In recent years, extensive research and development have been conducted on renewable energies to overcome the problems caused by fossil fuel consumption. In the meantime, the production of hydrogen energy through electrochemical water splitting (EWS) has been limited by various challenges, such as high required overpotential. Additionally, other methods of hydrogen production may lead to environmental problems, such as greenhouse gas emissions. Effective electrocatalysts can significantly mitigate the EWS challenges. Oxy-hydroxide compounds possess unique properties that make them effective electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). Additionally, the utilization of the electrodeposition method, a binder-free technique, enables the production of electrodes exhibiting favorable electrocatalytic activity and stability. This review article provides an overview of the challenges associated with the EWS technique, highlighting the importance of transition metal oxy-hydroxide electrodes in facilitating the HER and OER reactions. Additionally, the paper evaluates the effectiveness of fabricated transition metal oxy-hydroxide electrodes through electrodeposition and suggests potential areas for future research on EWS.
Younas, M.; Shafique, S.; Hafeez, A.; Javed, F.; Rehman, F. An overview of hydrogen production: Current status, potential, and challenges. Fuel 2022, 316, 123317.
Dawood, F.; Anda, M.; Shafiullah, G. M. Hydrogen production for energy: An overview. Int. J. Hydrog. Energy 2020, 45, 3847–3869.
Nikolaidis, P.; Poullikkas, A. A comparative overview of hydrogen production processes. Renew. Sustain. Energy Rev. 2017, 67, 597–611.
Kumar, S. S.; Himabindu, V. Hydrogen production by PEM water electrolysis—A review. Mater. Sci. Energy Technol. 2019, 2, 442–454.
Ghazvini, M.; Sadeghzadeh, M.; Ahmadi, M. H.; Moosavi, S.; Pourfayaz, F. Geothermal energy use in hydrogen production: A review. Int. J. Energy Res. 2019, 43, 7823–7851.
Acar, C.; Dincer, I. Review and evaluation of hydrogen production options for better environment. J. Clean. Prod. 2019, 218, 835–849.
Abdalla, A. M.; Hossain, S.; Nisfindy, O. B.; Azad, A. T.; Dawood, M.; Azad, A. K. Hydrogen production, storage, transportation and key challenges with applications: A review. Energy Convers. Manage. 2018, 165, 602–627.
Volk, E. K.; Kreider, M. E.; Kwon, S.; Alia, S. M. Recent progress in understanding the catalyst layer in anion exchange membrane electrolyzers—Durability, utilization, and integration. EES Catal. 2024, 2, 109–137.
Sugawara, Y.; Sankar, S.; Miyanishi, S.; Illathvalappil, R.; Gangadharan, P. K.; Kuroki, H.; Anilkumar, G. M.; Yamaguchi, T. Anion exchange membrane water electrolyzers: An overview. J. Chem. Eng. Japan 2023, 56, 2210195.
Hua, D. X.; Huang, J. Z.; Fabbri, E.; Rafique, M.; Song, B. Development of anion exchange membrane water electrolysis and the associated challenges: A review. ChemElectroChem 2023, 10, e202200999.
Li, C. Q.; Baek, J. B. The promise of hydrogen production from alkaline anion exchange membrane electrolyzers. Nano Energy 2021, 87, 106162.
Zhang, N.; Xiong, Y. J. Lattice oxygen activation for enhanced electrochemical oxygen evolution. J. Phys. Chem. C 2023, 127, 2147–2159.
Razmi, A. R.; Hanifi, A. R.; Shahbakhti, M. Design, thermodynamic, and economic analyses of a green hydrogen storage concept based on solid oxide electrolyzer/fuel cells and heliostat solar field. Renew. Energy 2023, 215, 118996.
Sun, H. N.; Xu, X. M.; Kim, H.; Jung, W.; Zhou, W.; Shao, Z. P. Electrochemical water splitting: Bridging the gaps between fundamental research and industrial applications. Energy Environ. Mater. 2023, 6, e12441.
Paygozar, S.; Aghdam, A. S. R.; Hassanizadeh, E.; Andaveh, R.; Darband, G. B. Recent progress in non-noble metal-based electrocatalysts for urea-assisted electrochemical hydrogen production. Int. J. Hydrog. Energy 2023, 48, 7219–7259.
Lee, J. E.; Jeon, K. J.; Show, P. L.; Lee, I. H.; Jung, S. C.; Choi, Y. J.; Rhee, G. H.; Lin, K. Y. A.; Park, Y. K. Mini review on H2 production from electrochemical water splitting according to special nanostructured morphology of electrocatalysts. Fuel 2022, 308, 122048.
Gong, Y. X.; Yao, J. S.; Wang, P.; Li, Z.; Zhou, H.; Xu, C. Perspective of hydrogen energy and recent progress in electrocatalytic water splitting. Chin. J. Chem. Eng. 2022, 43, 282–296.
Wang, S.; Lu, A. L.; Zhong, C. J. Hydrogen production from water electrolysis: Role of catalysts. Nano Converg. 2021, 8, 4.
Song, J. J.; Wei, C.; Huang, Z. F.; Liu, C. T.; Zeng, L.; Wang, X.; Xu, Z. J. A review on fundamentals for designing oxygen evolution electrocatalysts. Chem. Soc. Rev. 2020, 49, 2196–2214.
Gu, X. K.; Camayang, J. C. A.; Samira, S.; Nikolla, E. Oxygen evolution electrocatalysis using mixed metal oxides under acidic conditions: Challenges and opportunities. J. Catal. 2020, 388, 130–140.
Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.
Kumaravel, S.; Karthick, K.; Sankar, S. S.; Karmakar, A.; Madhu, R.; Bera, K.; Kundu, S. Current progressions in transition metal based hydroxides as bi-functional catalysts towards electrocatalytic total water splitting. Sustain. Energy Fuels 2021, 5, 6215–6268.
Sun, H. M.; Yan, Z. H.; Liu, F. M.; Xu, W. C.; Cheng, F. Y.; Chen, J. Self-supported transition-metal-based electrocatalysts for hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 1806326.
Liu, Q. F.; Wang, E. D.; Sun, G. Q. Layered transition-metal hydroxides for alkaline hydrogen evolution reaction. Chin. J. Catal. 2020, 41, 574–591.
Lei, L.; Huang, D. L.; Zhou, C. Y.; Chen, S.; Yan, X. L.; Li, Z. H.; Wang, W. J. Demystifying the active roles of NiFe-based oxides/(oxy)hydroxides for electrochemical water splitting under alkaline conditions. Coord. Chem. Rev. 2020, 408, 213177.
Anantharaj, S.; Karthick, K.; Kundu, S. Evolution of layered double hydroxides (LDH) as high performance water oxidation electrocatalysts: A review with insights on structure, activity and mechanism. Mater. Today Energy 2017, 6, 1–26.
Dionigi, F.; Strasser, P. NiFe-based (oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.
Xiong, W.; Yin, H. H.; Wu, T. X.; Li, H. Challenges and opportunities of transition metal oxides as electrocatalysts. Chem.—Eur. J. 2023, 29, e202202872.
Al-Naggar, A. H.; Shinde, N. M.; Kim, J. S.; Mane, R. S. Water splitting performance of metal and non-metal-doped transition metal oxide electrocatalysts. Coord. Chem. Rev. 2023, 474, 214864.
Wang, H. X.; Zhang, K. H. L.; Hofmann, J. P.; de la Peña O’Shea, V. A.; Oropeza, F. E. The electronic structure of transition metal oxides for oxygen evolution reaction. J. Mater. Chem. A 2021, 9, 19465–19488.
Zhu, Y. L.; Lin, Q.; Zhong, Y. J.; Tahini, H. A.; Shao, Z. P.; Wang, H. T. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392.
Zhang, L. H.; Fan, Q.; Li, K.; Zhang, S.; Ma, X. B. First-row transition metal oxide oxygen evolution electrocatalysts: Regulation strategies and mechanistic understandings. Sustain. Energy Fuels 2020, 4, 5417–5432.
Ibrahim, K. B.; Tsai, M. C.; Chala, S. A.; Berihun, M. K.; Kahsay, A. W.; Berhe, T. A.; Su, W. N.; Hwang, B. J. A review of transition metal-based bifunctional oxygen electrocatalysts. J. Chin. Chem. Soc. 2019, 66, 829–865.
Bonnefont, A.; Ryabova, A. S.; Schott, T.; Kéranguéven, G.; Istomin, S. Y.; Antipov, E. V.; Savinova, E. R. Challenges in the understanding oxygen reduction electrocatalysis on transition metal oxides. Curr. Opin. Electrochem. 2019, 14, 23–31.
Song, F.; Bai, L. C.; Moysiadou, A.; Lee, S.; Hu, C.; Liardet, L.; Hu, X. L. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: An application-inspired renaissance. J. Am. Chem. Soc. 2018, 140, 7748–7759.
Karmakar, A.; Chavan, H. S.; Jeong, S. M.; Cho, J. S. Mixed transition metal carbonate hydroxide-based nanostructured electrocatalysts for alkaline oxygen evolution: Status and perspectives. Adv. Energy Sustain. Res. 2022, 3, 2200071.
Ding, J. T.; Fan, T.; Shen, K.; Li, Y. W. Electrochemical synthesis of amorphous metal hydroxide microarrays with rich defects from MOFs for efficient electrocatalytic water oxidation. Appl. Catal. B: Environ. 2021, 292, 120174.
Dai, L.; Chen, Z. N.; Li, L. X.; Yin, P. Q.; Liu, Z. Q.; Zhang, H. Ultrathin Ni(0)-embedded Ni(OH)2 heterostructured nanosheets with enhanced electrochemical overall water splitting. Adv. Mater. 2020, 32, 1906915.
Zhang, J.; Cui, R. J.; Gao, C. C.; Bian, L. Y.; Pu, Y.; Zhu, X. B.; Li, X. A.; Huang, W. Cation-modulated HER and OER activities of hierarchical VOOH hollow architectures for high-efficiency and stable overall water splitting. Small 2019, 15, 1904688.
Zhu, Z. J.; Yin, H. J.; He, C. T.; Al-Mamun, M.; Liu, P. R.; Jiang, L. X.; Zhao, Y.; Wang, Y.; Yang, H. G.; Tang, Z. Y. et al. Ultrathin transition metal dichalcogenide/3d metal hydroxide hybridized nanosheets to enhance hydrogen evolution activity. Adv. Mater. 2018, 30, 1801171.
