119246.
Wu, X.; Qian, W. X.; Zhang, H. T.; Han, Z. H.; Zhang, H. W.; Ma, H. F.; Liu, D. H.; Sun, Q. W.; Ying, W. Y. Mn-decorated CeO2 nanorod supported iron-based catalyst for high-temperature Fischer-Tropsch synthesis of light olefins. Catal. Sci. Technol. 2021, 11, 2577–2588.
Li, H. C.; Li, K. Z.; Wang, H.; Zhu, X.; Wei, Y. G.; Yan, D. X.; Cheng, X. M.; Zhai, K. Soot combustion over Ce1– x Fe x O2– δ and CeO2/Fe2O3 catalysts: Roles of solid solution and interfacial interactions in the mixed oxides. Appl. Surf. Sci. 2016, 390, 513–525.
Galvita, V.; Rihko-Struckmann, L. K.; Sundmacher, K. The CO adsorption on a Fe2O3-Ce0.5Zr0.5O2 catalyst studied by TPD, isotope exchange and FTIR spectroscopy. J. Mol. Catal. A: Chem. 2008, 283, 43–51.
Chen, H. T.; Chang, J. G. Computational investigation of CO adsorption and oxidation on iron-modified cerium oxide. J. Phys. Chem. C 2011, 115, 14745–14753.
Tian, D.; Li, K. Z.; Wei, Y. G.; Zhu, X.; Zeng, C. H.; Cheng, X. M.; Zheng, Y. Z.; Wang, H. DFT insights into oxygen vacancy formation and CH4 activation over CeO2 surfaces modified by transition metals (Fe, Co and Ni). Phys. Chem. Chem. Phys. 2018, 20, 11912–11929.
Lykaki, M.; Stefa, S.; Carabineiro, S. A. C.; Pandis, P. K.; Stathopoulos, V. N.; Konsolakis, M. Facet-dependent reactivity of Fe2O3/CeO2 nanocomposites: Effect of ceria morphology on CO oxidation. Catalysts 2019, 9, 371.
Ge, C. Y.; Yu, Y. X.; An, D. Q.; Tong, Q.; Tang, C. J.; Gao, F.; Sun, J. F.; Dong, L. Surface configuration modulation for FeO x -CeO2/γ-Al2O3 catalysts and its influence in CO oxidation. J. Catal. 2020, 386, 139–150.
Cheng, X. W.; Tu, Y.; Zhang, D. L.; Huang, L. C.; Xu, Q.; Hu, J.; Cao, X.; Ding, H. H.; Han, D.; Ye, Y. F. et al. Unraveling the interaction between Fe and CeO2(111) through growth, structure, and thermal stability studies. J. Phys. Chem. C 2024, 128, 11773–11783.
Kong, D. D.; Wang, G. D.; Pan, Y. H.; Hu, S. W.; Hou, J. B.; Pan, H. B.; Campbell, C. T.; Zhu, J. F. Growth, structure, and stability of Ag on CeO2(111): Synchrotron radiation photoemission studies. J. Phys. Chem. C 2011, 115, 6715–6725.
Zhang, D. L.; Cao, X.; Tu, Y.; Cheng, X. W.; Huang, L. C.; Ding, H. H.; Hu, J.; Xu, Q.; Ye, Y. F.; Zhu, J. F. Unraveling the surface structure of ceria-supported bimetal Co-Cu nanoparticles. J. Phys. Chem. C 2024, 128, 9051–9059.
Hu, S. W.; Wang, Y.; Wang, W. J.; Han, Y.; Fan, Q. T.; Feng, X. F.; Xu, Q.; Zhu, J. F. Ag nanoparticles on reducible CeO2(111) thin films: Effect of thickness and stoichiometry of ceria. J. Phys. Chem. C 2015, 119, 3579–3588.
Abbott, H. L.; Aumer, A.; Lei, Y.; Asokan, C.; Meyer, R. J.; Sterrer, M.; Shaikhutdinov, S.; Freund, H. J. CO adsorption on monometallic and bimetallic Au–Pd nanoparticles supported on oxide thin films. J. Phys. Chem. C 2010, 114, 17099–17104.
Seip, U.; Tsai, M. C.; Christmann, K.; Küppers, J.; Ertl, G. Interaction of CO with an Fe(111) surface. Surf. Sci. 1984, 139, 29–42.
