AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (19.3 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Anti-thermal quenching upconversion luminescence of Cr3+ in Sc2(WO4)3:Yb/Cr

Yang Wei1,3,§Shuaihao Wu1,§Ran Chen1Chao Sun1Feng Wang1Xinru Ding1Hui Wang1Yanqing Lu3( )Ling Huang1,2 ( )
School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, China
College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China

§ Yang Wei and Shuaihao Wu contributed equally to this work.

Show Author Information

Graphical Abstract

Frenkel defect-induced anti-thermal quenching luminescence of Yb3+ enables anti-thermal quenching upconversion luminescence of Cr3+ in Sc2(WO4)3:Yb/Cr through cooperative sensitization process.

Abstract

Although widely need from various applications, the luminescence of Cr3+ is easily prone to thermal quenching (TQ), causing remarkable intensity reduction as temperature rises, and posing a significant constraint in applications such as high-power lighting, solid-state lasers, and high-temperature optical sensing. Numerous strategies have been reported to realize anti-thermal quenching luminescence (ATQL) of Cr3+. However, researches into anti-thermal quenching upconversion luminescence (ATQUL) of Cr3+ are barely seen. Herein, taking advantage of the enhanced luminescence of Yb3+ facilitated by the Frenkel defects formed within Sc2(WO4)3 (SWO) matrix upon heating, we have established Yb3+ Cr3+ cooperative sensitization pathway for upconversion luminescence of Cr3+, and achieved ATQUL of Cr3+ in SWO:Yb/Cr. Our findings have not only offered novel perspectives for medium to high-temperature applications of Cr3+-based phosphors, the design principles are also extendable to other transition metal ions.

Electronic Supplementary Material

Download File(s)
7097_ESM.pdf (3.3 MB)

References

[1]

Wang, S. W.; Pang, R.; Tan, T.; Wu, H. Y.; Wang, Q.; Li, C. Y.; Zhang, S.; Tan, T. X.; You, H. P.; Zhang, H. J. Achieving high quantum efficiency broadband NIR Mg4Ta2O9: Cr3+ phosphor through lithium-ion compensation. Adv. Mater. 2023, 35, 2300124.

[2]

Xiao, W. E.; Basore, E. T.; Zheng, G. J.; Liu, X. F.; Xu, B. B.; Qiu, J. R. Suppressed concentration quenching brightens short-wave infrared emitters. Adv. Mater. 2023, 35, 2306517.

[3]

Zhong, C. S.; Xu, Y. H.; Wu, X. D.; Yin, S. W.; Zhang, X. B.; Zhou, L.; You, H. P. High output power and high quantum efficiency in novel NIR phosphor MgAlGa0.7B0.3O4:Cr3+ with profound FWHM variation. Adv. Mater. 2024, 36, 2309500.

[4]

Liu, G. C.; Chen, W. B.; Xiong, Z.; Wang, Y. Z.; Zhang, S.; Xia, Z. G. Laser-driven broadband near-infrared light source with watt-level output. Nat. Photonics 2024, 18, 562–568.

[5]

Healy, S. M.; Donnelly, C. J.; Glynn, T. J.; Imbusch, G. F.; Morgan, G. P. Temperature dependence of the luminescence of GSGG:Cr3+. J. Lumin. 1990, 46, 1–7.

[6]

Ristić, Z.; Đorđević, V.; Medić, M.; Kuzman, S.; Brik, M. G.; Antić, Ž.; Dramićanin, M. D. Temperature dependence of the Cr3+-DOPED Mg2TiO4 near-infrared emission. Opt. Mater. 2021, 120, 111468.

[7]

Back, M.; Ueda, J.; Hua, H. S.; Tanabe, S. Predicting the optical pressure sensitivity of 2E → 4A2 spin-flip transition in Cr3+-doped crystals. Chem. Mater. 2021, 33, 3379–3385.

[8]

Szymczak, M.; Runowski, M.; Brik, M. G.; Marciniak, L. Multimodal, super-sensitive luminescent manometer based on giant pressure-induced spectral shift of Cr3+ in the NIR range. Chem. Eng. J. 2023, 466, 143130.

[9]

Liu, S. Q.; Zheng, Y. T.; Peng, D. F.; Zhao, J.; Song, Z.; Liu, Q. L. Near-infrared mechanoluminescence of Cr3+ doped gallate spinel and magnetoplumbite smart materials. Adv. Funct. Mater. 2022, 33, 2209275.

[10]

Liu, Z. C.; Yu, X.; Peng, Q. P.; Zhu, X. D.; Xiao, J. Q.; Xu, J. T.; Jiang, S. X.; Qiu, J. B.; Xu, X. H. NIR mechanoluminescence from Cr3+ activated Y3Al5O12 with intense zero phonon line. Adv. Funct. Mater. 2023, 33, 2214497.