Yang, L. L.; Zhang, B.; Ma, W. J.; Du, Y. C.; Han, X. J.; Xu, P. Pearson’s principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. Mater. Chem. Front. 2018, 2, 1523–1528.
Liu, B.; Wang, Y.; Peng, H. Q.; Yang, R. O.; Jiang, Z.; Zhou, X. T.; Lee, C. S.; Zhao, H. J.; Zhang, W. J. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 2018, 30, 1803144.
Wang, Y. C.; Zhang, M.; Liu, Y. Y.; Zheng, Z. K.; Liu, B. Y.; Chen, M.; Guan, G. Q.; Yan, K. Recent advances on transition-metal-based layered double hydroxides nanosheets for electrocatalytic energy conversion. Adv. Sci. 2023, 10, 2207519.
Zhou, D. J.; Li, P. S.; Lin, X.; McKinley, A.; Kuang, Y.; Liu, W.; Lin, W. F.; Sun, X. M.; Duan, X. Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: Identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chem. Soc. Rev. 2021, 50, 8790–8817.
Yu, J.; Yu, F.; Yuen, M. F.; Wang, C. D. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 9389–9430.
Lu, L.; Zheng, Y.; Yang, R.; Kakimov, A.; Li, X. Recent advances of layered double hydroxides-based bifunctional electrocatalysts for ORR and OER. Mater. Today Chem. 2021, 21, 100488.
Gao, R.; Zhu, J.; Yan, D. P. Transition metal-based layered double hydroxides for photo(electro)chemical water splitting: A mini review. Nanoscale 2021, 13, 13593–13603.
Cai, Z. Y.; Bu, X. M.; Wang, P.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5069–5089.
Islam, S.; Kim, M.; Jin, X. Y.; Oh, S. M.; Lee, N. S.; Kim, H.; Hwang, S. J. Bifunctional 2D superlattice electrocatalysts of layered double hydroxide-transition metal dichalcogenide active for overall water splitting. ACS Energy Lett. 2018, 3, 952–960.
Yao, Y. H.; Zhang, Z. Y.; Jiao, L. F. Development strategies in transition metal borides for electrochemical water splitting. Energy Environ. Mater. 2022, 5, 470–485.
Sun, Y. H.; Zhao, Y.; Deng, X. Y.; Dai, D. M.; Gao, H. T. An efficient amorphous ternary transition metal boride (WFeNiB) electrocatalyst for oxygen evolution from water. Sustain. Energy Fuels 2022, 6, 1345–1352.
Chen, L. L.; Zhang, J.; Lu, B.; Liu, H. X.; Wu, R. B.; Guo, Y. H. 3D well-ordered wood substrate coupled transition metal boride as efficient electrode for water splitting. Int. J. Hydrog. Energy 2022, 47, 35571–35580.
Wang, D. D.; Song, Y. F.; Zhang, H. X.; Yan, X. L.; Guo, J. J. Recent advances in transition metal borides for electrocatalytic oxygen evolution reaction. J. Electroanal. Chem. 2020, 861, 113953.
Jiang, Y. Y.; Lu, Y. Z. Designing transition-metal-boride-based electrocatalysts for applications in electrochemical water splitting. Nanoscale 2020, 12, 9327–9351.
Dutta, S.; Han, H.; Je, M.; Choi, H.; Kwon, J.; Park, K.; Indra, A.; Kim, K. M.; Paik, U.; Song, T. Chemical and structural engineering of transition metal boride towards excellent and sustainable hydrogen evolution reaction. Nano Energy 2020, 67, 104245.
Cui, L.; Zhang, W. X.; Zheng, R. K.; Liu, J. Q. Electrocatalysts based on transition metal borides and borates for the oxygen evolution reaction. Chem.—Eur. J. 2020, 26, 11661–11672.
Zeng, R.; Yang, Y.; Feng, X. R.; Li, H. Q.; Gibbs, L. M.; DiSalvo, F. J.; Abruña, H. D. Nonprecious transition metal nitrides as efficient oxygen reduction electrocatalysts for alkaline fuel cells. Sci. Adv. 2022, 8, eabj1584.
Meng, Z. H.; Zheng, S. H.; Luo, R.; Tang, H. B.; Wang, R.; Zhang, R. M.; Tian, T.; Tang, H. L. Transition metal nitrides for electrocatalytic application: Progress and rational design. Nanomaterials 2022, 12, 2660.
Lin, L. W.; Piao, S. Q.; Choi, Y.; Lyu, L. L.; Hong, H.; Kim, D.; Lee, J.; Zhang, W.; Piao, Y. Z. Nanostructured transition metal nitrides as emerging electrocatalysts for water electrolysis: Status and challenges. EnergyChem 2022, 4, 100072.
Ali, A.; Long, F.; Shen, P. K. Innovative strategies for overall water splitting using nanostructured transition metal electrocatalysts. Electrochem. Energy Rev. 2022, 5, 1.
Theerthagiri, J.; Lee, S. J.; Murthy, A. P.; Madhavan, J.; Choi, M. Y. Fundamental aspects and recent advances in transition metal nitrides as electrocatalysts for hydrogen evolution reaction: A review. Curr. Opin. Solid State Mater. Sci. 2020, 24, 100805.
Shi, J.; Jiang, B. L.; Li, C.; Yan, F. Y.; Wang, D.; Yang, C.; Wan, J. J. Review of transition metal nitrides and transition metal nitrides/carbon nanocomposites for supercapacitor electrodes. Mater. Chem. Phys. 2020, 245, 122533.
Tareen, A. K.; Priyanga, G. S.; Khan, K.; Pervaiz, E.; Thomas, T.; Yang, M. H. Nickel-based transition metal nitride electrocatalysts for the oxygen evolution reaction. ChemSusChem 2019, 12, 3941–3954.
Peng, X.; Pi, C. R.; Zhang, X. M.; Li, S.; Huo, K. F.; Chu, P. K. Recent progress of transition metal nitrides for efficient electrocatalytic water splitting. Sustain. Energy Fuels 2019, 3, 366–381.
Joo, S. H.; Lee, J. S. Metal carbides as alternative electrocatalysts for energy conversion reactions. J. Catal. 2021, 404, 911–924.
Yu, Y. D.; Zhou, J.; Sun, Z. M. Novel 2D transition-metal carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction. Adv. Funct. Mater. 2020, 30, 2000570.
Wang, Y. F.; Wu, Q. M.; Zhang, B. C.; Tian, L.; Li, K. X.; Zhang, X. L. Recent advances in transition metal carbide electrocatalysts for oxygen evolution reaction. Catalysts 2020, 10, 1164.
Sinopoli, A.; Othman, Z.; Rasool, K.; Mahmoud, K. A. Electrocatalytic/photocatalytic properties and aqueous media applications of 2D transition metal carbides (MXenes). Curr. Opin. Solid State Mater. Sci. 2019, 23, 100760.
Gao, Q. S.; Zhang, W. B.; Shi, Z. P.; Yang, L. C.; Tang, Y. Structural design and electronic modulation of transition-metal-carbide electrocatalysts toward efficient hydrogen evolution. Adv. Mater. 2019, 31, 1802880.
Zang, X. N.; Chen, W. S.; Zou, X. L.; Hohman, J. N.; Yang, L. J.; Li, B. X.; Wei, M. S.; Zhu, C. H.; Liang, J. M.; Sanghadasa, M. et al. Self-assembly of large-area 2D polycrystalline transition metal carbides for hydrogen electrocatalysis. Adv. Mater. 2018, 30, 1805188.
Meyer, S.; Nikiforov, A. V.; Petrushina, I. M.; Köhler, K.; Christensen, E.; Jensen, J. O.; Bjerrum, N. J. Transition metal carbides (WC, Mo2C, TaC, NbC) as potential electrocatalysts for the hydrogen evolution reaction (HER) at medium temperatures. Int. J. Hydrog. Energy 2015, 40, 2905–2911.
He, W. J.; Wang, F. Q.; Gao, Y. H.; Hao, Q. Y.; Liu, C. C. One-step synthesis of amorphous transition metal sulfides as bifunctional electrocatalysts for the hydrogen evolution reaction and oxygen evolution reaction. Sustain. Energy Fuels 2022, 6, 3852–3857.
Zhou, Y. N.; Zhu, Y. R.; Chen, X. Y.; Dong, B.; Li, Q. Z.; Chai, Y. M. Carbon-based transition metal sulfides/selenides nanostructures for electrocatalytic water splitting. J. Alloys Compd. 2021, 852, 156810.
Wang, M.; Zhang, L.; He, Y. J.; Zhu, H. W. Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2021, 9, 5320–5363.
Guo, Y. N.; Park, T.; Yi, J. W.; Henzie, J.; Kim, J.; Wang, Z. L.; Jiang, B.; Bando, Y.; Sugahara, Y.; Tang, J. et al. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv. Mater. 2019, 31, 1807134.
Peng, L. S.; Shah, S. S. A.; Wei, Z. D. Recent developments in metal phosphide and sulfide electrocatalysts for oxygen evolution reaction. Chin. J. Catal. 2018, 39, 1575–1593.
Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.
Darband, G. B.; Maleki, M.; Toghraei, A.; Shanmugam, S. Electrodeposition of self-supported transition metal phosphides nanosheets as efficient hydrazine-assisted electrolytic hydrogen production catalyst. Int. J. Hydrog. Energy 2023, 48, 4253–4263.
Li, X. T.; Xing, W. L.; Hu, T.; Luo, K. Y.; Wang, J.; Tang, W. W. Recent advances in transition-metal phosphide electrocatalysts: Synthetic approach, improvement strategies and environmental applications. Coord. Chem. Rev. 2022, 473, 214811.
Theerthagiri, J.; Murthy, A. P.; Lee, S. J.; Karuppasamy, K.; Arumugam, S. R.; Yu, Y.; Hanafiah, M. M.; Kim, H. S.; Mittal, V.; Choi, M. Y. Recent progress on synthetic strategies and applications of transition metal phosphides in energy storage and conversion. Ceram. Int. 2021, 47, 4404–4425.