Jiang, D. E.; Carter, E. A. Adsorption and dissociation of CO on Fe(110) from first principles. Surf. Sci. 2004, 570, 167–177.
Cameron, S. D.; Dwyer, D. J. A study of. pi. -bonded carbon monoxide on iron(100). Langmuir 1988, 4, 282–288.
Li, J. B.; He, X.; Peng, C.; Ahuja, R. Chemical bonding of unique CO on Fe(100). J. Phys. Chem. C 2018, 122, 9062–9074.
Wang, T.; Tian, X. X.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. Coverage-dependent CO adsorption and dissociation mechanisms on iron surfaces from DFT computations. ACS Catal. 2014, 4, 1991–2005.
Wang, T.; Tian, X. X.; Li, Y. W.; Wang, J. G.; Beller, M.; Jiao, H. J. High coverage CO activation mechanisms on Fe(100) from computations. J. Phys. Chem. C 2014, 118, 1095–1101.
Nassir, M. H.; Frühberger, B.; Dwyer, D. J. Coverage dependence of Co dissociation on clean and hydrogen presaturated Fe(100) surface. Surf. Sci. 1994, 312, 115–123.
Lu, K.; He, Y. R.; Huo, C. F.; Guo, W. P.; Peng, Q.; Yang, Y.; Li, Y. W.; Wen, X. D. Developing ReaxFF to visit CO adsorption and dissociation on iron surfaces. J. Phys. Chem. C 2018, 122, 27582–27589.
Oh, J.; Kondo, T.; Hatake, D.; Arakawa, K.; Suzuki, T.; Sekiba, D.; Nakamura, J. Adsorption of CO on iron clusters on graphite. J. Phys. Chem. C 2012, 116, 7741–7747.
Graciani, J.; Mudiyanselage, K.; Xu, F.; Baber, A. E.; Evans, J.; Senanayake, S. D.; Stacchiola, D. J.; Liu, P.; Hrbek, J.; Fernández Sanz, J. et al. Highly active copper-ceria and copper-ceria-titania catalysts for methanol synthesis from CO2. Science 2014, 345, 546–550.
Vayssilov, G. N.; Mihaylov, M.; St. Petkov, P. ; Hadjiivanov, K. I.; Neyman, K. M. Reassignment of the vibrational spectra of carbonates, formates, and related surface species on ceria: A combined density functional and infrared spectroscopy investigation. J. Phys. Chem. C 2011, 115, 23435–23454.
Moon, D. W.; Bernasek, S. L.; Lu, J. P.; Gland, J. L.; Dwyer, D. J. Activation of carbon monoxide on clean and sulfur modified Fe(100). Surf. Sci. 1987, 184, 90–108.
Bartosch, C. E.; Whitman, L. J.; Ho, W. The adsorption, interconversion, and dissociation of CO on Fe(111). J. Chem. Phys. 1986, 85, 1052–1060.
Wielers, A. F. H.; Kock, A. J. H. M.; Hop, C. E. C. A.; Geus, J. W.; van Der Kraan, A. M. The reduction behavior of silica-supported and alumina-supported iron catalysts: A mossbauer and infrared spectroscopic study. J. Catal. 1989, 117, 1–18.
Benziger, J. B.; Larson, L. R. An infrared spectroscopy study of the adsorption of CO on Fe/MgO. J. Catal. 1982, 77, 550–553.
Happel, M.; Mysliveček, J.; Johánek, V.; Dvořák, F.; Stetsovych, O.; Lykhach, Y.; Matolín, V.; Libuda, J. Adsorption sites, metal-support interactions, and oxygen spillover identified by vibrational spectroscopy of adsorbed CO: A model study on Pt/ceria catalysts. J. Catal. 2012, 289, 118–126.
Couble, J.; Bianchi, D. Heats of adsorption of linear CO species adsorbed on reduced Fe/Al2O3 catalysts using the AEIR method in diffuse reflectance mode. Appl. Catal. A: Gen. 2011, 409–410, 28–38.
Guglielminotti, E. Spectroscopic characterization of the Fe/ZrO2 system: 1. CO adsorption. J. Phys. Chem. 1994, 98, 4884–4891.
