PDF (22.9 MB)
Collect
Submit Manuscript
Review Article | Open Access | Online First

Micro/nanomotors from single modal to multimodal propulsion

Changjin Wu1,2,§ ()Xiaolai Li2,§ ()Ho Cheung Shum1,2, ()
Department of Mechanical Engineering, The University of Hong Kong, Hong Kong 999077, China
Advanced Biomedical Instrumentation Centre, Hong Kong 999077, China
Present address: Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China

§ Changjin Wu and Xiaolai Li contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
This review aims to provide a comprehensive understanding of the propulsion mechanisms, fabrication techniques, and applications of the multimodal micro/nanomotors (MNMs), thereby serving as a springboard for further advancements in the field of MNMs.

Abstract

The realm of micro/nanomotors (MNMs) is continuously witnessing significant advancements, with multimodal propulsion emerging as a potential strategy to address the limitations of single-mode propulsion systems, such as low propulsion efficiency and limited versatility. The multimodal propulsion MNMs hold great promise in addressing challenges of MNM performing tasks in complex environments, offering enhanced adaptability and performance. We comprehensively review the core mechanisms of multimodal propulsion, driven by the combination of chemical, physical, and biological stimuli, and their synergistic effects in driving the movement of these MNMs. Furthermore, we delve into material design innovations in multimodal MNMs, highlighting the importance of metal-based materials, semiconductor-based materials, and polymer-based materials in enhancing their performance and responsiveness. In terms of fabrication techniques, we examine the role of template-assisted synthesis, layer-by-layer assembly, and self-assembly methods in creating complex and precise MNM structures. We specify emerging applications of multimodal MNMs, highlighting their efficacy in precise diagnosis and therapy, environmental remediation, as well as micromanipulation and assembly. Future research directions and perspectives, emphasizing the need for continuous innovation to fully harness the capabilities of these MNMs, are also elaborated. This review aims to provide a comprehensive understanding of the propulsion mechanisms, fabrication techniques, and applications of the multimodal MNMs, thereby serving as a springboard for further advancements in the field of MNMs.

References

[1]

Liu, T. Y.; Xie, L.; Price, C. A. H.; Liu, J.; He, Q.; Kong, B. Controlled propulsion of micro/nanomotors: Operational mechanisms, motion manipulation and potential biomedical applications. Chem. Soc. Rev. 2022, 51, 10083–10119.

[2]

Liu, J. M.; Zhuang, R. C.; Zhou, D. K.; Chang, X. C.; Li, L. Q. Design and manufacturing of micro/nanorobots. Int. J. Extrem. Manuf. 2024, 6, 62006.

[3]

You, M.; Chen, C. R.; Xu, L. L.; Mou, F. Z.; Guan, J. G. Intelligent micro/nanomotors with taxis. Acc. Chem. Res. 2018, 51, 3006–3014.

[4]

Hu, Y.; Liu, W.; Sun, Y. Self-propelled micro-/nanomotors as “on-the-move” platforms: Cleaners, sensors, and reactors. Adv. Funct. Mater. 2022, 32, 2109181.

[5]

Ye, H.; Wang, Y.; Xu, D. D.; Liu, X. J.; Liu, S. M.; Ma, X. Design and fabrication of micro/nano-motors for environmental and sensing applications. Appl. Mater. Today 2021, 23, 101007.

[6]

Peng, F.; Tu, Y. F.; Wilson, D. A. Micro/nanomotors towards in vivo application: Cell, tissue and biofluid. Chem. Soc. Rev. 2017, 46, 5289–5310.

[7]

Parmar, J.; Vilela, D.; Villa, K.; Wang, J.; Sánchez, S. Micro-and nanomotors as active environmental microcleaners and sensors. J. Am. Chem. Soc. 2018, 140, 9317–9331.

[8]

Yang, M. Y.; Guo, X.; Mou, F. Z.; Guan, J. G. Lighting up micro-/nanorobots with fluorescence. Chem. Rev. 2023, 123, 3944–3975.

[9]

Fusi, A. D.; Li, Y. D.; Llopis-Lorente, A.; Patiño, T.; van Hest, J. C. M.; Abdelmohsen, L. K. E. A. Achieving control in micro-/nanomotor mobility. Angew. Chem., Int. Ed. 2023, 62, e202214754.

[10]

Joh, H.; Fan, D. E. Materials and schemes of multimodal reconfigurable micro/nanomachines and robots: Review and perspective. Adv. Mater. 2021, 33, 2101965.