Li, Y.; Li, R. P.; Wang, D.; Xu, H.; Meng, F.; Dong, D. R.; Jiang, J.; Zhang, J. Q.; An, M. Z.; Yang, P. X. A review: Target-oriented transition metal phosphide design and synthesis for water splitting. Int. J. Hydrog. Energy 2021, 46, 5131–5149.
Man, H. W.; Tsang, C. S.; Li, M. M. J.; Mo, J. Y.; Huang, B. L.; Lee, L. Y. S.; Leung, Y. C.; Wong, K. Y.; Tsang, S. C. E. Transition metal-doped nickel phosphide nanoparticles as electro-and photocatalysts for hydrogen generation reactions. Appl. Catal. B: Environ. 2019, 242, 186–193.
Zhang, Y.; Xiao, J.; Lv, Q. Y.; Wang, S. Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes. Front. Chem. Sci. Eng. 2018, 12, 494–508.
Liu, K. W.; Zhang, C. L.; Sun, Y. D.; Zhang, G. H.; Shen, X. C.; Zou, F.; Zhang, H. C.; Wu, Z. W.; Wegener, E. C.; Taubert, C. J. et al. High-performance transition metal phosphide alloy catalyst for oxygen evolution reaction. ACS Nano 2018, 12, 158–167.
Read, C. G.; Callejas, J. F.; Holder, C. F.; Schaak, R. E. General strategy for the synthesis of transition metal phosphide films for electrocatalytic hydrogen and oxygen evolution. ACS Appl. Mater. Interfaces 2016, 8, 12798–12803.
Andaveh, R.; Rouhaghdam, A. S.; Ai, J. P.; Maleki, M.; Wang, K.; Seif, A.; Darband, G. B.; Li, J. Y. Boosting the electrocatalytic activity of NiSe by introducing MnCo as an efficient heterostructured electrocatalyst for large-current-density alkaline seawater splitting. Appl. Catal. B: Environ. 2023, 325, 122355.
Maleki, M.; Sabour Rouhaghdam, A.; Barati Darband, G.; Han, D. B.; Shanmugam, S. Highly active and durable NiCoSeP nanostructured electrocatalyst for large-current-density hydrogen production. ACS Appl. Energy Mater. 2022, 5, 2937–2948.
Maleki, M.; Rouhaghdam, A. S.; Darband, G. B.; Han, D. B.; Chehelamirani, M.; Shanmugam, S. Binder-free P-doped Ni-Se nanostructure electrode toward highly active and stable hydrogen production in wide pH range and seawater. J. Electroanal. Chem. 2022, 916, 116379.
Maleki, M.; Darband, G. B.; Rouhaghdam, A. S.; Andaveh, R.; Kazemi, Z. M. Mn-incorporated nickel selenide: An ultra-active bifunctional electrocatalyst for hydrogen evolution and urea oxidation reactions. Chem. Commun. 2022, 58, 3545–3548.
Hussain, I.; Sahoo, S.; Lamiel, C.; Nguyen, T. T.; Ahmed, M.; Xi, C.; Iqbal, S.; Ali, A.; Abbas, N.; Javed, M. S. et al. Research progress and future aspects: Metal selenides as effective electrodes. Energy Storage Mater. 2022, 47, 13–43.
Arabi, M.; Ghaffarinejad, A.; Darband, G. B. Electrodeposition of nanoporous nickel selenide on graphite rod as a bifunctional electrocatalyst for hydrogen and oxygen evolution reactions. J. Electroanal. Chem. 2022, 907, 116066.
Xia, X. Y.; Wang, L. J.; Sui, N.; Colvin, V. L.; Yu, W. W. Recent progress in transition metal selenide electrocatalysts for water splitting. Nanoscale 2020, 12, 12249–12262.
Su, H.; Jiang, J.; Song, S. J.; An, B. H.; Li, N.; Gao, Y. Q.; Ge, L. Recent progress on design and applications of transition metal chalcogenide-associated electrocatalysts for the overall water splitting. Chin. J. Catal. 2023, 44, 7–49.
Tiwari, A. P.; Kim, K.; Jeon, S. Improving intrinsic electrocatalytic activity of layered transition metal chalcogenides as electrocatalysts for water splitting. Curr. Opin. Electrochem. 2022, 34, 100982.
Nath, M.; Singh, H.; Saxena, A. Progress of transition metal chalcogenides as efficient electrocatalysts for energy conversion. Curr. Opin. Electrochem. 2022, 34, 100993.
Chen, Z. J.; Wei, W.; Ni, B. J. Transition metal chalcogenides as emerging electrocatalysts for urea electrolysis. Curr. Opin. Electrochem. 2022, 31, 100888.
Siegmund, D.; Blanc, N.; Smialkowski, M.; Tschulik, K.; Apfel, U. P. Metal-rich chalcogenides for electrocatalytic hydrogen evolution: Activity of electrodes and bulk materials. ChemElectroChem 2020, 7, 1514–1527.
Huang, J. B.; Jiang, Y.; An, T. Y.; Cao, M. H. Increasing the active sites and intrinsic activity of transition metal chalcogenide electrocatalysts for enhanced water splitting. J. Mater. Chem. A 2020, 8, 25465–25498.
Anantharaj, S.; Kundu, S.; Noda, S. Progress in nickel chalcogenide electrocatalyzed hydrogen evolution reaction. J. Mater. Chem. A 2020, 8, 4174–4192.
Amin, H. M.; Apfel, U. P. Metal-rich chalcogenides as sustainable electrocatalysts for oxygen evolution and reduction: State of the art and future perspectives. Eur. J. Inorg. Chem. 2020, 2020, 2679–2690.
Tiwari, A. P.; Novak, T. G.; Bu, X. M.; Ho, J. C.; Jeon, S. Layered ternary and quaternary transition metal chalcogenide based catalysts for water splitting. Catalysts 2018, 8, 551.
Tiwari, A. P.; Kim, D.; Kim, Y.; Prakash, O.; Lee, H. Highly active and stable layered ternary transition metal chalcogenide for hydrogen evolution reaction. Nano Energy 2016, 28, 366–372.
Zhou, T. N.; Huo, Y. Y.; Lei, N. N.; Gong, Y. Q. Modified cobalt oxalate heterostructure catalyst P–FeOOH@CoC2O4/NF for a highly efficient oxygen evolution reaction. Int. J. Hydrog. Energy 2023, 48, 4738–4749.
Yang, H. Y.; Cheng, Z. F.; Wu, P. C.; Wei, Y. H.; Jiang, J. Y.; Xu, Q. Deep eutectic solvents regulation synthesis of multi-metal oxalate for electrocatalytic oxygen evolution reaction and supercapacitor applications. Electrochim. Acta 2022, 427, 140879.
Ghosh, S.; Jana, R.; Ganguli, S.; Inta, H. R.; Tudu, G.; Koppisetti, H. V. S. R. M.; Datta, A.; Mahalingam, V. Nickel-cobalt oxalate as an efficient non-precious electrocatalyst for an improved alkaline oxygen evolution reaction. Nanoscale Adv. 2021, 3, 3770–3779.
Li, N.; Li, Q.; Guo, X. T.; Yuan, M. J.; Pang, H. Controllable synthesis of oxalate and oxalate-derived nanomaterials for applications in electrochemistry. Chem. Eng. J. 2019, 372, 551–571.
Gao, X. Q.; Chen, D. D.; Qi, J.; Li, F.; Song, Y. J.; Zhang, W.; Cao, R. NiFe oxalate nanomesh array with homogenous doping of Fe for electrocatalytic water oxidation. Small 2019, 15, 1904579.
Liu, X. M.; Jiang, J.; Ai, L. H. Non-precious cobalt oxalate microstructures as highly efficient electrocatalysts for oxygen evolution reaction. J. Mater. Chem. A 2015, 3, 9707–9713.
Shah, S. S. A.; Khan, N. A.; Imran, M.; Rashid, M.; Tufail, M. K.; Rehman, A. U.; Balkourani, G.; Sohail, M.; Najam, T.; Tsiakaras, P. Recent advances in transition metal tellurides (TMTs) and phosphides (TMPs) for hydrogen evolution electrocatalysis. Membranes 2023, 13, 113.
Jo, S.; Liu, W. X.; Yue, Y. N.; Shin, K. H.; Lee, K. B.; Choi, H.; Hou, B.; Sohn, J. I. Novel ternary metals-based telluride electrocatalyst with synergistic effects of high valence non-3d metal and oxophilic Te for pH-universal hydrogen evolution reaction. J. Energy Chem. 2023, 80, 736–743.
Qi, Y.; Yang, Z.; Dong, Y. C.; Bao, X. Q.; Bai, J. L.; Li, H.; Wang, M. T.; Xiong, D. H. A CoNi telluride heterostructure supported on Ni foam as an efficient electrocatalyst for the oxygen evolution reaction. Inorg. Chem. Front. 2022, 9, 5240–5251.
Amorim, I.; Liu, L. F. Transition metal tellurides as emerging catalysts for electrochemical water splitting. Curr. Opin. Electrochem. 2022, 34, 101031.
Nath, M.; De Silva, U.; Singh, H.; Perkins, M.; Liyanage, W. P. R.; Umapathi, S.; Chakravarty, S.; Masud, J. Cobalt telluride: A highly efficient trifunctional electrocatalyst for water splitting and oxygen reduction. ACS Appl. Energy Mater. 2021, 4, 8158–8174.
Li, W. J.; Chen, J. P.; Zhang, Y.; Gong, W. M.; Sun, M. M.; Wang, Y. Y.; Wang, X. X.; Rao, H. B.; Ye, J. S.; Lu, Z. W. Hollow Fe/Ni-CoTe@NCFs nanoarchitecture derived from MOF@MOF as high-efficiency electrocatalysts for boosting oxygen evolution reaction. Int. J. Hydrog. Energy 2021, 46, 39912–39920.
Xu, J.; Yin, Y. Q.; Xiong, H. Q.; Du, X. D.; Jiang, Y. J.; Guo, W.; Wang, Z.; Xie, Z. Z.; Qu, D. Y.; Tang, H. L. et al. Improving catalytic activity of metal telluride by hybridization: An efficient Ni3Te2-CoTe composite electrocatalyst for oxygen evolution reaction. Appl. Surf. Sci. 2019, 490, 516–521.
