PDF (28.8 MB)
Collect
Submit Manuscript
Research Article | Open Access

Super-self-assembly extraction from natural herbs

Jiawei Xiang1,2,§Yuan Meng1,2,§Mingyuan Zhao1,2Zhongxian Li1Qiang Zhang3Ning Wang4Zhuo Ao1 ()Dong Han1,2 ()
CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Hebei Key Lab of Nano-biotechnology, Hebei Key Lab of Applied Chemistry, Yanshan University, Qinhuangdao 066004, China
Guang’anmen Hospital of the China Academy of Chinese Medical Sciences, Beijing 100053, China

§ Jiawei Xiang and Yuan Meng contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A new assembly pattern has been discovered in herbal decoctions, through simply applying freezing or ion addition results in the formation of super-self-assemblies with diverse morphologies and forms. The process is eco-friendly, simple, universal, reproducible, and stable.

Abstract

Life systems are complex systems, and the self-assembly behaviour represents the transition from disorder to order and serves as a concrete indicator and starting point for understanding complex systems. Super-self-assembly behaviour was observed in the decoctions of various natural herbs, and this behaviour was characterized by multistep and multilevel assembly processes. The super-self-assemblies were multilevel particles resulting from inorganic–organic assembly, specifically observed as composite spheres, cubes, and tetragonal bipyramids. The preparation process was environmentally friendly and safe, and the resulting super-self-assemblies were regular in shape and rich in variety; this process has numerous possibilities for development and application in medicine and materials research.

Electronic Supplementary Material

Download File(s)
7094_ESM.pdf (1.6 MB)

References

[1]

Li, X. L.; Zhang, W. J.; Lu, J. W.; Huang, L. X.; Nan, D. F.; Webb, M. A.; Hillion, F.; Wang, L. J. Templated biomineralization on self-assembled protein nanofibers buried in calcium oxalate raphides of Musa spp. Chem. Mater. 2014, 26, 3862–3869.

[2]

Davila-Hernandez, F. A.; Jin, B.; Pyles, H.; Zhang, S.; Wang, Z. M.; Huddy, T. F.; Bera, A. K.; Kang, A.; Chen, C. L.; De Yoreo, J. J. et al. Directing polymorph specific calcium carbonate formation with de novo protein templates. Nat. Commun. 2023, 14, 8191.

[3]

Fan, Q. H.; Zheng, Y.; Wang, X. C.; Xie, R. P.; Ding, Y.; Wang, B. Y.; Yu, X. Y.; Lu, Y.; Liu, L. Y.; Li, Y. L. et al. Dynamically re-organized collagen fiber bundles transmit mechanical signals and induce strongly correlated cell migration and self-organization. Angew. Chem., Int. Ed. 2021, 60, 11858–11867.

[4]

Otter, L. M.; Eder, K.; Kilburn, M. R.; Yang, L.; O’Reilly, P.; Nowak, D. B.; Cairney, J. M.; Jacob, D. E. Growth dynamics and amorphous-to-crystalline phase transformation in natural nacre. Nat. Commun. 2023, 14, 2254.

[5]

Gordon, L. M.; Joester, D. Nanoscale chemical tomography of buried organic–inorganic interfaces in the chiton tooth. Nature 2011, 469, 194–197.

[6]

Song, Q. T.; Li, Y.; Jin, Z. C.; Liu, H.; Creyer, M. N.; Yim, W.; Huang, Y. P.; Hu, X. B.; He, T. Y.; Li, Y. J. et al. Self-assembled homopolymeric spherulites from small molecules in solution. J. Am. Chem. Soc. 2023, 145, 25664–25672.

[7]

Cho, N. H.; Guerrero-Martínez , A.; Ma, J.; Bals, S.; Kotov, N. A.; Liz-Marzán , L. M.; Nam, K. T. Bioinspired chiral inorganic nanomaterials. Nat. Rev. Bioeng. 2023, 1, 88–106.

[8]

Jiang, W. F.; Qu, Z. B.; Kumar, P.; Vecchio, D.; Wang, Y. F.; Ma, Y.; Bahng, J. H.; Bernardino, K.; Gomes, W. R.; Colombari, F. M. et al. Emergence of complexity in hierarchically organized chiral particles. Science 2020, 368, 642–648.

[9]

Fu, H. L.; Huang, J. Y.; van der Tol, J. J. B.; Su, L.; Wang, Y. Y.; Dey, S.; Zijlstra, P.; Fytas, G.; Vantomme, G.; Dankers, P. Y. W. et al. Supramolecular polymers form tactoids through liquid–liquid phase separation. Nature 2024, 626, 1011–1018.