[11]

Xing, Y.; Zhou, M. Y.; Du, X.; Li, X. Y.; Li, J. Q.; Xu, T. L.; Zhang, X. J. Hollow mesoporous carbon@Pt Janus nanomotors with dual response of H2O2 and near-infrared light for active cargo delivery. App. Mater. Today 2019, 17, 85–91.

[12]

Kaang, B. K.; Mestre, R.; Kang, D. C.; Sánchez, S.; Kim, D. P. Scalable and integrated flow synthesis of triple-responsive nano-motors via microfluidic Pickering emulsification. Appl. Mater. Today 2020, 21, 100854.

[13]

He, T.; Yang, Y. H.; Chen, X. B. Propulsion mechanisms of micro/nanorobots: A review. Nanoscale 2024, 16, 12696–12734.

[14]

Zhang, J. T.; Chen, Z. J.; Kankala, R. K.; Wang, S. B.; Chen, A. Z. Self-propelling micro-/nano-motors: Mechanisms, applications, and challenges in drug delivery. Int. J. Pharm. 2021, 596, 120275.

[15]

Yang, Q. L.; Xu, L.; Zhong, W. Z.; Yan, Q. Y.; Gao, Y.; Hong, W. Y.; She, Y. B.; Yang, G. S. Recent advances in motion control of micro/nanomotors. Adv. Intell. Syst. 2020, 2, 2000049.

[16]

Yang, Q. L.; Gao, Y.; Xu, L.; Hong, W. Y.; She, Y. B.; Yang, G. S. Enzyme-driven micro/nanomotors: Recent advances and biomedical applications. Int. J. Biol. Macromol. 2021, 167, 457–469.

[17]

Ji, F. T.; Wang, B.; Zhang, L. Light-triggered catalytic performance enhancement using magnetic nanomotor ensembles. Research 2020, 2020, 6380794.

[18]

Wang, H.; Pumera, M. Emerging materials for the fabrication of micro/nanomotors. Nanoscale 2017, 9, 2109–2116.

[19]

Chang, X. C.; Feng, Y. W.; Guo, B.; Zhou, D. K.; Li, L. Q. Nature-inspired micro/nanomotors. Nanoscale 2022, 14, 219–238.

[20]

Ye, J. M.; Fan, Y. Y.; Niu, G. L.; Zhou, B. L.; Kang, Y.; Ji, X. Y. Intelligent micro/nanomotors: Fabrication, propulsion, and biomedical applications. Nano Today 2024, 55, 102212.

[21]

Wang, H.; Pumera, M. Fabrication of micro/nanoscale motors. Chem. Rev. 2015, 115, 8704–8735.

[22]

Sun, J.; Tan, H. X.; Lan, S. Y.; Peng, F.; Tu, Y. F. Progress on the fabrication strategies of self-propelled micro/nanomotors. JCIS Open 2021, 2, 100011.

[23]

Wang, J. J.; Dong, R. F.; Wu, H. Y.; Cai, Y. P.; Ren, B. Y. A review on artificial micro/nanomotors for cancer-targeted delivery, diagnosis, and therapy. Nano-Micro Lett. 2020, 12, 11.

[24]

Xu, L. L.; Mou, F. Z.; Gong, H. T.; Luo, M.; Guan, J. G. Light-driven micro/nanomotors: From fundamentals to applications. Chem. Soc. Rev. 2017, 46, 6905–6926.

[25]

Dong, R. F.; Cai, Y. P.; Yang, Y. R.; Gao, W.; Ren, B. Y. Photocatalytic micro/nanomotors: From construction to applications. Acc. Chem. Res. 2018, 51, 1940–1947.

[26]

Garcia-Gradilla, V.; Orozco, J.; Sattayasamitsathit, S.; Soto, F.; Kuralay, F.; Pourazary, A.; Katzenberg, A.; Gao, W.; Shen, Y. F.; Wang, J. Functionalized ultrasound-propelled magnetically guided nanomotors: Toward practical biomedical applications. ACS Nano 2013, 7, 9232–9240.

[27]

Ahmed, S.; Wang, W.; Mair, L. O.; Fraleigh, R. D.; Li, S. X.; Castro, L. A.; Hoyos, M.; Huang, T. J.; Mallouk, T. E. Steering acoustically propelled nanowire motors toward cells in a biologically compatible environment using magnetic fields. Langmuir 2013, 29, 16113–16118.