Sadaqat, M.; Nisar, L.; Babar, N. U. A.; Hussain, F.; Ashiq, M. N.; Shah, A.; Ehsan, M. F.; Najam-Ul-Haq, M.; Joya, K. S. Zinc-telluride nanospheres as an efficient water oxidation electrocatalyst displaying a low overpotential for oxygen evolution. J. Mater. Chem. A 2019, 7, 26410–26420.
De Silva, U.; Masud, J.; Zhang, N.; Hong, Y.; Liyanage, W. P. R.; Zaeem, M. A.; Nath, M. Nickel telluride as a bifunctional electrocatalyst for efficient water splitting in alkaline medium. J. Mater. Chem. A 2018, 6, 7608–7622.
Wang, K.; Ye, Z. G.; Liu, C. Q.; Xi, D.; Zhou, C. J.; Shi, Z. Q.; Xia, H. Y.; Liu, G. W.; Qiao, G. J. Morphology-controllable synthesis of cobalt telluride branched nanostructures on carbon fiber paper as electrocatalysts for hydrogen evolution reaction. ACS Appl. Mater. Interfaces 2016, 8, 2910–2916.
Asgari, M.; Darband, G. B.; Monirvaghefi, M. Electroless deposition of Ni-W-Mo-Co-P films as a binder-free, efficient and durable electrode for electrochemical hydrogen evolution. Electrochim. Acta 2023, 446, 142001.
Lotfi, N.; Barati Darband, G. Energy-saving electrochemical hydrogen production on dynamic hydrogen bubble-template electrodeposited Ni-Cu-Mn nano-micro dendrite. J. Electrochem. Soc. 2022, 169, 096508.
Li, Q.; Zhang, W. X.; Shen, J.; Zhang, X. Y.; Liu, Z.; Liu, J. Q. Trimetallic nanoplate arrays of Ni-Fe-Mo sulfide on FeNi3 foam: A highly efficient and bifunctional electrocatalyst for overall water splitting. J. Alloys Compd. 2022, 902, 163670.
Zhang, K. X.; Zou, R. Q. Advanced transition metal-based OER electrocatalysts: Current status, opportunities, and challenges. Small 2021, 17, 2100129.
Inamdar, A. I.; Chavan, H. S.; Hou, B.; Lee, C. H.; Lee, S. U.; Cha, S.; Kim, H.; Im, H. A robust nonprecious CuFe composite as a highly efficient bifunctional catalyst for overall electrochemical water splitting. Small 2020, 16, 1905884.
Zhang, Q. R.; Webster, R. F.; Cheong, S.; Tilley, R. D.; Lu, X. Y.; Amal, R. Ultrathin Fe-N-C nanosheets coordinated Fe-doped CoNi alloy nanoparticles for electrochemical water splitting. Part. Part. Syst. Charact. 2019, 36, 1800252.
Gao, W.; Wen, D.; Ho, J. C.; Qu, Y. Incorporation of rare earth elements with transition metal-based materials for electrocatalysis: A review for recent progress. Mater. Today Chem. 2019, 12, 266–281.
Wang, C. H.; Wang, Y.; Yang, H. C.; Zhang, Y. J.; Zhao, H. J.; Wang, Q. B. Revealing the role of electrocatalyst crystal structure on oxygen evolution reaction with nickel as an example. Small 2018, 14, 1802895.
Wu, Z. P.; Lu, X. F.; Zang, S. Q.; Lou, X. W. Non-noble-metal-based electrocatalysts toward the oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 1910274.
Liu, Y.; Wang, W.; Xu, X. M.; Veder, J. P. M.; Shao, Z. P. Recent advances in anion-doped metal oxides for catalytic applications. J. Mater. Chem. A 2019, 7, 7280–7300.
Yu, Z. Y.; Bai, Y.; Tsekouras, G.; Cheng, Z. X. Recent advances in Ni-Fe (oxy)hydroxide electrocatalysts for the oxygen evolution reaction in alkaline electrolyte targeting industrial applications. Nano Select 2022, 3, 766–791.
Xie, X. H.; Du, L.; Yan, L. T.; Park, S.; Qiu, Y.; Sokolowski, J.; Wang, W.; Shao, Y. Y. Oxygen evolution reaction in alkaline environment: Material challenges and solutions. Adv. Funct. Mater. 2022, 32, 2110036.
Andaveh, R.; Darband, G. B.; Maleki, M.; Rouhaghdam, A. S. Superaerophobic/superhydrophilic surfaces as advanced electrocatalysts for the hydrogen evolution reaction: A comprehensive review. J. Mater. Chem. A 2022, 10, 5147–5173.
Krivina, R. A.; Ou, Y. Q.; Xu, Q. C.; Twight, L. P.; Stovall, T. N.; Boettcher, S. W. Oxygen electrocatalysis on mixed-metal oxides/oxyhydroxides: From fundamentals to membrane electrolyzer technology. Acc. Mater. Res. 2021, 2, 548–558.
Yang, W.; Chen, S. W. Recent progress in electrode fabrication for electrocatalytic hydrogen evolution reaction: A mini review. Chem. Eng. J. 2020, 393, 124726.
Yan, Z. H.; Liu, H. H.; Hao, Z. M.; Yu, M.; Chen, X.; Chen, J. Electrodeposition of (hydro)oxides for an oxygen evolution electrode. Chem. Sci. 2020, 11, 10614–10625.
Zhao, H. Y.; Fan, R. Y.; Zhao, Z. Y.; Zhang, X. Y.; Dong, B.; Lv, Q. X.; Liu, X.; Liu, B.; Chai, Y. M. Precipitation/dissolution equilibrium to achieve trace iron doping on the surface of β-Ni(OH)2 for electrocatalytic oxygen evolution. Fuel 2023, 332, 125780.
Patil, A. S.; Patil, A. V.; Dighavkar, C. G.; Adole, V. A.; Tupe, U. J. Synthesis techniques and applications of rare earth metal oxides semiconductors: A review. Chem. Phys. Lett. 2022, 796, 139555.
Gonçalves, J. M.; Martins, P. R.; Angnes, L.; Araki, K. Recent advances in ternary layered double hydroxide electrocatalysts for the oxygen evolution reaction. New J. Chem. 2020, 44, 9981–9997.
Hall, D. S.; Lockwood, D. J.; Bock, C.; MacDougall, B. R. Nickel hydroxides and related materials: A review of their structures, synthesis and properties. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 2015, 471, 20140792.
Chen, D.; Liu, Z. F.; Zhang, S. C. Enhanced PEC performance of hematite photoanode coupled with bimetallic oxyhydroxide NiFeOOH through a simple electroless method. Appl. Catal. B: Environ. 2020, 265, 118580.
Suryawanshi, M. P.; Shin, S. W.; Ghorpade, U. V.; Kim, J.; Jeong, H. W.; Kang, S. H.; Kim, J. H. A facile, one-step electroless deposition of NiFeOOH nanosheets onto photoanodes for highly durable and efficient solar water oxidation. J. Mater. Chem. A 2018, 6, 20678–20685.
Suryawanshi, M. P.; Ghorpade, U. V.; Shin, S. W.; Suryawanshi, U. P.; Shim, H. J.; Kang, S. H.; Kim, J. H. Facile, room temperature, electroless deposited (Fe1− x , Mn x )OOH nanosheets as advanced catalysts: The role of Mn incorporation. Small 2018, 14, 1801226.
He, Z. Y.; Zhang, J.; Gong, Z. H.; Lei, H.; Zhou, D.; Zhang, N.; Mai, W. J.; Zhao, S. J.; Chen, Y. Activating lattice oxygen in NiFe-based (oxy)hydroxide for water electrolysis. Nat. Commun. 2022, 13, 2191.
Chen, J. S.; Li, H.; Chen, S. M.; Fei, J. Y.; Liu, C.; Yu, Z. X.; Shin, K.; Liu, Z. W.; Song, L.; Henkelman, G. et al. Co–Fe–Cr (oxy)hydroxides as efficient oxygen evolution reaction catalysts. Adv. Energy Mater. 2021, 11, 2003412.
Tang, C.; Wang, H. F.; Wang, H. S.; Wei, F.; Zhang, Q. Guest–host modulation of multi-metallic (oxy)hydroxides for superb water oxidation. J. Mater. Chem. A 2016, 4, 3210–3216.
Sahoo, D. P.; Das, K. K.; Mansingh, S.; Sultana, S.; Parida, K. Recent progress in first row transition metal layered double hydroxide (LDH) based electrocatalysts towards water splitting: A review with insights on synthesis. Coord. Chem. Rev. 2022, 469, 214666.
Wan, L.; Wang, P. C. Recent progress on self-supported two-dimensional transition metal hydroxides nanosheets for electrochemical energy storage and conversion. Int. J. Hydrog. Energy 2021, 46, 8356–8376.
Rohit, R. C.; Jagadale, A. D.; Shinde, S. K.; Kim, D. Y. A review on electrodeposited layered double hydroxides for energy and environmental applications. Mater. Today Commun. 2021, 27, 102275.
Huang, C. Q.; Zhong, Y. H.; Chen, J. X.; Li, J.; Zhang, W.; Zhou, J. Q.; Zhang, Y. L.; Yu, L.; Yu, Y. Fe induced nanostructure reorganization and electronic structure modulation over CoNi (oxy)hydroxide nanorod arrays for boosting oxygen evolution reaction. Chem. Eng. J. 2021, 403, 126304.
Zhang, Q. R.; Bedford, N. M.; Pan, J.; Lu, X. Y.; Amal, R. A fully reversible water electrolyzer cell made up from FeCoNi (oxy)hydroxide atomic layers. Adv. Energy Mater. 2019, 9, 1901312.
Xiong, M.; Ivey, D. G. Synthesis of bifunctional catalysts for metal-air batteries through direct deposition methods. Batter. Supercaps 2019, 2, 326–335.
Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.
Dette, C.; Hurst, M. R.; Deng, J.; Nellist, M. R.; Boettcher, S. W. Structural evolution of metal (oxy)hydroxide nanosheets during the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 5590–5594.
