Metal-organic frameworks (MOFs), with their highly coordinated structure, high porosity, and tunability have piqued vast scientific attention as a promising platform for creating high-efficiency electrocatalysts for water electrolysis. However, the conventional methods of creating MOF-derived electrocatalysts are time- and energy-consuming and often lead to significant aggregation of metal particles and the formation of non-homogeneous porous structures. In this research, we leverage the potential of the MOF-template-directed fabrication approach, combined with microwave heating and laser-assisted post-treatment, to develop a facile, scalable, and versatile strategy for electrocatalyst synthesis. Specifically, hierarchically structured Ni-based MOF-74 was rapidly synthesized from the Ni hydroxide nanosheet arrays deposited onto a Ni foam substrate using microwave-assisted synthesis. Subsequently, the obtained structures were treated using a focused laser to create MOF-74(Ni)-derived composite electrocatalyst featuring encapsulated nickel oxide nanoparticles. The resulting electrocatalyst exhibited high efficiency and stability for facilitating the oxygen evolution reaction (OER) under alkaline conditions. The outstanding electrocatalytic performance of the developed material enables it to reach a current density of 50 mA/cm2 at an overpotential of 318 mV. High electrocatalytic activity can be attributed to its distinctive morphology, which offers numerous exposed active sites for water splitting. The experimental data gathered in this study is anticipated to be of significant value for the synthesis of other MOF-derived composite materials featuring hierarchical structures. Furthermore, the study emphasized the importance of using a combination of microwave heating and laser-assisted post-treatment of MOFs to achieve a sustainable and efficient process for electrocatalyst synthesis.
Bogdanov, D.; Farfan, J.; Sadovskaia, K.; Aghahosseini, A.; Child, M.; Gulagi, A.; Solomon, O.; de Souza Noel Simas Barbosa, L.; Breyer, C. Radical transformation pathway towards sustainable electricity via evolutionary steps. Nat. Commun. 2019, 10, 1077.
Haszeldine, R. S. Carbon capture and storage: How green can black be. Science 2009, 325, 1647–1652.
Ishaq, M.; Ghouse, G.; Fernández-González, R.; Puime-Guillén, F.; Tandir, N.; Santos de Oliveira, H. M. From fossil energy to renewable energy: Why is circular economy needed in the energy transition. Front. Environ. Sci. 2022, 10, 941791.
Geissdoerfer, M.; Savaget, P.; Bocken, N. M. P.; Hultink, E. J. The circular economy—A new sustainability paradigm. J. Clean. Prod. 2017, 143, 757–768.
Daiyan, R.; MacGill, I.; Amal, R. Opportunities and challenges for renewable power-to-X. ACS Energy Lett. 2020, 5, 3843–3847.
Vázquez, F. V.; Koponen, J.; Ruuskanen, V.; Bajamundi, C.; Kosonen, A.; Simell, P.; Ahola, J.; Frilund, C.; Elfving, J.; Reinikainen, M. et al. Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept. J. CO2 Util. 2018, 28, 235–246.
Ruuskanen, V.; Givirovskiy, G.; Elfving, J.; Kokkonen, P.; Karvinen, A.; Järvinen, L.; Sillman, J.; Vainikka, M.; Ahola, J. Neo-Carbon Food concept: A pilot-scale hybrid biological-inorganic system with direct air capture of carbon dioxide. J. Clean. Prod. 2021, 278, 123423.
Ishaq, H.; Dincer, I.; Crawford, C. A review on hydrogen production and utilization: Challenges and opportunities. Int. J. Hydrogen Energy 2022, 47, 26238–26264.
Ursúa, A.; Gandía, L. M.; Sanchis, P. Hydrogen production from water electrolysis: Current status and future trends. Proc. IEEE 2012, 100, 410–426.
Suen, N. T.; Hung, S. F.; Quan, Q.; Zhang, N.; Xu, Y. J.; Chen, H. M. Electrocatalysis for the oxygen evolution reaction: Recent development and future perspectives. Chem. Soc. Rev. 2017, 46, 337–365.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Givirovskiy, G.; Ruuskanen, V.; Kokkonen, P.; Karvinen, A.; Givirovskaia, D.; Repo, E.; Ahola, J. Pilot-scale in situ water electrolyzer with an improved fluid flow and modified electrodes for upscaling hybrid biological-inorganic systems. J. Clean. Prod. 2021, 314, 128001.
Wang, S.; Lu, A. L.; Zhong, C. J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4.
Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.
Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.