[11]

Jia, Z. W.; Yuan, C. X.; Liu, Y. F.; Wang, X. J.; Sun, P.; Wang, L.; Jiang, H. C.; Jiang, J. Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources. Light Sci. Appl. 2020, 9, 86.

[12]

Dang, P. P.; Wei, Y.; Liu, D. J.; Li, G. G.; Lin, J. Recent advances in chromium-doped near-infrared luminescent materials: Fundamentals, optimization strategies, and applications. Adv. Opt. Mater. 2023, 11, 2201739.

[13]

Zhao, F. Y.; Song, Z.; Liu, Q. L. Advances in chromium-activated phosphors for near-infrared light sources. Laser Photonics Rev. 2022, 16, 2200380.

[14]

Wei, Y.; Liu, Z. N.; Sun, C.; Ding, X. R.; Wu, S. H.; Chen, R.; Wang, F.; Wang, H.; Xing, X. R.; Huang, L. Tunable anti-thermal quenching luminescence of Eu3+-doped metal-organic framework and temperature-dependent photonic coding. Adv. Funct. Mater. 2024, 34, 2401664.

[15]

Wei, Y.; Pan, Y.; Zhou, E. L.; Yuan, Z.; Song, H.; Wang, Y. L.; Zhou, J.; Rui, J. H.; Xu, M. J.; Ning, L. X. et al. Frenkel defect-modulated anti-thermal quenching luminescence in lanthanide-doped Sc2(WO4)3. Angew. Chem., Int. Ed. 2023, 62, e202303482.

[16]

Wang, Y. L.; Rui, J. H.; Song, H.; Yuan, Z.; Huang, X. Q.; Liu, J. Y.; Zhou, J.; Li, C.; Wang, H.; Wu, S. H. et al. Antithermal quenching upconversion luminescence via suppressed multiphonon relaxation in positive/negative thermal expansion core/shell NaYF4:Yb/Ho@ScF3 nanoparticles. J. Am. Chem. Soc. 2024, 146, 6530–6535.

[17]

Zheng, R.; Wei, Y.; Zhang, Z. C.; Wang, Z. Y.; Ma, L. L.; Wang, Y.; Huang, L.; Lu, Y. Q. Stimuli-responsive active materials for dynamic control of light field. Responsive Mater. 2023, 1, e20230017.

[18]

Xu, X. X.; Shao, Q. Y.; Yao, L. Q.; Dong, Y.; Jiang, J. Q. Highly efficient and thermally stable Cr3+-activated silicate phosphors for broadband near-infrared LED applications. Chem. Eng. J. 2020, 383, 123108.

[19]

Wen, D. W.; Liu, H. M.; Guo, Y.; Zeng, Q. G.; Wu, M. M.; Liu, R. S. Disorder-order conversion-induced enhancement of thermal stability of pyroxene near-infrared phosphors for light-emitting diodes. Angew. Chem., Int. Ed. 2022, 61, e202204411.

[20]

Xie, J. H.; Tian, J. H.; Jiang, L. P.; Cao, M.; Zhuang, W. D. An efficient and thermally stable Cr3+-activated Y2GdSc2Al2GaO12 garnet phosphor for NIR spectroscopy applications. Dalton Trans. 2023, 52, 15950–15957.

[21]

Lin, H. H.; Bai, G. X.; Yu, T.; Tsang, M. K.; Zhang, Q. Y.; Hao, J. H. Site occupancy and near-infrared luminescence in Ca3Ga2Ge3O12: Cr3+ persistent phosphor. Adv. Opt. Mater. 2017, 5, 1700227.

[22]

Zhang, H. X.; Wei, J. L.; Chen, W.; Mao, Y. B. Near-infrared-emitting K2CaP2O7:Cr3+ with outstanding thermal stability. ACS Appl. Opt. Mater. 2023, 1, 1595–1604.

[23]

Wu, X. D.; Zhao, S.; Zhang, L.; Dong, L. P.; Xu, Y. H.; Yin, S. W.; You, H. P. Highly thermally stable Cr3+ and Yb3+ codoped Gd2GaSbO7 phosphors for broadband near-infrared applications. Dalton Trans. 2021, 50, 13459–13467.

[24]

Lang, T. C.; Zhao, Q. Y.; Jing, X. L.; Guan, G. X. Y.; Fang, S. Q.; Qiang, Q. P.; Peng, L. L.; Han, T.; Yakovlev, A. N.; Liu, B. T. Highly efficient near-infrared solid solution phosphors with excellent thermal stability and tunable spectra for pc-LED light sources toward NIR spectroscopy applications. Phys. Chem. Chem. Phys. 2023, 25, 25985–25992.