[10]

Li, T.; Wang, P. L.; Guo, W. B.; Huang, X. M.; Tian, X. H.; Wu, G. R.; Xu, B.; Li, F. F.; Yan, C.; Liang, X. J. et al. Natural berberine-based Chinese herb medicine assembled nanostructures with modified antibacterial application. ACS Nano 2019, 13, 6770–6781.

[11]

Yao, L.; Zhao, M. M.; Luo, Q. W.; Zhang, Y. C.; Liu, T. T.; Yang, Z.; Liao, M.; Tu, P. F.; Zeng, K. W. Carbon quantum dots-based nanozyme from coffee induces cancer cell ferroptosis to activate antitumor immunity. ACS Nano 2022, 16, 9228–9239.

[12]

Li, X. Y.; Liang, Z.; Du, J. C.; Wang, Z. Q.; Mei, S.; Li, Z. Q.; Zhao, Y.; Zhao, D. D.; Ma, Y. M.; Ye, J. et al. Herbal decoctosome is a novel form of medicine. Sci. China Life Sci. 2019, 62, 333–348.

[13]

Fan, J. M.; Yu, H.; Lu, X.; Xue, R.; Guan, J. W.; Xu, Y.; Qi, Y. Y.; He, L. Y.; Yu, W.; Abay, S. et al. Overlooked spherical nanoparticles exist in plant extracts: From mechanism to therapeutic applications. ACS Appl. Mater. Interfaces 2023, 15, 8854–8871.

[14]

Meldrum, F. C.; Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 2008, 108, 4332–4432.

[15]

Guo, X. H.; Luo, W. K.; Wu, L. Y.; Zhang, L. L.; Chen, Y. X.; Li, T.; Li, H. G.; Zhang, W.; Liu, Y. W.; Zheng, J. et al. Natural products from herbal medicine self-assemble into advanced bioactive materials. Adv. Sci. (Weinh.) 2024, 11, e2403388.

[16]

Tang, L. J.; Di, Z. H.; Zhang, J. F.; Yin, F. Y.; Li, L. L.; Zheng, L. Coordination-driven self-assembly of metallo-nanodrugs for local inflammation alleviation. Nano Res. 2023, 16, 13259–13266.

[17]

Liang, R. J.; Li, R.; Mo, W. D.; Zhang, X. Z.; Ye, J. C.; Xie, C.; Li, W. Y.; Peng, Z.; Gu, Y. Q.; Huang, Y. X. et al. Engineering biomimetic silk fibroin hydrogel scaffolds with “organic–inorganic assembly” strategy for rapid bone regeneration. Bioact. Mater. 2024, 40, 541–556.

[18]

Liu, C.; Du, W. C.; Zhang, L.; Wang, J. C. Natural synergy: Oleanolic acid-curcumin co-assembled nanoparticles combat osteoarthritis. Colloid Surf. B 2025, 245, 114286.

[19]

Johnson, G.; Yang, M. Y.; Liu, C.; Zhou, H.; Zuo, X. B.; Dickie, D. A.; Wang, S. H.; Gao, W. P.; Anaclet, B.; Perras, F. A. et al. Nanocluster superstructures assembled via surface ligand switching at high temperature. Nat. Synth. 2023, 2, 828–837.

[20]

Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.

[21]

Tan, C. X.; Wang, Y. L. Self-assembly of Ophiopogonis polysaccharide-iron(III) complex in aqueous solution and solid state. J. Chin. Pharm. Sci. 2019, 28, 665–672.

[22]

Sun, Q. M.; Shi, X. L.; Feng, J. T.; Zhang, Q.; Ao, Z.; Ji, Y. L.; Wu, X. C.; Liu, D. S.; Han, D. Cytotoxicity and cellular responses of gold nanorods to smooth muscle cells dependent on surface chemistry coupled action. Small 2018, 14, 1803715.

[23]

Hu, N.; Shi, X. L.; Zhang, Q.; Liu, W. T.; Zhu, Y. T.; Wang, Y. Q.; Hou, Y.; Ji, Y. L.; Cao, Y. P.; Zeng, Q. et al. Special interstitial route can transport nanoparticles to the brain bypassing the blood–brain barrier. Nano Res. 2019, 12, 2760–2765.

Nano Research
Article number: 94907094
Cite this article:
Xiang J, Meng Y, Zhao M, et al. Super-self-assembly extraction from natural herbs. Nano Research, 2025, 18(2): 94907094. https://doi.org/10.26599/NR.2025.94907094
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return