Kumaravel, S.; Karthick, K.; Sankar, S. S.; Karmakar, A.; Madhu, R.; Bera, K.; Kundu, S. Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustain. Energy Fuels 2021, 5, 6215–6268.
Zhan, Y.; Lu, M. H.; Yang, S. L.; Xu, C. H.; Liu, Z. L.; Lee, J. Y. Activity of transition-metal (manganese, iron, cobalt, and nickel) phosphates for oxygen electrocatalysis in Alkaline Solution. ChemCatChem 2016, 8, 372–379.
Gupta, S.; Patel, M. K.; Miotello, A.; Patel, N. Metal boride-based catalysts for electrochemical water-splitting: A review. Adv. Funct. Mater. 2020, 30, 1906481.
Su, H.; Jiang, J.; Song, S. J.; An, B. H.; Li, N.; Gao, Y. Q.; Ge, L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chin. J. Catal. 2023, 44, 7–49.
Jiao, L.; Seow, J. Y. R.; Skinner, W. S.; Wang, Z. U.; Jiang, H. L. Metal-organic frameworks: Structures and functional applications. Mater. Today 2019, 27, 43–68.
Givirovskaia, D.; Givirovskiy, G.; Haapakoski, M.; Hokkanen, S.; Ruuskanen, V.; Salo, S.; Marjomäki, V.; Ahola, J.; Repo, E. Modification of face masks with zeolite imidazolate framework-8: A tool for hindering the spread of COVID-19 infection. Microporous Mesoporous Mater. 2022, 334, 111760.
Cui, Y. J.; Li, B.; He, H. J.; Zhou, W.; Chen, B. L.; Qian, G. D. Metal-organic frameworks as platforms for functional materials. Acc. Chem. Res. 2016, 49, 483–493.
Zheng, W. R.; Lee, L. Y. S. Metal-organic frameworks for electrocatalysis: Catalyst or precatalyst. ACS Energy Lett. 2021, 6, 2838–2843.
Zhou, J.; Dou, Y. B.; Zhou, A. W.; Guo, R. M.; Zhao, M. J.; Li, J. R. MOF template-directed fabrication of hierarchically structured electrocatalysts for efficient oxygen evolution reaction. Adv. Energy Mater. 2017, 7, 1602643.
Cai, G. R.; Zhang, W.; Jiao, L.; Yu, S. H.; Jiang, H. L. Template-directed growth of well-aligned mof arrays and derived self-supporting electrodes for water splitting. Chem 2017, 2, 791–802.
Sun, Y. J.; Zhou, H. C. Recent progress in the synthesis of metal-organic frameworks. Sci. Technol. Adv. Mater. 2015, 16, 054202.
Zhu, Y. J.; Chen, F. Microwave-assisted preparation of inorganic nanostructures in liquid phase. Chem. Rev. 2014, 114, 6462–6555.
Thomas-Hillman, I.; Laybourn, A.; Dodds, C.; Kingman, S. W. Realising the environmental benefits of metal-organic frameworks: Recent advances in microwave synthesis. J. Mater. Chem. A 2018, 6, 11564–11581.
Kumar, A.; Kuang, Y.; Liang, Z.; Sun, X. M. Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: A review. Mater. Today Nano 2020, 11, 100076.
Chen, C. W.; Feng, X. B.; Zhu, Q.; Dong, R.; Yang, R.; Cheng, Y.; He, C. Microwave-assisted rapid synthesis of well-shaped MOF-74 (Ni) for CO2 efficient capture. Inorg. Chem. 2019, 58, 2717–2728.
Vakili, R.; Xu, S. J.; Al-Janabi, N.; Gorgojo, P.; Holmes, S. M.; Fan, X. L. Microwave-assisted synthesis of zirconium-based metal organic frameworks (MOFs): Optimization and gas adsorption. Microporous Mesoporous Mater. 2018, 260, 45–53.
Zhong, M.; Kong, L. J.; Zhao, K.; Zhang, Y. H.; Li, N.; Bu, X. H. Recent progress of nanoscale metal-organic frameworks in synthesis and battery applications. Adv. Sci. 2021, 8, 2001980.
Zhang, B.; Zheng, Y. J.; Ma, T.; Yang, C. D.; Peng, Y. F.; Zhou, Z. H.; Zhou, M.; Li, S.; Wang, Y. H.; Cheng, C. Designing MOF nanoarchitectures for electrochemical water splitting. Adv. Mater. 2021, 33, 2006042.