[28]

Aghakhani, A.; Yasa, O.; Wrede, P.; Sitti, M. Acoustically powered surface-slipping mobile microrobots. Proc. Natl. Acad. Sci. USA 2020, 117, 3469–3477.

[29]
Sanchez, S. W.; Li, J. X. Magneto-acoustic hybrid micro-/nanorobot. In Field-Driven Micro and Nanorobots for Biology and Medicine. Sun, Y.; Wang, X.; Yu, J. F., Eds.; Springer: Cham, 2021; pp 165–177.
[30]

Li, J. X.; Li, T. L.; Xu, T. L.; Kiristi, M.; Liu, W. J.; Wu, Z. G.; Wang, J. Magneto-acoustic hybrid nanomotor. Nano Lett. 2015, 15, 4814–4821.

[31]

Li, Z. H.; Bai, L. J.; Zhou, C.; Yan, X. H.; Mair, L.; Zhang, A. N.; Zhang, L.; Wang, W. Highly acid-resistant, magnetically steerable acoustic micromotors prepared by coating gold microrods with Fe3O4 nanoparticles via pH adjustment. Part. Part. Syst. Charact. 2017, 34, 1600277.

[32]

Jiang, W.; Ye, G. Y.; Chen, B. D.; Liu, H. Z. A dual-driven biomimetic microrobot based on optical and magnetic propulsion. J. Micromech. Microeng. 2021, 31, 035003.

[33]

Sun, M. M.; Yang, S. H.; Jiang, J. L.; Wang, Q. Q.; Zhang, L. Multiple magneto-optical microrobotic collectives with selective control in three dimensions under water. Small 2024, 20, 2310769.

[34]

Zhou, D. K.; Gao, Y.; Yang, J. J.; Li, Y. C.; Shao, G. B.; Zhang, G. Y.; Li, T. L.; Li, L. Q. Light-ultrasound driven collective “firework” behavior of nanomotors. Adv. Sci. 2018, 5, 1800122.

[35]

Tang, S. S.; Zhang, F. Y.; Zhao, J.; Talaat, W.; Soto, F.; Karshalev, E.; Chen, C. R.; Hu, Z. H.; Lu, X. L.; Li, J. X. et al. Structure-dependent optical modulation of propulsion and collective behavior of acoustic/light-driven hybrid microbowls. Adv. Funct. Mater. 2019, 29, 1809003.

[36]

Xiao, Z. Y.; Duan, S. F.; Xu, P. Z.; Cui, J. Q.; Zhang, H. P.; Wang, W. Synergistic speed enhancement of an electric-photochemical hybrid micromotor by tilt rectification. ACS Nano 2020, 14, 8658–8667.

[37]

Liang, Z. X.; Joh, H.; Lian, B.; Fan, D. E. Light-stimulated micromotor swarms in an electric field with accurate spatial, temporal, and mode control. Sci. Adv. 2023, 9, eadi9932.

[38]

Sánchez, S.; Soler, L.; Katuri, J. Chemically powered micro-and nanomotors. Angew. Chem., Int. Ed. 2015, 54, 1414–1444.

[39]

Wu, C. J.; Dai, J.; Li, X. F.; Gao, L.; Wang, J. Z.; Liu, J.; Zheng, J.; Zhan, X. J.; Chen, J. W.; Cheng, X. et al. Ion-exchange enabled synthetic swarm. Nat. Nanotechnol. 2021, 16, 288–295.

[40]

Chen, C. R.; Tang, S. S.; Teymourian, H.; Karshalev, E.; Zhang, F. Y.; Li, J. X.; Mou, F. Z.; Liang, Y. Y.; Guan, J. G.; Wang, J. Chemical/light-powered hybrid micromotors with “on-the-fly” optical brakes. Angew. Chem., Int. Ed. 2018, 57, 8110–8114.

[41]

Mou, F. Z.; Kong, L.; Chen, C. R.; Chen, Z. H.; Xu, L. L.; Guan, J. G. Light-controlled propulsion, aggregation and separation of water-fuelled TiO2/Pt Janus submicromotors and their "on-the-fly" photocatalytic activities. Nanoscale 2016, 8, 4976–4983.

[42]

Hong, Y. Y.; Diaz, M.; Córdova-Figueroa, U. M.; Sen, A. Light-driven titanium-dioxide-based reversible microfireworks and micromotor/micropump systems. Adv. Funct. Mater. 2010, 20, 1568–1576.