[25]

Ouyang, S.; Yin, J. M.; Su, L. J.; Yao, M. H.; Wang, G. C.; Yang, J. Y.; Molokeev, M. S.; Zhou, Z.; Zhang, S. J.; Xia, M. Highly efficient and thermostable far-red phosphor for promoting root growth in plants. J. Mater. Chem. C 2024, 12, 3272–3279.

[26]

Rajendran, V.; Fang, M. H.; Huang, W. T.; Majewska, N.; Lesniewski, T.; Mahlik, S.; Leniec, G.; Kaczmarek, S. M.; Pang, W. K.; Peterson, V. K. et al. Chromium ion pair luminescence: A strategy in broadband near-infrared light-emitting diode design. J. Am. Chem. Soc. 2021, 143, 19058–19066.

[27]

Yao, L. Q.; Shao, Q. Y.; Shi, M. L.; Shang, T. Q.; Dong, Y.; Liang, C.; He, J. H.; Jiang, J. Q. Efficient ultra-broadband Ga4GeO8:Cr3+ phosphors with tunable peak wavelengths from 835 to 980 nm for NIR pc-LED Application. Adv. Opt. Mater. 2022, 10, 2102229.

[28]

De Guzman, G. N. A.; Fang, M. H.; Liang, C. H.; Bao, Z.; Hu, S. F.; Liu, R. S. [INVITED] Near-infrared phosphors and their full potential: A review on practical applications and future perspectives. J. Lumin. 2020, 219, 116944.

[29]

Fang, M. H.; Huang, P. Y.; Bao, Z.; Majewska, N.; Leśniewski, T.; Mahlik, S.; Grinberg, M.; Leniec, G.; Kaczmarek, S. M.; Yang, C. W. et al. Penetrating biological tissue using light-emitting diodes with a highly efficient near-infrared ScBO3: Cr3+ phosphor. Chem. Mater. 2020, 32, 2166–2171.

[30]

Zhou, Y. P.; Li, X. J.; Seto, T.; Wang, Y. H. A high efficiency trivalent chromium-doped near-infrared-emitting phosphor and its NIR spectroscopy application. ACS Sustain. Chem. Eng. 2021, 9, 3145–3156.

[31]

Cheng, X. W.; Zhou, J.; Yue, J. Y.; Wei, Y.; Gao, C.; Xie, X. J.; Huang, L. Recent development in sensitizers for lanthanide-doped upconversion luminescence. Chem. Rev. 2022, 122, 15998–16050.

[32]

Heer, S.; Wermuth, M.; Krämer, K.; Ehrentraut, D.; Güdel, H. U. Up-conversion excitation of sharp Cr3+ 2E emission in YGG and YAG codoped with Cr3+ and Yb3+. J. Lumin. 2001, 94–95, 337–341.

[33]

Pollnau, M.; Gamelin, D. R.; Lüthi, S. R.; Güdel, H. U.; Hehlen, M. P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346.

[34]

Ye, S.; Li, Y. J.; Yu, D. C.; Dong, G. P.; Zhang, Q. Y. Room-temperature upconverted white light from GdMgB5O10:Yb3+, Mn2+. J. Mater. Chem. 2011, 21, 3735–3739.

[35]

Ye, S.; Song, E. H.; Ma, E.; Zhang, S. J.; Wang, J.; Chen, X. Y.; Zhang, Q. Y.; Qiu, J. R. Broadband Cr3+-sensitized upconversion luminescence in La3Ga5GeO14:Cr3+, Yb3+, Er3+. Opt. Mater. Express, 2014, 4, 638–648.

[36]

Brites, C. D. S.; Marin, R.; Suta, M.; Carneiro Neto, A. N.; Ximendes, E.; Jaque, D.; Carlos, L. D. Spotlight on luminescence thermometry: Basics, challenges, and cutting-edge applications. Adv. Mater. 2023, 35, 2302749.

[37]

Brites, C. D. S.; Balabhadra, S.; Carlos, L. D. Lanthanide-based thermometers: At the cutting-edge of luminescence thermometry. Adv. Opt. Mater. 2019, 7, 1801239.

Nano Research
Article number: 94907097
Cite this article:
Wei Y, Wu S, Chen R, et al. Anti-thermal quenching upconversion luminescence of Cr3+ in Sc2(WO4)3:Yb/Cr. Nano Research, 2025, 18(2): 94907097. https://doi.org/10.26599/NR.2025.94907097
Topics:

556

Views

131

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 23 August 2024
Revised: 17 October 2024
Accepted: 28 October 2024
Published: 26 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return