Lux, L.; Williams, K.; Ma, S. Q. Heat-treatment of metal-organic frameworks for green energy applications. CrystEngComm 2015, 17, 10–22.
Alli, R. D.; Zhou, R. F.; Mohamedali, M.; Mahinpey, N. Effect of thermal treatment conditions on the stability of MOF-derived Ni/CeO2 catalyst for dry reforming of methane. Chem. Eng. J. 2023, 466, 143242.
Guo, S. L.; Gao, M.; Zhang, W.; Liu, F.; Guo, X. Y.; Zhou, K. Recent advances in laser-induced synthesis of MOF derivatives. Adv. Mater. 2023, 35, 2303065.
Tang, Y. J.; Zheng, H.; Wang, Y.; Zhang, W.; Zhou, K. Laser-induced annealing of metal-organic frameworks on conductive substrates for electrochemical water splitting. Adv. Funct. Mater. 2021, 31, 2102648.
Yan, W.; Jiang, H. Q.; Yi, W. D.; Zhao, C. B.; Xia, Y. C.; Cong, H. J.; Tang, L.; Cheng, G. J.; He, J. H.; Deng, H. X. High-entropy-alloy nanoparticles synthesized by laser metallurgy using a multivariate MOF. Mater. Chem. Front. 2022, 6, 2796–2802.
Kawashima, K.; Márquez, R. A.; Son, Y. J.; Guo, C.; Vaidyula, R. R.; Smith, L. A.; Chukwuneke, C. E.; Mullins, C. B. Accurate potentials of Hg/HgO electrodes: Practical parameters for reporting alkaline water electrolysis overpotentials. ACS Catal. 2023, 13, 1893–1898.
Aykut, Y.; Bayrakçeken Yurtcan, A. Nanostructured electrocatalysts for low-temperature water splitting: A review. Electrochim. Acta 2023, 471, 143335.
Yi, X. R.; Sun, H. P.; Robertson, N.; Kirk, C. Nanoflower Ni(OH)2 grown in situ on Ni foam for high-performance supercapacitor electrode materials. Sustain. Energy Fuels 2021, 5, 5236–5246.
Cao, J.; Zhang, Z. J.; Li, H. C.; Zhu, R. T.; Li, S. B.; Ma, L.; Zhou, K. C.; Wei, Q. P.; Luo, F. H. Facile preparation of nickel hydroxide nanoplates on nickel foam for high performance hydrogen generation. Sustain. Energy Fuels 2020, 4, 5031–5035.
Nakatsuka, K.; Yoshii, T.; Kuwahara, Y.; Mori, K.; Yamashita, H. Controlled pyrolysis of Ni-MOF-74 as a promising precursor for the creation of highly active Ni nanocatalysts in size-selective hydrogenation. Chem.—Eur. J. 2018, 24, 898–905.
Chen, S. R.; Xue, M.; Li, Y. Q.; Pan, Y.; Zhu, L. K.; Qiu, S. L. Rational design and synthesis of Ni x Co3– x O4 nanoparticles derived from multivariate MOF-74 for supercapacitors. J. Mater. Chem. A 2015, 3, 20145–20152.
Du, X. Q.; Yang, Z.; Li, Y.; Gong, Y. Q.; Zhao, M. Controlled synthesis of Ni(OH)2/Ni3S2 hybrid nanosheet arrays as highly active and stable electrocatalysts for water splitting. J. Mater. Chem. A 2018, 6, 6938–6946.
Xie, S. Z.; Qin, Q. J.; Liu, H.; Jin, L. J.; Wei, X. L.; Liu, J. X.; Liu, X.; Yao, Y. C.; Dong, L. H.; Li, B. MOF-74-M (M = Mn, Co, Ni, Zn, MnCo, MnNi, and MnZn) for low-temperature NH3-SCR and in situ DRIFTS study reaction mechanism. ACS Appl. Mater. Interfaces 2020, 12, 48476–48485.
Halder, M.; Islam, M.; Singh, P.; Singha Roy, A.; Islam, S. M.; Sen, K. Sustainable generation of Ni(OH)2 nanoparticles for the green synthesis of 5-substituted 1H-tetrazoles: A competent turn on fluorescence sensing of H2O2. ACS Omega 2018, 3, 8169–8180.
Hayat, A.; Mane, S. K. B.; Shaishta, N.; Khan, J.; Hayat, A.; Keyum, G.; Uddin, I.; Raziq, F.; Khan, M.; Manjunatha, G. Nickel oxide nano-particles on 3D nickel foam substrate as a non-enzymatic glucose sensor. J. Electrochem. Soc. 2019, 166, B1602–B1611.