[43]

Chen, C. R.; Mou, F. Z.; Xu, L. L.; Wang, S. F.; Guan, J. G.; Feng, Z. P.; Wang, Q. W.; Kong, L.; Li, W.; Wang, J. et al. Light-steered isotropic semiconductor micromotors. Adv. Mater. 2017, 29, 1603374.

[44]

Lin, F.; Shao, Y.; Wu, Y. J.; Zhang, Y. Q. NIR light-propelled janus-based nanoplatform for cytosolic-fueled microRNA imaging. ACS Appl. Mater. Interfaces 2021, 13, 3713–3721.

[45]

Duan, W. T.; Liu, R.; Sen, A. Transition between collective behaviors of micromotors in response to different stimuli. J. Am. Chem. Soc. 2013, 135, 1280–1283.

[46]

Zhou, D. K.; Li, Y. C.; Xu, P. T.; McCool, N. S.; Li, L. Q.; Wang, W.; Mallouk, T. E. Visible-light controlled catalytic Cu2O–Au micromotors. Nanoscale 2017, 9, 75–78.

[47]

Li, W. Y.; Liu, B. Y.; Ou, L. Y.; Li, G. Z.; Lei, D. P.; Xiong, Z.; Xu, H. H.; Wang, J. Z.; Tang, J. Y.; Li, D. Arbitrary construction of versatile NIR-driven microrobots. Adv. Mater. 2024, 36, 2402482.

[48]

Cao, Y. N.; Huang, Y. X.; Zheng, J.; Chen, J. Y.; Zeng, B. L.; Cheng, X.; Wu, C. J.; Wang, J. Z.; Tang, J. Y. Bipolar photoelectrochemistry for phase-modulated optoelectronic hybrid nanomotor. J. Am. Chem. Soc. 2024, 146, 17931–17939.

[49]

Liu, M. L.; Chen, L.; Zhao, Z. W.; Liu, M. C.; Zhao, T. C.; Ma, Y. Z.; Zhou, Q. Y.; Ibrahim, Y. S.; Elzatahry, A. A.; Li, X. M. et al. Enzyme-based mesoporous nanomotors with near-infrared optical brakes. J. Am. Chem. Soc. 2022, 144, 3892–3901.

[50]

Hu, Y.; Li, Z. X.; Sun, Y. Ultrasmall enzyme/light-powered nanomotor facilitates cholesterol detection. J. Colloid Interface Sci. 2022, 621, 341–351.

[51]

Gao, W.; Manesh, K. M.; Hua, J.; Sattayasamitsathit, S.; Wang, J. Hybrid nanomotor: A catalytically/magnetically powered adaptive nanowire swimmer. Small 2011, 7, 2047–2051.

[52]

Solovev, A. A.; Sanchez, S.; Pumera, M.; Mei, Y. F.; Schmidt, O. G. Magnetic control of tubular catalytic microbots for the transport, assembly, and delivery of micro-objects. Adv. Funct. Mater. 2010, 20, 2430–2435.

[53]

Zhao, G. J.; Pumera, M. Magnetotactic artificial self-propelled nanojets. Langmuir 2013, 29, 7411–7415.

[54]

Wu, J. F.; Ma, S.; Li, M. Y.; Hu, X. Y.; Jiao, N. D.; Tung, S.; Liu, L. Q. Enzymatic/magnetic hybrid micromotors for synergistic anticancer therapy. ACS Appl. Mater. Interfaces 2021, 13, 31514–31526.

[55]

Luo, M.; Li, S. L.; Wan, J. S.; Yang, C. L.; Chen, B. D.; Guan, J. G. Enhanced propulsion of urease-powered micromotors by multilayered assembly of ureases on janus magnetic microparticles. Langmuir 2020, 36, 7005–7013.

[56]

Ren, L. Q.; Zhou, D. K.; Mao, Z. M.; Xu, P. T.; Huang, T. J.; Mallouk, T. E. Rheotaxis of bimetallic micromotors driven by chemical-acoustic hybrid power. ACS Nano 2017, 11, 10591–10598.

[57]

Wang, W.; Duan, W. T.; Zhang, Z. X.; Sun, M.; Sen, A.; Mallouk, T. E. A tale of two forces: Simultaneous chemical and acoustic propulsion of bimetallic micromotors. Chem. Commun. 2015, 51, 1020–1023.

[58]

Ren, L. Q.; Wang, W.; Mallouk, T. E. Two forces are better than one: Combining chemical and acoustic propulsion for enhanced micromotor functionality. Acc. Chem. Res. 2018, 51, 1948–1956.

