Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Although widely need from various applications, the luminescence of Cr3+ is easily prone to thermal quenching (TQ), causing remarkable intensity reduction as temperature rises, and posing a significant constraint in applications such as high-power lighting, solid-state lasers, and high-temperature optical sensing. Numerous strategies have been reported to realize anti-thermal quenching luminescence (ATQL) of Cr3+. However, researches into anti-thermal quenching upconversion luminescence (ATQUL) of Cr3+ are barely seen. Herein, taking advantage of the enhanced luminescence of Yb3+ facilitated by the Frenkel defects formed within Sc2(WO4)3 (SWO) matrix upon heating, we have established Yb3+
Wang, S. W.; Pang, R.; Tan, T.; Wu, H. Y.; Wang, Q.; Li, C. Y.; Zhang, S.; Tan, T. X.; You, H. P.; Zhang, H. J. Achieving high quantum efficiency broadband NIR Mg4Ta2O9: Cr3+ phosphor through lithium-ion compensation. Adv. Mater. 2023, 35, 2300124.
Xiao, W. E.; Basore, E. T.; Zheng, G. J.; Liu, X. F.; Xu, B. B.; Qiu, J. R. Suppressed concentration quenching brightens short-wave infrared emitters. Adv. Mater. 2023, 35, 2306517.
Zhong, C. S.; Xu, Y. H.; Wu, X. D.; Yin, S. W.; Zhang, X. B.; Zhou, L.; You, H. P. High output power and high quantum efficiency in novel NIR phosphor MgAlGa0.7B0.3O4:Cr3+ with profound FWHM variation. Adv. Mater. 2024, 36, 2309500.
Liu, G. C.; Chen, W. B.; Xiong, Z.; Wang, Y. Z.; Zhang, S.; Xia, Z. G. Laser-driven broadband near-infrared light source with watt-level output. Nat. Photonics 2024, 18, 562–568.
Healy, S. M.; Donnelly, C. J.; Glynn, T. J.; Imbusch, G. F.; Morgan, G. P. Temperature dependence of the luminescence of GSGG:Cr3+. J. Lumin. 1990, 46, 1–7.
Ristić, Z.; Đorđević, V.; Medić, M.; Kuzman, S.; Brik, M. G.; Antić, Ž.; Dramićanin, M. D. Temperature dependence of the Cr3+-DOPED Mg2TiO4 near-infrared emission. Opt. Mater. 2021, 120, 111468.
Back, M.; Ueda, J.; Hua, H. S.; Tanabe, S. Predicting the optical pressure sensitivity of 2E → 4A2 spin-flip transition in Cr3+-doped crystals. Chem. Mater. 2021, 33, 3379–3385.
Szymczak, M.; Runowski, M.; Brik, M. G.; Marciniak, L. Multimodal, super-sensitive luminescent manometer based on giant pressure-induced spectral shift of Cr3+ in the NIR range. Chem. Eng. J. 2023, 466, 143130.
Liu, S. Q.; Zheng, Y. T.; Peng, D. F.; Zhao, J.; Song, Z.; Liu, Q. L. Near-infrared mechanoluminescence of Cr3+ doped gallate spinel and magnetoplumbite smart materials. Adv. Funct. Mater. 2022, 33, 2209275.
Liu, Z. C.; Yu, X.; Peng, Q. P.; Zhu, X. D.; Xiao, J. Q.; Xu, J. T.; Jiang, S. X.; Qiu, J. B.; Xu, X. H. NIR mechanoluminescence from Cr3+ activated Y3Al5O12 with intense zero phonon line. Adv. Funct. Mater. 2023, 33, 2214497.
Jia, Z. W.; Yuan, C. X.; Liu, Y. F.; Wang, X. J.; Sun, P.; Wang, L.; Jiang, H. C.; Jiang, J. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci. Appl. 2020, 9, 86.
Dang, P. P.; Wei, Y.; Liu, D. J.; Li, G. G.; Lin, J. Recent advances in chromium-doped near-infrared luminescent materials: Fundamentals, optimization strategies, and applications. Adv. Opt. Mater. 2023, 11, 2201739.
Zhao, F. Y.; Song, Z.; Liu, Q. L. Advances in chromium-activated phosphors for near-infrared light sources. Laser Photonics Rev. 2022, 16, 2200380.
Wei, Y.; Liu, Z. N.; Sun, C.; Ding, X. R.; Wu, S. H.; Chen, R.; Wang, F.; Wang, H.; Xing, X. R.; Huang, L. Tunable anti-thermal quenching luminescence of Eu3+-doped metal-organic framework and temperature-dependent photonic coding. Adv. Funct. Mater. 2024, 34, 2401664.
Wei, Y.; Pan, Y.; Zhou, E. L.; Yuan, Z.; Song, H.; Wang, Y. L.; Zhou, J.; Rui, J. H.; Xu, M. J.; Ning, L. X. et al. Frenkel defect-modulated anti-thermal quenching luminescence in lanthanide-doped Sc2(WO4)3. Angew. Chem., Int. Ed. 2023, 62, e202303482.
Wang, Y. L.; Rui, J. H.; Song, H.; Yuan, Z.; Huang, X. Q.; Liu, J. Y.; Zhou, J.; Li, C.; Wang, H.; Wu, S. H. et al. Antithermal quenching upconversion luminescence via suppressed multiphonon relaxation in positive/negative thermal expansion core/shell NaYF4:Yb/Ho@ScF3 nanoparticles. J. Am. Chem. Soc. 2024, 146, 6530–6535.