Karmakar, A.; Karthick, K.; Sankar, S. S.; Kumaravel, S.; Madhu, R.; Kundu, S. A vast exploration of improvising synthetic strategies for enhancing the OER kinetics of LDH structures: A review. J. Mater. Chem. A 2021, 9, 1314–1352.
Yan, K.; Wu, G. S.; Jin, W. Recent advances in the synthesis of layered, double-hydroxide-based materials and their applications in hydrogen and oxygen evolution. Energy Technol. 2016, 4, 354–368.
Hou, Z. F.; Wang, Z. Y.; Wang, Z.; Deng, Y. Q.; Du, Y. S. Heterostructural NiSe-CoFe LDH as a highly effective and stable electrocatalyst for the oxygen evolution reaction. Dalton Trans. 2023, 52, 10064–10070.
Sagu, J. S.; Mehta, D.; Wijayantha, K. U. Electrocatalytic activity of CoFe2O4 thin films prepared by AACVD towards the oxygen evolution reaction in alkaline media. Electrochem. Commun. 2018, 87, 1–4.
Weidler, N.; Schuch, J.; Knaus, F.; Stenner, P.; Hoch, S.; Maljusch, A.; Schäfer, R.; Kaiser, B.; Jaegermann, W. X-ray photoelectron spectroscopic investigation of plasma-enhanced chemical vapor deposited NiO x , NiO x (OH) y , and CoNiO x (OH) y : Influence of the chemical composition on the catalytic activity for the oxygen evolution reaction. J. Phys. Chem. C 2017, 121, 6455–6463.
Sagu, J. S.; Wijayantha, K. G. U.; Tahir, A. A. The pseudocapacitive nature of CoFe2O4 thin films. Electrochim. Acta 2017, 246, 870–878.
Mazzi, A.; Bazzanella, N.; Orlandi, M.; Edla, R.; Patel, N.; Fernandes, R.; Miotello, A. Physical vapor deposition of mixed-metal oxides based on Fe, Co and Ni as water oxidation catalysts. Mater. Sci. Semicond. Process. 2016, 42, 155–158.
Orlandi, M.; Caramori, S.; Ronconi, F.; Bignozzi, C. A.; El Koura, Z.; Bazzanella, N.; Meda, L.; Miotello, A. Pulsed-laser deposition of nanostructured iron oxide catalysts for efficient water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 6186–6190.
Wang, S. L.; Zhu, J. Y.; Wu, X.; Feng, L. G. Microwave-assisted hydrothermal synthesis of NiMoO4 nanorods for high-performance urea electrooxidation. Chin. Chem. Lett. 2022, 33, 1105–1109.
Faraji, S.; Ani, F. N. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—A review. J. Power Sources 2014, 263, 338–360.
Alegre, C.; Busacca, C.; Di Blasi, A.; Di Blasi, O.; Aricò, A. S.; Antonucci, V.; Baglio, V. Toward more efficient and stable bifunctional electrocatalysts for oxygen electrodes using FeCo2O4/carbon nanofiber prepared by electrospinning. Mater. Today Energy 2020, 18, 100508.
Xue, J. J.; Wu, T.; Dai, Y. Q.; Xia, Y. N. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019, 119, 5298–5415.
Guo, Z. G.; Ye, W.; Fang, X. Y.; Wan, J.; Ye, Y. Y.; Dong, Y. Y.; Cao, D.; Yan, D. P. Amorphous cobalt-iron hydroxides as high-efficiency oxygen-evolution catalysts based on a facile electrospinning process. Inorg. Chem. Front. 2019, 6, 687–693.
Alegre, C.; Busacca, C.; Di Blasi, A.; Di Blasi, O.; Aricò, A.; Antonucci, V.; Modica, E.; Baglio, V. Electrospun carbon nanofibers loaded with spinel-type cobalt oxide as bifunctional catalysts for enhanced oxygen electrocatalysis. J. Energy Storage 2019, 23, 269–277.
Chen, H.; Huang, X. X.; Zhou, L. J.; Li, G. D.; Fan, M. H.; Zou, X. X. Electrospinning synthesis of bimetallic nickel-iron oxide/carbon composite nanofibers for efficient water oxidation electrocatalysis. ChemCatChem 2016, 8, 992–1000.
An, C. H.; Wang, T. Y.; Wang, S. K.; Chen, X. D.; Han, X. P.; Wu, S.; Deng, Q. B.; Zhao, L. B.; Hu, N. Ultrasonic-assisted preparation of two-dimensional materials for electrocatalysts. Ultrason. Sonochem. 2023, 98, 106503.
Baig, M. M.; Gul, I. H.; Ahmad, R.; Baig, S. M.; Khan, M. Z.; Iqbal, N. One-step sonochemical synthesis of NiMn-LDH for supercapacitors and overall water splitting. J. Mater. Sci. 2021, 56, 18636–18649.
Foruzin, L. J.; Rezvani, Z. Ultrasonication construction of the nano-petal NiCoFe-layered double hydroxide: An excellent water oxidation electrocatalyst. Ultrason. Sonochem. 2020, 64, 104919.
Lee, E.; Park, A. H.; Park, H. U.; Kwon, Y. U. Facile sonochemical synthesis of amorphous NiFe-(oxy)hydroxide nanoparticles as superior electrocatalysts for oxygen evolution reaction. Ultrason. Sonochem. 2018, 40, 552–557.
Li, B.; Chen, S. M.; Tian, J.; Gong, M.; Xu, H. X.; Song, L. Amorphous nickel-iron oxides/carbon nanohybrids for an efficient and durable oxygen evolution reaction. Nano Res. 2017, 10, 3629–3637.
Xu, D. Y.; Stevens, M. B.; Rui, Y. C.; DeLuca, G.; Boettcher, S. W.; Reichmanis, E.; Li, Y. G.; Zhang, Q. H.; Wang, H. Z. The role of Cr doping in Ni–Fe oxide/(oxy)hydroxide electrocatalysts for oxygen evolution. Electrochim. Acta 2018, 265, 10–18.
Li, X. M.; Li, C. C.; Yoshida, A.; Hao, X. G.; Zuo, Z. J.; Wang, Z. D.; Abudula, A.; Guan, G. Q. Facile fabrication of CuO microcube@Fe-Co3O4 nanosheet array as a high-performance electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 2017, 5, 21740–21749.
Guan, B. Y.; Yu, L.; Lou, X. W. General synthesis of multishell mixed-metal oxyphosphide particles with enhanced electrocatalytic activity in the oxygen evolution reaction. Angew. Chem., Int. Ed. 2017, 56, 2386–2389.
Choi, S.; Park, Y.; Kim, H. J.; Choi, S. I.; Lee, K. Etching to unveil active sites of nanocatalysts for electrocatalysis. Mater. Chem. Front. 2021, 5, 3962–3985.
Zhang, W. H.; Tang, Y. H.; Yu, L. M.; Yu, X. Y. Activating the alkaline hydrogen evolution performance of Mo-incorporated Ni(OH)2 by plasma-induced heterostructure. Appl. Catal. B: Environ. 2020, 260, 118154.
Han, L.; Yu, X. Y.; Lou, X. W. Formation of prussian-blue-analog nanocages via a direct etching method and their conversion into Ni-Co-mixed oxide for enhanced oxygen evolution. Adv. Mater. 2016, 28, 4601–4605.
Lawrence, M. J.; Kolodziej, A.; Rodriguez, P. Controllable synthesis of nanostructured metal oxide and oxyhydroxide materials via electrochemical methods. Curr. Opin. Electrochem. 2018, 10, 7–15.
Miao, Y. Q.; Ouyang, L.; Zhou, S. L.; Xu, L. N.; Yang, Z. Y.; Xiao, M. S.; Ouyang, R. Z. Electrocatalysis and electroanalysis of nickel, its oxides, hydroxides and oxyhydroxides toward small molecules. Biosens. Bioelectron. 2014, 53, 428–439.
Kale, M. B.; Borse, R. A.; Gomaa Abdelkader Mohamed, A.; Wang, Y. B. Electrocatalysts by electrodeposition: Recent advances, synthesis methods, and applications in energy conversion. Adv. Funct. Mater. 2021, 31, 2101313.
Saha, S.; Johnson, M.; Altayaran, F.; Wang, Y. L.; Wang, D. L.; Zhang, Q. F. Electrodeposition fabrication of chalcogenide thin films for photovoltaic applications. Electrochem 2020, 1, 286–321.
Zhao, M. J.; Li, E. M.; Deng, N.; Hu, Y. J.; Li, C. X.; Li, B.; Li, F.; Guo, Z. G.; He, J. B. Indirect electrodeposition of a NiMo@Ni(OH)2MoO x composite catalyst for superior hydrogen production in acidic and alkaline electrolytes. Renew. Energy 2022, 191, 370–379.
Zhang, G. G.; Huang, X. W.; Ma, X.; Liu, Y.; Ying, Y. R.; Guo, X. Y.; Fu, N. Q.; Yu, F.; Wu, H. J.; Zhu, Y. et al. A fast and general approach to produce a carbon coated Janus metal/oxide hybrid for catalytic water splitting. J. Mater. Chem. A 2021, 9, 7606–7616.
Korkmaz, A. R.; Çepni, E.; Doğan, H. Ö. Electrodeposited nickel/chromium(III) oxide nanostructure-modified pencil graphite electrode for enhanced electrocatalytic hydrogen evolution reaction activity. Energy Fuels 2021, 35, 6298–6304.
Jin, Z. Q.; Wang, L.; Chen, T.; Liang, J. M.; Zhang, Q. C.; Peng, W. C.; Li, Y.; Zhang, F. B.; Fan, X. B. Transition metal/metal oxide interface (Ni–Mo–O/Ni4Mo) stabilized on N-doped carbon paper for enhanced hydrogen evolution reaction in alkaline conditions. Ind. Eng. Chem. Res. 2021, 60, 5145–5150.
Kordek, K.; Lorenc-Grabowska, E.; Rutkowski, P. Tailoring the composition of a one-step electrodeposited Co,Ni/Co,Ni(OH)2 composite coating for a highly active hydrogen evolution electrode. Sustain. Energy Fuels 2020, 4, 369–379.