Zhao, J. Q.; Yang, Q.; Shi, R.; Waterhouse, G. I. N.; Zhang, X.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. FeO-CeO2 nanocomposites: An efficient and highly selective catalyst system for photothermal CO2 reduction to CO. NPG Asia Mater. 2020, 12, 5.
Benndorf, C.; Krüger, B.; Thieme, F. Unusually low stretching frequency for CO adsorbed on Fe(100). Surf. Sci. Lett. 1985, 163, L675–L680.
Zhang, X. L.; Peng, Q. Q.; Chen, L.; Lu, Z. S.; Yang, Z. X.; Hermansson, K. A new Mars-van Krevelen mechanism for CO oxidation on a Ti-decorated MXene. Adv. Mater. Interfaces 2023, 10, 2300070.
Rafaj, Z.; Krutel, J.; Nehasil, V. Oxygen exchange between catalyst and active support during CO oxidation on Rh/CeO2(111) and Rh/CeO2(110): Isotope labeled 18O study. J. Phys. Chem. C 2021, 125, 15959–15966.
Zhou, X.; Mannie, G. J. A.; Yin, J. Q.; Yu, X.; Weststrate, C. J.; Wen, X. D.; Wu, K.; Yang, Y.; Li, Y. W.; Niemantsverdriet, J. W. Iron carbidization on thin-film silica and silicon: A near-ambient-pressure X-ray photoelectron spectroscopy and scanning tunneling microscopy study. ACS Catal. 2018, 8, 7326–7333.
Hunt, J.; Ferrari, A.; Lita, A.; Crosswhite, M.; Ashley, B.; Stiegman, A. E. Microwave-specific enhancement of the carbon-carbon dioxide (Boudouard) Reaction. J. Phys. Chem. C 2013, 117, 26871–26880.
Grosvenor, A. P.; Kobe, B. A.; Biesinger, M. C.; McIntyre, N. S. Investigation of multiplet splitting of Fe 2p XPS spectra and bonding in iron compounds. Surf. Interface Anal. 2004, 36, 1564–1574.
Droubay, T. C.; Chambers, S. A. Surface sensitive Fe 2p photoemission spectra for α-Fe2O3 (0001)-The influence of symmetry and crystal-field strength. Phys. Rev. B 2001, 64, 205414.
Gupta, R. P.; Sen, S. K. Calculation of multiplet structure of core p-vacancy levels. II. Phys. Rev. B 1975, 12, 15–19.
Xu, Q.; Cheng, X. W.; Zhang, N. Q.; Tu, Y.; Wu, L. H.; Pan, H. B.; Hu, J.; Ding, H. H.; Zhu, J. F.; Li, Y. D. Unraveling the advantages of Pd/CeO2 single-atom catalysts in the NO + CO reaction by model catalysts. Nano Res. 2023, 16, 8882–8892.
Mudiyanselage, K.; Senanayake, S. D.; Feria, L.; Kundu, S.; Baber, A. E.; Graciani, J.; Vidal, A. B.; Agnoli, S.; Evans, J.; Chang, R. et al. Importance of the metal-oxide interface in catalysis: In situ studies of the water-gas shift reaction by ambient-pressure X-ray photoelectron spectroscopy. Angew. Chem., Int. Ed. 2013, 52, 5101–5105.
Simonovis, J. P.; Zhang, H.; Rui, N.; Hunt, A.; Orozco, I.; Liu, P.; Senanayake, S. D.; Rodriguez, J. A.; Waluyo, I. Investigating the elusive nature of atomic O from CO2 dissociation on Pd(111): The role of surface hydrogen. J. Phys. Chem. C 2022, 126, 7870–7879.
Shipilin, M.; Degerman, D.; Lömker, P.; Goodwin, C. M.; Rodrigues, G. L. S.; Wagstaffe, M.; Gladh, J.; Wang, H. Y.; Stierle, A.; Schlueter, C. et al. In situ surface-sensitive investigation of multiple carbon phases on Fe(110) in the Fischer-Tropsch synthesis. ACS Catal. 2022, 12, 7609–7621.
Jagannathan, K.; Srinivasan, A.; Hegde, M. S.; Rao, C. N. R. Interaction of carbon monoxide with transition metal surfaces. Surf. Sci. 1980, 99, 309–319.
294
Views
67
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).