Gogoi, P.; Saikia, B. J.; Dolui, S. K. Effects of Nickel Oxide (NiO) nanoparticles on the performance characteristics of the jatropha oil based alkyd and epoxy blends. J. Appl. Polym. Sci. 2015, 132, 41490.
Zhou, J. J.; Ji, W. X.; Xu, L.; Yang, Y.; Wang, W. Q.; Ding, H. L.; Xu, X. C.; Wang, W. W.; Zhang, P. L.; Hua, Z. L. et al. Controllable transformation of CoNi-MOF-74 on Ni foam into hierarchical-porous Co(OH)2/Ni(OH)2 micro-rods with ultra-high specific surface area for energy storage. Chem. Eng. J. 2022, 428, 132123.
Dubey, P.; Kaurav, N.; Devan, R. S.; Okram, G. S.; Kuo, Y. K. The effect of stoichiometry on the structural, thermal and electronic properties of thermally decomposed nickel oxide. RSC Adv. 2018, 8, 5882–5890.
Payne, B. P.; Biesinger, M. C.; McIntyre, N. S. Use of oxygen/nickel ratios in the XPS characterisation of oxide phases on nickel metal and nickel alloy surfaces. J. Electron Spectros. Relat. Phenomena 2012, 185, 159–166.
Liu, Q. Q.; Yue, K. F.; Weng, X. J.; Wang, Y. Y. Luminescence sensing and supercapacitor performances of a new (3,3)-connected Cd-MOF. CrystEngComm 2019, 21, 6186–6195.
Wang, X.; Liu, J. Y.; Wang, Y. Y.; Zhao, C. M.; Zheng, W. T. Ni(OH)2 nanoflakes electrodeposited on Ni foam-supported vertically oriented graphene nanosheets for application in asymmetric supercapacitors. Mater. Res. Bull. 2014, 52, 89–95.
Milazzo, R. G.; Privitera, S. M. S.; Scalese, S.; Monforte, F.; Bongiorno, C.; Condorelli, G. G.; Lombardo, S. A. Ultralow loading electroless deposition of IrO x on nickel foam for efficient and stable water oxidation catalysis. Int. J. Hydrogen Energy 2020, 45, 26583–26594.
Liu, J. L.; Wang, Z. Y.; Su, K. D.; Xv, D.; Zhao, D.; Li, J. H.; Tong, H. X.; Qian, D.; Yang, C. M.; Lu, Z. G. Self-supported hierarchical IrO2@NiO nanoflake arrays as an efficient and durable catalyst for electrochemical oxygen evolution. ACS Appl. Mater. Interfaces 2019, 11, 25854–25862.
Sun, C. C.; Dong, Q. C.; Yang, J.; Dai, Z. Y.; Lin, J. J.; Chen, P.; Huang, W.; Dong, X. C. Metal-organic framework derived CoSe2 nanoparticles anchored on carbon fibers as bifunctional electrocatalysts for efficient overall water splitting. Nano Res. 2016, 9, 2234–2243.
Qin, F.; Zhao, Z. H.; Alam, K.; Ni, Y. Z.; Robles-Hernandez, F.; Yu, L.; Chen, S.; Ren, Z. F.; Wang, Z. M.; Bao, J. M. Trimetallic NiFeMo for overall electrochemical water splitting with a low cell voltage. ACS Energy Lett. 2018, 3, 546–554.
Lin, Y. P.; Wang, H.; Peng, C. K.; Bu, L. M.; Chiang, C. L.; Tian, K.; Zhao, Y.; Zhao, J. Q.; Lin, Y. G.; Lee, J. M. et al. Co-induced electronic optimization of hierarchical NiFe LDH for oxygen evolution. Small 2020, 16, 2002426.
Ge, J.; Zhang, W.; Tu, J.; Xia, T.; Chen, S. P.; Xie, G. Suppressed Jahn–teller distortion in MnCo2O4@Ni2P heterostructures to promote the overall water splitting. Small 2020, 16, 2001856.
Reier, T.; Oezaslan, M.; Strasser, P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials. ACS Catal. 2012, 2, 1765–1772.
Givirovskiy, G.; Ruuskanen, V.; Väkiparta, T.; Ahola, J. Electrocatalytic performance and cell voltage characteristics of 1st-row transition metal phosphate (TM-Pi) catalysts at neutral pH. Mater. Today Energy 2020, 17, 100426.