Shen, Y. Q.; Dastafkan, K.; Sun, Q. Q.; Wang, L. Y.; Ma, Y.; Wang, Z. L.; Zhao, C. Improved electrochemical performance of nickel-cobalt hydroxides by electrodeposition of interlayered reduced graphene oxide. Int. J. Hydrog. Energy 2019, 44, 3658–3667.
Farahbakhsh, N.; Sanjabi, S. Activated Cu/Cu2O foam with Ni nanoparticles for electrocatalytic activity enhancement of hydrogen evolution reaction (HER) in acidic media. J. Ind. Eng. Chem. 2019, 70, 211–225.
Zhang, L.; Liu, P. F.; Li, Y. H.; Wang, C. W.; Zu, M. Y.; Fu, H. Q.; Yang, X. H.; Yang, H. G. Accelerating neutral hydrogen evolution with tungsten modulated amorphous metal hydroxides. ACS Catal. 2018, 8, 5200–5205.
Bai, J. J.; Sun, Q. Q.; Wang, Z. L.; Zhao, C. Electrodeposition of cobalt nickel hydroxide composite as a high-efficiency catalyst for hydrogen evolution reactions. J. Electrochem. Soc. 2017, 164, H587–H592.
Li, Z. M.; Xin, S. S.; Zhang, Y. R.; Zhang, Z. F.; Li, C. P.; Li, C. J.; Bao, R.; Yi, J. H.; Xu, M. L.; Wang, J. S. Boosting elementary steps kinetics towards energetic alkaline hydrogen evolution via dual sites on phase-separated Ni–Cu–Mn/hydroxide. Chem. Eng. J. 2023, 451, 138540.
Praveen Kumar, M.; Sasikumar, M.; Arulraj, A.; Rajasudha, V.; Murugadoss, G.; Kumar, M. R.; Gouse Peera, S.; Mangalaraja, R. V. NiFe layered double hydroxide electrocatalyst prepared via an electrochemical deposition method for the oxygen evolution reaction. Catalysts 2022, 12, 1470.
Zhou, H.; Zhang, H.; Lai, C. L.; Wang, H. L.; Hu, J.; Ji, S.; Lei, L. X. Rapidly electrodeposited NiFe(OH) x as the catalyst for oxygen evolution reaction. Inorg. Chem. Commun. 2022, 139, 109350.
Kitiphatpiboon, N.; Chen, M.; Li, X. M.; Liu, C. L.; Li, S. S.; Wang, J. L.; Peng, S.; Abudula, A.; Guan, G. Q. Heterointerface engineering of Ni3S2@NiCo-LDH core–shell structure for efficient oxygen evolution reaction under intermittent conditions. Electrochim. Acta 2022, 435, 141438.
Thangavel, P.; Kim, G.; Kim, K. S. Electrochemical integration of amorphous NiFe (oxy)hydroxides on surface-activated carbon fibers for high-efficiency oxygen evolution in alkaline anion exchange membrane water electrolysis. J. Mater. Chem. A 2021, 9, 14043–14051.
Liao, H. X.; Tan, P. E.; Dong, R.; Jiang, M.; Hu, X. Y.; Lu, L. L.; Wang, Y.; Liu, H. Q.; Liu, Y.; Pan, J. Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction. J. Colloid Interface Sci. 2021, 591, 307–313.
Li, D. J.; Liu, S. Q.; Ye, G. Y.; Zhu, W. W.; Zhao, K. M.; Luo, M.; He, Z. One-step electrodeposition of Ni x Fe3− x O4/Ni hybrid nanosheet arrays as highly active and robust electrocatalysts for the oxygen evolution reaction. Green Chem. 2020, 22, 1710–1719.
Zhang, Z.; Li, X. P.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Han, X. P.; Hu, W. B. Spontaneous synthesis of silver-nanoparticle-decorated transition-metal hydroxides for enhanced oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 7245–7250.
Jadhav, H. S.; Lim, A. C.; Roy, A.; Seo, J. G. Room-temperature ultrafast synthesis of NiCo-layered double hydroxide as an excellent electrocatalyst for water oxidation. ChemistrySelect 2019, 4, 2409–2415.
Babar, P.; Lokhande, A.; Karade, V.; Lee, I. J.; Lee, D.; Pawar, S.; Kim, J. H. Trifunctional layered electrodeposited nickel iron hydroxide electrocatalyst with enhanced performance towards the oxidation of water, urea and hydrazine. J. Colloid Interface Sci. 2019, 557, 10–17.
Fang, G.; Cai, J. H.; Huang, Z. P.; Zhang, C. One-step electrodeposition of cerium-doped nickel hydroxide nanosheets for effective oxygen generation. RSC Adv. 2019, 9, 17891–17896.
Liang, Z.; Ge, X. B.; Liu, J. An amorphous FeNiO x thin film obtained by anodic electrodeposition as an electrocatalyst toward the oxygen evolution reaction. New J. Chem. 2019, 43, 19422–19428.
Jin, W. Y.; Liu, F.; Guo, X. L.; Zhang, J.; Zheng, L. K.; Hu, Y. C.; Mao, J.; Liu, H.; Xue, Y. M.; Tang, C. C. Self-supported CoFe LDH/Co0.85Se nanosheet arrays as efficient electrocatalysts for the oxygen evolution reaction. Catal. Sci. Technol. 2019, 9, 5736–5744.
Zhuang, S. X.; Wang, L. N.; Hu, H. J.; Tang, Y.; Chen, Y. M.; Sun, Y. Z.; Mo, H. L.; Yang, X. J.; Wan, P. Y.; Khan, Z. U. H. Ultrafast electrodeposition of Ni metal and NiFe hydroxide composites with heterogeneous nanostructures as high performance multifunctional electrocatalysts. ChemElectroChem 2018, 5, 2577–2583.
Yan, Z. H.; Sun, H. M.; Chen, X.; Liu, H. H.; Zhao, Y. R.; Li, H. X.; Xie, W.; Cheng, F. Y.; Chen, J. Anion insertion enhanced electrodeposition of robust metal hydroxide/oxide electrodes for oxygen evolution. Nat. Commun. 2018, 9, 2373.
Sakita, A. M. P.; Della Noce, R.; Vallés, E.; Benedetti, A. V. Pulse electrodeposition of CoFe thin films covered with layered double hydroxides as a fast route to prepare enhanced catalysts for oxygen evolution reaction. Appl. Surf. Sci. 2018, 434, 1153–1160.
Balram, A.; Zhang, H. F.; Santhanagopalan, S. Enhanced oxygen evolution reaction electrocatalysis via electrodeposited amorphous α-phase nickel-cobalt hydroxide nanodendrite forests. ACS Appl. Mater. Interfaces 2017, 9, 28355–28365.
Han, S.; Liu, S. Q.; Wang, R.; Liu, X.; Bai, L.; He, Z. One-step electrodeposition of nanocrystalline ZnxCo3− x O4 films with high activity and stability for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2017, 9, 17186–17194.
Yu, X.; Zhang, W. W.; She, L. L.; Zhu, Y. Y.; Fautrelle, Y.; Ren, Z. M.; Cao, G. H.; Lu, X. G.; Li, X. Electrodeposition-derived defect-rich heterogeneous trimetallic sulfide/hydroxide nanotubes/nanobelts for efficient electrocatalytic oxygen production. Chem. Eng. J. 2022, 430, 133073.
Xiao, L.; Bao, W. W.; Zhang, J. J.; Yang, C. M.; Ai, T. T.; Li, Y.; Wei, X. L.; Jiang, P.; Kou, L. J. Interfacial interaction between NiMoP and NiFe-LDH to regulate the electronic structure toward high-efficiency electrocatalytic oxygen evolution reaction. Int. J. Hydrog. Energy 2022, 47, 9230–9238.
Shamloofard, M.; Shahrokhian, S.; Amini, M. K. Mesoporous nanostructures of NiCo-LDH/ZnCo2O4 as an efficient electrocatalyst for oxygen evolution reaction. J. Colloid Interface Sci. 2021, 604, 832–843.
Rajendiran, R.; Chinnadurai, D.; Chen, K.; Selvaraj, A. R.; Prabakar, K.; Li, O. L. Electrodeposited trimetallic NiFeW hydroxide electrocatalysts for efficient water oxidation. ChemSusChem 2021, 14, 1324–1335.
Rohit, R. C.; Jagadale, A. D.; Shinde, S. K.; Kim, D. Y.; Kumbhar, V. S.; Nakayama, M. Hierarchical nanosheets of ternary CoNiFe layered double hydroxide for supercapacitors and oxygen evolution reaction. J. Alloys Compd. 2021, 863, 158081.
Nie, J. H.; Hong, M.; Zhang, X. H.; Huang, J. L.; Meng, Q.; Du, C. C.; Chen, J. H. 3D amorphous NiFe LDH nanosheets electrodeposited on in situ grown NiCoP@NC on nickel foam for remarkably enhanced OER electrocatalytic performance. Dalton Trans. 2020, 49, 4896–4903.
Li, H. X.; Zhang, L. L.; Wang, S. P.; Yu, J. X. Accelerated oxygen evolution kinetics on NiFeAl-layered double hydroxide electrocatalysts with defect sites prepared by electrodeposition. Int. J. Hydrog. Energy 2019, 44, 28556–28565.
Zhuang, S. X.; Tong, S. Y.; Wang, H. L.; Xiong, H. L.; Gong, Y.; Tang, Y.; Liu, J.; Chen, Y. M.; Wan, P. Y. The P/NiFe doped NiMoO4 micro-pillars arrays for highly active and durable hydrogen/oxygen evolution reaction towards overall water splitting. Int. J. Hydrog. Energy 2019, 44, 24546–24558.
Bose, R.; Karuppasamy, K.; Rajan, H.; Velusamy, D. B.; Kim, H. S.; Alfantazi, A. Electrodeposition of unary oxide on a bimetallic hydroxide as a highly active and stable catalyst for water oxidation. ACS Sustain. Chem. Eng. 2019, 7, 16392–16400.
Zhou, Q. Q.; Li, T. T.; Qian, J. J.; Xu, W.; Hu, Y.; Zheng, Y. Q. CuO nanorod arrays shelled with amorphous NiFe layered double hydroxide film for enhanced electrocatalytic water oxidation activity. ACS Appl. Energy Mater. 2018, 1, 1364–1373.