Zheng, R.; Wei, Y.; Zhang, Z. C.; Wang, Z. Y.; Ma, L. L.; Wang, Y.; Huang, L.; Lu, Y. Q. Stimuli-responsive active materials for dynamic control of light field. Responsive Mater. 2023, 1, e20230017.
Xu, X. X.; Shao, Q. Y.; Yao, L. Q.; Dong, Y.; Jiang, J. Q. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications. Chem. Eng. J. 2020, 383, 123108.
Wen, D. W.; Liu, H. M.; Guo, Y.; Zeng, Q. G.; Wu, M. M.; Liu, R. S. Disorder-order conversion-induced enhancement of thermal stability of pyroxene near-infrared phosphors for light-emitting diodes. Angew. Chem., Int. Ed. 2022, 61, e202204411.
Xie, J. H.; Tian, J. H.; Jiang, L. P.; Cao, M.; Zhuang, W. D. An efficient and thermally stable Cr3+-activated Y2GdSc2Al2GaO12 garnet phosphor for NIR spectroscopy applications. Dalton Trans. 2023, 52, 15950–15957.
Lin, H. H.; Bai, G. X.; Yu, T.; Tsang, M. K.; Zhang, Q. Y.; Hao, J. H. Site occupancy and near-infrared luminescence in Ca3Ga2Ge3O12: Cr3+ persistent phosphor. Adv. Opt. Mater. 2017, 5, 1700227.
Zhang, H. X.; Wei, J. L.; Chen, W.; Mao, Y. B. Near-infrared-emitting K2CaP2O7:Cr3+ with outstanding thermal stability. ACS Appl. Opt. Mater. 2023, 1, 1595–1604.
Wu, X. D.; Zhao, S.; Zhang, L.; Dong, L. P.; Xu, Y. H.; Yin, S. W.; You, H. P. Highly thermally stable Cr3+ and Yb3+ codoped Gd2GaSbO7 phosphors for broadband near-infrared applications. Dalton Trans. 2021, 50, 13459–13467.
Lang, T. C.; Zhao, Q. Y.; Jing, X. L.; Guan, G. X. Y.; Fang, S. Q.; Qiang, Q. P.; Peng, L. L.; Han, T.; Yakovlev, A. N.; Liu, B. T. Highly efficient near-infrared solid solution phosphors with excellent thermal stability and tunable spectra for pc-LED light sources toward NIR spectroscopy applications. Phys. Chem. Chem. Phys. 2023, 25, 25985–25992.
Ouyang, S.; Yin, J. M.; Su, L. J.; Yao, M. H.; Wang, G. C.; Yang, J. Y.; Molokeev, M. S.; Zhou, Z.; Zhang, S. J.; Xia, M. Highly efficient and thermostable far-red phosphor for promoting root growth in plants. J. Mater. Chem. C 2024, 12, 3272–3279.
Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K. et al. Chromium ion pair luminescence: A strategy in broadband near-infrared light-emitting diode design. J. Am. Chem. Soc. 2021, 143, 19058–19066.
Yao, L. Q.; Shao, Q. Y.; Shi, M. L.; Shang, T. Q.; Dong, Y.; Liang, C.; He, J. H.; Jiang, J. Q. Efficient ultra-broadband Ga4GeO8:Cr3+ phosphors with tunable peak wavelengths from 835 to 980 nm for NIR pc-LED Application. Adv. Opt. Mater. 2022, 10, 2102229.
De Guzman, G. N. A.; Fang, M. H.; Liang, C. H.; Bao, Z.; Hu, S. F.; Liu, R. S. [INVITED] Near-infrared phosphors and their full potential: A review on practical applications and future perspectives. J. Lumin. 2020, 219, 116944.
Fang, M. H.; Huang, P. Y.; Bao, Z.; Majewska, N.; Leśniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W. et al. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3: Cr3+ phosphor. Chem. Mater. 2020, 32, 2166–2171.
Zhou, Y. P.; Li, X. J.; Seto, T.; Wang, Y. H. A high efficiency trivalent chromium-doped near-infrared-emitting phosphor and its NIR spectroscopy application. ACS Sustain. Chem. Eng. 2021, 9, 3145–3156.
Cheng, X. W.; Zhou, J.; Yue, J. Y.; Wei, Y.; Gao, C.; Xie, X. J.; Huang, L. Recent development in sensitizers for lanthanide-doped upconversion luminescence. Chem. Rev. 2022, 122, 15998–16050.
Heer, S.; Wermuth, M.; Krämer, K.; Ehrentraut, D.; Güdel, H. U. Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG codoped with Cr3+ and Yb3+. J. Lumin. 2001, 94–95, 337–341.
Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Güdel, H. U.; Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346.
Ye, S.; Li, Y. J.; Yu, D. C.; Dong, G. P.; Zhang, Q. Y. Room-temperature upconverted white light from GdMgB5O10:Yb3+, Mn2+. J. Mater. Chem. 2011, 21, 3735–3739.
Ye, S.; Song, E. H.; Ma, E.; Zhang, S. J.; Wang, J.; Chen, X. Y.; Zhang, Q. Y.; Qiu, J. R. Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+, Yb3+, Er3+. Opt. Mater. Express, 2014, 4, 638–648.
Brites, C. D. S.; Marin, R.; Suta, M.; Carneiro Neto, A. N.; Ximendes, E.; Jaque, D.; Carlos, L. D. Spotlight on luminescence thermometry: Basics, challenges, and cutting-edge applications. Adv. Mater. 2023, 35, 2302749.
Brites, C. D. S.; Balabhadra, S.; Carlos, L. D. Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 2019, 7, 1801239.
556
Views
131
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).