[59]

Xu, T. L.; Soto, F.; Gao, W.; Dong, R. F.; Garcia-Gradilla, V.; Magaña, E.; Zhang, X. J.; Wang, J. Reversible swarming and separation of self-propelled chemically powered nanomotors under acoustic fields. J. Am. Chem. Soc. 2015, 137, 2163–2166.

[60]

Solovev, A. A.; Smith, E. J.; Bof ' Bufon, C. C.; Sanchez, S.; Schmidt, O. G. Light-controlled propulsion of catalytic microengines. Angew. Chem., Int. Ed. 2011, 50, 10875–10878.

[61]

Mou, F. Z.; Li, Y.; Chen, C. R.; Li, W.; Yin, Y. X.; Ma, H. R.; Guan, J. G. Single-component TiO2 tubular microengines with motion controlled by light-induced bubbles. Small 2015, 11, 2564–2570.

[62]

Liu, Z. Q.; Li, J. X.; Wang, J.; Huang, G. S.; Liu, R.; Mei, Y. F. Small-scale heat detection using catalytic microengines irradiated by laser. Nanoscale 2013, 5, 1345–1352.

[63]

Xu, T. L.; Soto, F.; Gao, W.; Garcia-Gradilla, V.; Li, J. X.; Zhang, X. J.; Wang, J. Ultrasound-modulated bubble propulsion of chemically powered microengines. J. Am. Chem. Soc. 2014, 136, 8552–8555.

[64]

Li, J. X.; Singh, V. V.; Sattayasamitsathit, S.; Orozco, J.; Kaufmann, K.; Dong, R. F.; Gao, W.; Jurado-Sanchez, B.; Fedorak, Y.; Wang, J. Water-driven micromotors for rapid photocatalytic degradation of biological and chemical warfare agents. ACS Nano 2014, 8, 11118–11125.

[65]

McNeill, J. M.; Nama, N.; Braxton, J. M.; Mallouk, T. E. Wafer-scale fabrication of micro-to nanoscale bubble swimmers and their fast autonomous propulsion by ultrasound. ACS Nano 2020, 14, 7520–7528.

[66]

Celik Cogal, G.; Das, P. K.; Li, S. M.; Uygun Oksuz, A.; Bhethanabotla, V. R. Unraveling the autonomous motion of polymer-based catalytic micromotors under chemical-acoustic hybrid power. Adv. NanoBiomed Res. 2021, 1, 2000009.

[67]

Carlsen, R. W.; Sitti, M. Bio-hybrid cell-based actuators for microsystems. Small 2014, 10, 3831–3851.

[68]

Yasa, O.; Erkoc, P.; Alapan, Y.; Sitti, M. Microalga-powered microswimmers toward active cargo delivery. Adv. Mater. 2018, 30, 1804130.

[69]

Tu, Y. F.; Peng, F.; André, A. A. M.; Men, Y.; Srinivas, M.; Wilson, D. A. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano 2017, 11, 1957–1963.

[70]

Wang, H.; Potroz, M. G.; Jackman, J. A.; Khezri, B.; Marić, T.; Cho, N. J.; Pumera, M. Bioinspired spiky micromotors based on sporopollenin exine capsules. Adv. Funct. Mater. 2017, 27, 1702338.

[71]

Chen, C. R.; Chang, X. C.; Angsantikul, P.; Li, J. X.; Esteban-Fernández de Ávila, B.; Karshalev, E.; Liu, W. J.; Mou, F. Z.; He, S.; Castillo, R. et al. Chemotactic guidance of synthetic organic/inorganic payloads functionalized sperm micromotors. Adv. Biosyst. 2018, 2, 1700160.

[72]

Magdanz, V.; Sanchez, S.; Schmidt, O. G. Development of a sperm-flagella driven micro-bio-robot. Adv. Mater. 2013, 25, 6581–6588.

[73]

Zhang, Y. B.; Yan, K.; Ji, F. T.; Zhang, L. Enhanced removal of toxic heavy metals using swarming biohybrid adsorbents. Adv. Funct. Mater. 2018, 28, 1806340.

[74]

Soto, F.; Lopez-Ramirez, M. A.; Jeerapan, I.; Esteban-Fernandez de Avila, B.; Mishra, R. K.; Lu, X. L.; Chai, I.; Chen, C. R.; Kupor, D.; Nourhani, A. et al. Rotibot: Use of rotifers as self-propelling biohybrid microcleaners. Adv. Funct. Mater. 2019, 29, 1900658.