Shang, X.; Yan, K. L.; Lu, S. S.; Dong, B.; Gao, W. K.; Chi, J. Q.; Liu, Z. Z.; Chai, Y. M.; Liu, C. G. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 2017, 363, 44–53.
Bo, X.; Li, Y. B.; Hocking, R. K.; Zhao, C. NiFeCr hydroxide holey nanosheet as advanced electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2017, 9, 41239–41245.
Tong, R.; Xu, M.; Huang, H. M.; Wu, C. R.; Luo, X.; Cao, M. L.; Li, X. X.; Hu, X. S.; Wang, S. P.; Pan, H. 3D V-Ni3S2@CoFe-LDH core–shell electrocatalysts for efficient water oxidation. Int. J. Hydrog. Energy 2021, 46, 39636–39644.
Dajan, F. T.; Sendeku, M. G.; Wu, B. L.; Gao, N.; Anley, E. F.; Tai, J.; Zhan, X. Y.; Wang, Z. X.; Wang, F. M.; He, J. Ce site in amorphous iron oxyhydroxide nanosheet toward enhanced electrochemical water oxidation. Small 2023, 19, 2207999.
Xu, Z. C.; Wang, J. M.; Cai, J. J.; He, Y. T.; Hu, J.; Li, H. J.; Li, Y. T.; Zhou, Y. Electrochemical deposited amorphous bimetallic nickle-iron (oxy)hydroxides electrocatalysts for highly efficient oxygen evolution reaction. Electrocatalysis 2023, 14, 429–436.
Yang, P.; Ren, M. L.; Jin, C. C.; Xing, H. L. Facile synthesis of N and P Co-doped NiMoO4 hollow nanowires and electrochemical deposition of NiFe-layered double hydroxide for boosting overall seawater splitting. J. Electrochem. Soc. 2022, 169, 046511.
Lai, C. G.; Zhou, H.; Ji, S.; Guo, Z. L.; Sun, J.; Wang, H. L.; Nie, L.; Zhang, D. H.; Li, F. J.; Lei, L. X. A hierarchical nickel-iron hydroxide nanosheet from the high voltage cathodic polarization for alkaline water splitting. Int. J. Hydrogen Energy 2022, 47, 34421–34429.
Li, Q.; He, T.; Jiang, X. X.; Lei, Y. L.; Liu, Q. M.; Liu, C. T.; Sun, Z. F.; Chen, S. W.; Zhang, Y. Boosting oxygen evolution activity of nickel iron hydroxide by iron hydroxide colloidal particles. J. Colloid Interface Sci. 2022, 606, 518–525.
Ahn, J.; Park, Y. S.; Lee, S.; Yang, J. C.; Pyo, J.; Lee, J.; Kim, G. H.; Choi, S. M.; Seol, S. K. 3D-printed NiFe-layered double hydroxide pyramid electrodes for enhanced electrocatalytic oxygen evolution reaction. Sci. Rep. 2022, 12, 346.
You, M. Z.; Yi, S. S.; Zhang, G. X.; Long, W. M.; Chen, D. L. Novel trifunctional electrocatalyst of nickel foam supported Co2P/NiMoO4 heterostructures for overall water splitting and urea oxidation. J. Colloid Interface Sci. 2023, 648, 278–286.
Cao, F.; Li, M. Y.; Hu, Y. X.; Wu, X. G.; Li, X.; Meng, X. Y.; Zhang, P.; Li, S.; Qin, G. W. Kinetically accelerated oxygen evolution reaction in metallic (oxy)hydroxides enabled by Cr-dopant and heterostructure. Chem. Eng. J. 2023, 472, 144970.
Liu, J. X.; Shi, Y.; Gu, Y. L.; Lv, Z.; Zhao, L.; Yang, Y.; Zhan, T. R.; Lai, J. P.; Wang, L. Regulate electric double layer for one-step synthesize and modulate the morphology of (oxy)hydroxides. Nano Res. 2024, 17, 3675–3683.
Zhang, L. T.; Wei, H. H.; Li, H.; Su, Z. X.; Gong, X. Q. One-step electrodeposited FeCoW hydroxide as a superior and durable catalyst for electrocatalytic water oxidation. Int. J. Hydrogen Energy 2023, 48, 25390–25397.
Li, H. X.; Zhang, C. Y.; Xiang, W. J.; Amin, M. A.; Na, J.; Wang, S. P.; Yu, J. X.; Yamauchi, Y. Efficient electrocatalysis for oxygen evolution: W-doped NiFe nanosheets with oxygen vacancies constructed by facile electrodeposition and corrosion. Chem. Eng. J. 2023, 452, 139104.
Li, R. P.; Ren, P. H.; Yang, P. X.; Li, Y. Q.; Zhang, H. L.; Liu, A. M.; Wen, S. Z.; Zhang, J. Q.; An, M. Z. Bimetallic co-doping engineering over nickel-based oxy-hydroxide enables high-performance electrocatalytic oxygen evolution. J. Colloid Interface Sci. 2023, 631, 173–181.
Cai, Z. Y.; Wang, P.; Zhang, J. J.; Xu, J. C.; Yan, Y.; Chen, A. Y.; Wang, X. Y. Dual-purpose nickel-iron layered double hydroxides by controlled lanthanide and phosphide incorporation for promoting overall water splitting efficiency. J. Alloys Compd. 2023, 933, 167743.
You, T.; Deng, K.; Liu, P.; Lv, X. B.; Tian, W.; Li, H. J.; Ji, J. Y. Synergism of NiFe layered double hydroxides/phosphides and Co-NC nanorods array for efficient electrocatalytic water splitting. Chem. Eng. J. 2023, 407, 144348.
Nie, F.; Li, Z.; Dai, X. P.; Yin, X. L.; Gan, Y. H.; Yang, Z. H.; Wu, B. Q.; Ren, Z. T.; Cao, Y. H.; Song, W. Y. Interfacial electronic modulation on heterostructured NiSe@CoFe LDH nanoarrays for enhancing oxygen evolution reaction and water splitting by facilitating the deprotonation of OH to O. Chem. Eng. J. 2022, 431, 134080.
Zhang, J. J.; Li, M. Y.; Bao, W. W.; Feng, X. H.; Liu, G.; Yang, C. M.; Guo, N.; Zhang, N. N. Cr-doped NiZn layered double hydroxides with surface reconstruction toward the enhanced water splitting. Colloids Surf. A: Physicochem. Eng. Asp. 2022, 649, 129324.
Wang, Y.; Yang, Y. T.; Wang, X.; Li, P. H.; Shao, H. Y.; Li, T. E.; Liu, H. Y.; Zheng, Q. F.; Hu, J.; Duan, L. M. et al. Electro-synthesized Co(OH)2@CoSe with Co–OH active sites for overall water splitting electrocatalysis. Nanoscale Adv. 2020, 2, 792–797.
Yao, K. L.; Zhai, M. H.; Ni, Y. H. α-Ni(OH)2·0.75H2O nanofilms on Ni foam from simple NiCl2 solution: Fast electrodeposition, formation mechanism and application as an efficient bifunctional electrocatalyst for overall water splitting in alkaline solution. Electrochim. Acta 2019, 301, 87–96.
Xing, Z. C.; Gan, L. F.; Wang, J.; Yang, X. R. Experimental and theoretical insights into sustained water splitting with an electrodeposited nanoporous nickel hydroxide@nickel film as an electrocatalyst. J. Mater. Chem. A 2017, 5, 7744–7748.
Reddy, J.; Duraivel, M.; Senthil, K.; Prabakar, K. Kinetically controlled Mn doping effect on composition tuned CoMn hydroxide nanoflakes for overall water splitting application. ChemCatChem 2022, 14, e202200966.
Gultom, N. S.; Abdullah, H.; Hsu, C. N.; Kuo, D. H. Activating nickel iron layer double hydroxide for alkaline hydrogen evolution reaction and overall water splitting by electrodepositing nickel hydroxide. Chem. Eng. J. 2021, 419, 129608.
Shen, L.; Zhang, Q.; Luo, J.; Fu, H. C.; Chen, X. H.; Wu, L. L.; Luo, H. Q.; Li, N. B. Heteroatoms adjusting amorphous FeMn-based nanosheets via a facile electrodeposition method for full water splitting. ACS Sustain. Chem. Eng. 2021, 9, 5963–5971.
Shit, S.; Bolar, S.; Murmu, N. C.; Kuila, T. Tailoring the bifunctional electrocatalytic activity of electrodeposited molybdenum sulfide/iron oxide heterostructure to achieve excellent overall water splitting. Chem. Eng. J. 2021, 417, 129333.
Liu, Z. H.; Li, S. F.; Wang, F. F.; Li, M. X.; Ni, Y. H. Hierarchically porous FeNi3@FeNi layered double hydroxide nanostructures: One-step fast electrodeposition and highly efficient electrocatalytic performances for overall water splitting. Dalton Trans. 2021, 50, 6306–6314.
Liu, Y. X.; Bai, Y.; Yang, W. W.; Ma, J. H.; Sun, K. N. Self-supported electrode of NiCo-LDH/NiCo2S4/CC with enhanced performance for oxygen evolution reaction and hydrogen evolution reaction. Electrochim. Acta 2021, 367, 137534.
Zhu, S. L.; Duan, G. Y.; Chang, C. P.; Chen, Y. M.; Sun, Y. Z.; Tang, Y.; Wan, P. Y.; Pan, J. Q. Fast electrodeposited nickel-iron hydroxide nanosheets on sintered stainless steel felt as bifunctional electrocatalyts for overall water splitting. ACS Sustain. Chem. Eng. 2020, 8, 9885–9895.
Li, M.; Deng, X. H.; Liang, Y.; Xiang, K.; Wu, D.; Zhao, B.; Yang, H. P.; Luo, J. L.; Fu, X. Z. Co x P@NiCo-LDH heteronanosheet arrays as efficient bifunctional electrocatalysts for co-generation of value-added formate and hydrogen with less-energy consumption. J. Energy Chem. 2020, 50, 314–323.
Huang, Y. X.; Chen, X. J.; Ge, S. P.; Zhang, Q. Q.; Zhang, X. R.; Li, W. P.; Cui, Y. M. Hierarchical FeCo2S4@CoFe layered double hydroxide on Ni foam as a bifunctional electrocatalyst for overall water splitting. Catal. Sci. Technol. 2020, 10, 1292–1298.
Li, X. P.; Wang, Y.; Wang, J. J.; Da, Y. M.; Zhang, J. F.; Li, L. L.; Zhong, C.; Deng, Y. D.; Han, X. P.; Hu, W. B. Sequential electrodeposition of bifunctional catalytically active structures in MoO3/Ni–NiO composite electrocatalysts for selective hydrogen and oxygen evolution. Adv. Mater. 2020, 32, 2003414.
Ji, X. F.; Cheng, C. Q.; Zang, Z. H.; Li, L. L.; Li, X.; Cheng, Y. H.; Yang, X. J.; Yu, X. F.; Lu, Z. M.; Zhang, X. H. et al. Ultrathin and porous δ-FeOOH modified Ni3S2 3D heterostructure nanosheets with excellent alkaline overall water splitting performance. J. Mater. Chem. A 2020, 8, 21199–21207.
Pei, Y.; Ge, Y. C.; Chu, H.; Smith, W.; Dong, P.; Ajayan, P. M.; Ye, M. X.; Shen, J. F. Controlled synthesis of 3D porous structured cobalt-iron based nanosheets by electrodeposition as asymmetric electrodes for ultra-efficient water splitting. Appl. Catal. B: Environ. 2019, 244, 583–593.
Tsai, F. T.; Wang, H. C.; Ke, C. H.; Liaw, W. F. FeCo/FeCoP x O y (OH) z as bifunctional electrodeposited-film electrodes for overall water splitting. ACS Appl. Energy Mater. 2018, 1, 5298–5307.
Nguyen, Q. T.; Nakate, U. T.; Chen, J. Y.; Tran, D. T.; Park, S. Evolution of novel nanostructured MoCoFe-based hydroxides composites toward high-performance electrochemical applications: Overall water splitting and supercapacitor. Compos. Part B: Eng. 2023, 252, 110528.
Guo, T. T.; Chen, L. Y.; Li, Y. W.; Shen, K. Controllable synthesis of ultrathin defect-rich LDH nanoarrays coupled with MOF-derived Co-NC microarrays for efficient overall water splitting. Small 2022, 18, 2107739.
Lv, Q. Y.; Yao, B. X.; Zhang, W. W.; She, L. L.; Ren, W.; Hou, L.; Fautrelle, Y.; Lu, X. G.; Yu, X.; Li, X. Controlled direct electrodeposition of crystalline NiFe/amorphous NiFe-(oxy)hydroxide on NiMo alloy as a highly efficient bifunctional electrocatalyst for overall water splitting. Chem. Eng. J. 2022, 446, 137420.
Lee, Y. J.; Park, S. K. Metal-organic framework-derived hollow CoS x nanoarray coupled with NiFe layered double hydroxides as efficient bifunctional electrocatalyst for overall water splitting. Small 2022, 18, 2200586.
Wang, H. Y.; Chen, L. Y.; Tan, L.; Liu, X. E.; Wen, Y. H.; Hou, W. G.; Zhan, T. R. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358.
Yang, Y.; Xie, Y. C.; Yu, Z. H.; Guo, S. S.; Yuan, M. W.; Yao, H. Q.; Liang, Z. P.; Lu, Y. R.; Chan, T. S.; Li, C. et al. Self-supported NiFe-LDH@CoS x nanosheet arrays grown on nickel foam as efficient bifunctional electrocatalysts for overall water splitting. Chem. Eng. J. 2021, 419, 129512.
Wu, Y. C.; Xu, L.; Xin, W.; Zhang, T. T.; Cao, J. L.; Liu, B. T.; Qiang, Q. P.; Zhou, Z.; Han, T.; Cao, S. X. et al. Rational construction of 3D MoNi/NiMoOx@NiFe LDH with rapid electron transfer for efficient overall water splitting. Electrochim. Acta 2021, 369, 137680.
Liu, F.; Guo, X. Z.; Hou, Y.; Wang, F.; Zou, C.; Yang, H. Hydrothermal combined with electrodeposition construction of a stable Co9S8/Ni3S2@NiFe-LDH heterostructure electrocatalyst for overall water splitting. Sustain. Energy Fuels 2021, 5, 1429–1438.
Lin, Y.; Wang, J. L.; Cao, D. L.; Gong, Y. Q. Hierarchical self-assembly of NiFe-LDH nanosheets on CoFe2O4@Co3S4 nanowires for enhanced overall water splitting. Sustain. Energy Fuels 2020, 4, 1933–1944.
Jadhav, H. S.; Roy, A.; Desalegan, B. Z.; Seo, J. G. An advanced and highly efficient Ce assisted NiFe-LDH electrocatalyst for overall water splitting. Sustain. Energy Fuels 2020, 4, 312–323.
Babar, P.; Lokhande, A.; Karade, V.; Pawar, B.; Gang, M. G.; Pawar, S.; Kim, J. H. Bifunctional 2D electrocatalysts of transition metal hydroxide nanosheet arrays for water splitting and urea electrolysis. ACS Sustain. Chem. Eng. 2019, 7, 10035–10043.
Yang, R.; Zhou, Y. M.; Xing, Y. Y.; Li, D.; Jiang, D. L.; Chen, M.; Shi, W. D.; Yuan, S. Q. Synergistic coupling of CoFe-LDH arrays with NiFe-LDH nanosheet for highly efficient overall water splitting in alkaline media. Appl. Catal. B: Environ. 2019, 253, 131–139.
Chen, Y. F.; Li, J. H.; Liu, T. T.; You, S. H.; Liu, P.; Li, F. J.; Gao, M. Q.; Chen, S. G.; Zhang, F. F. Constructing robust NiFe LDHs-NiFe alloy gradient hybrid bifunctional catalyst for overall water splitting: One-step electrodeposition and surface reconstruction. Rare Met. 2023, 42, 2272–2283.
Srivastava, R.; Bhardwaj, S.; Kumar, A.; Robinson, A. N.; Sultana, J.; Mishra, S. R.; Perez, F.; Gupta, R. K. Bimetallic MnNi-hydroxide electrodeposited on Ni-foam for superior water-splitting and energy storage. Int. J. Hydrogen Energy 2024, 49, 971–983.
Zeng, Z. F.; Gao, Z. F.; Guo, Z. C.; Xu, X. W.; Chen, Y. A.; Li, Y.; Wu, D. D.; Lin, L.; Jia, R. P.; Han, S. Structure and oxygen vacancy engineered CuCo-layered double oxide nanotube arrays as advanced bifunctional electrocatalysts for overall water splitting. Dalton Trans. 2023, 52, 6473–6483.
Zhong, Y. Y.; Wang, S. Z.; Zhang, L. In situ electrochemical metal (Co, Ni) oxide deposition on MoS2 nanosheets for highly efficient electrocatalytic water splitting. New J. Chem. 2023, 47, 4430–4438.
Sun, A. W.; Qiu, Y. L.; Wang, Z. X.; Cui, L.; Xu, H. Z.; Zheng, X. Z.; Xu, J. T.; Liu, J. Q. Interface engineering on super-hydrophilic amorphous/crystalline NiFe-based hydroxide/selenide heterostructure nanoflowers for accelerated industrial overall water splitting at high current density. J. Colloid Interface Sci. 2023, 650, 573–581.
Xiao, Y. P.; Chen, X.; Li, T. L.; Mao, Y. Y.; Liu, C. L.; Chen, Y. C.; Wang, W. J. Mo-doped cobalt hydroxide nanosheets coupled with cobalt phosphide nanoarrays as bifunctional catalyst for efficient and high-stability overall water splitting. Int. J. Hydrogen Energy 2022, 47, 9915–9924.
Wang, S. B.; Xia, Y. S.; Xin, Z. F.; Xu, L. X. Fabrication of the novel NiFe-LDHs @γ-MnOOH nanorod electrocatalyst for effective water oxidation. Catal. Commun. 2023, 173, 106564.
Yang, J. T.; Xuan, H. C.; Yang, J. L.; Liang, X. H.; Li, Y. P.; Yang, J.; Han, P. D. Bimetallic NiMo oxides coupled with 3D Cu x O nanorods for efficient overall water splitting. J. Alloys Compd. 2023, 934, 167908.
Zhang, W. L.; Wang, S.; Wang, Z. S.; Cao, G. X.; Zhang, P.; Liu, C. Constructing the heterostructure of sulfide and layered double hydroxide as bifunctional electrocatalyst for overall water splitting. J. Solid State Electrochem. 2023, 27, 575–583.
Ye, Y. P.; Li, H. Y.; Cao, J.; Liu, X. Y.; Fan, H. G.; Wei, M. B.; Yang, L. L.; Yang, J. H.; Chen, Y. L. Constructing microstructures in nickel-iron layered double hydroxide electrocatalysts by cobalt doping for efficient overall water splitting. Int. J. Hydrogen Energy 2023, 48, 17026–17034.
Jeghan, S. M. N.; Kim, D.; Lee, Y.; Kim, M.; Lee, G. Designing a smart heterojunction coupling of cobalt-iron layered double hydroxide on nickel selenide nanosheets for highly efficient overall water splitting kinetics. Appl. Catal. B: Environ. 2022, 308, 121221.
Wang, Z. Y.; Mou, X. M.; Li, D. R.; Song, C. X.; Wang, D. B. Hierarchical flower-like amorphous nickel sulfide/crystalline CoFe layered double hydroxide heterostructure for overall water splitting. Int. J. Hydrogen Energy 2022, 47, 38124–38133.
Li, Y.; Xu, H.; Yang, P. X.; Li, R. P.; Wang, D.; Ren, P. H.; Ji, S. S.; Lu, X. Y.; Meng, F.; Zhang, J. Q. et al. Interfacial engineering induced highly efficient CoNiP@NiFe layered double hydroxides bifunctional electrocatalyst for water splitting. Mater. Today Energy 2022, 25, 100975.
Li, Y. Y.; Guo, H. R.; Zhang, Y.; Zhang, H. T.; Zhao, J. Y.; Song, R. Hollow Mo-doped NiS x nanoarrays decorated with NiFe layered double-hydroxides for efficient and stable overall water splitting. J. Mater. Chem. A 2022, 10, 18989–18999.