[75]

Xu, H. F.; Medina-Sánchez, M.; Magdanz, V.; Schwarz, L.; Hebenstreit, F.; Schmidt, O. G. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano 2018, 12, 327–337.

[76]

Gwisai, T.; Mirkhani, N.; Christiansen, M. G.; Nguyen, T. T.; Ling, V.; Schuerle, S. Magnetic torque-driven living microrobots for increased tumor infiltration. Sci. Robot. 2022, 7, eabo0665.

[77]

Medina-Sánchez, M.; Schwarz, L.; Meyer, A. K.; Hebenstreit, F.; Schmidt, O. G. Cellular cargo delivery: Toward assisted fertilization by sperm-carrying micromotors. Nano Lett. 2016, 16, 555–561.

[78]

Stanton, M. M.; Park, B. W.; Miguel-López, A.; Ma, X.; Sitti, M.; Sánchez, S. Biohybrid microtube swimmers driven by single captured bacteria. Small 2017, 13, 1603679.

[79]

Li, D. H.; Choi, H.; Cho, S.; Jeong, S.; Jin, Z.; Lee, C.; Ko, S. Y.; Park, J. O.; Park, S. A hybrid actuated microrobot using an electromagnetic field and flagellated bacteria for tumor-targeting therapy. Biotechnol. Bioeng. 2015, 112, 1623–1631.

[80]

Stanton, M. M.; Park, B. W.; Vilela, D.; Bente, K.; Faivre, D.; Sitti, M.; Sánchez, S. Magnetotactic bacteria powered biohybrids target E.coli biofilms. ACS Nano 2017, 11, 9968–9978.

[81]

Park, B. W.; Zhuang, J.; Yasa, O.; Sitti, M. Multifunctional bacteria-driven microswimmers for targeted active drug delivery. ACS Nano 2017, 11, 8910–8923.

[82]

Akolpoglu, M. B.; Alapan, Y.; Dogan, N. O.; Baltaci, S. F.; Yasa, O.; Aybar Tural, G.; Sitti, M. Magnetically steerable bacterial microrobots moving in 3D biological matrices for stimuli-responsive cargo delivery. Sci. Adv. 2022, 8, eabo6163.

[83]

Alapan, Y.; Yasa, O.; Schauer, O.; Giltinan, J.; Tabak, A. F.; Sourjik, V.; Sitti, M. Soft erythrocyte-based bacterial microswimmers for cargo delivery. Sci. Robot. 2018, 3, eaar4423.

[84]

Sun, M. M.; Fan, X. J.; Meng, X. H.; Song, J. M.; Chen, W. N.; Sun, L. N.; Xie, H. Magnetic biohybrid micromotors with high maneuverability for efficient drug loading and targeted drug delivery. Nanoscale 2019, 11, 18382–18392.

[85]

Ge, H. B.; Chen, X.; Liu, W. J.; Lu, X. L.; Gu, Z. W. Metal-based transient micromotors: From principle to environmental and biomedical applications. Chem. Asian J. 2019, 14, 2348–2356.

[86]

Dutta, S.; Noh, S.; Gual, R. S.; Chen, X. Z.; Pané, S.; Nelson, B. J.; Choi, H. Recent developments in metallic degradable micromotors for biomedical and environmental remediation applications. Nano-Micro Lett. 2024, 16, 41.

[87]

Giltinan, J.; Sridhar, V.; Bozuyuk, U.; Sheehan, D.; Sitti, M. 3D microprinting of iron platinum nanoparticle-based magnetic mobile microrobots. Adv. Intell. Syst. 2021, 3, 2000204.

[88]

Zhao, H.; Zheng, Y. H.; Cai, Y. P.; Xu, T. L.; Dong, R. F.; Zhang, X. J. Intelligent metallic micro/nanomotors: From propulsion to application. Nano Today 2023, 52, 101939.

[89]

Fu, S. M.; Fu, D. M.; Xie, D. Z.; Liu, L.; Chen, B.; Ye, Y. C.; Wilson, D. A.; Peng, F. Light driven micromotor swarm for tumor photothermal therapy. Appl. Mater. Today 2022, 26, 101348.

[90]

Chen, M. H.; Ma, E. H.; Xing, Y. J.; Xu, H. B.; Chen, L.; Wang, Y. X.; Zhang, Y. Y.; Li, J. J.; Wang, H.; Zheng, S. H. Dual-modal lateral flow test strip assisted by near-infrared-powered nanomotors for direct quantitative detection of circulating microRNA biomarkers from serum. ACS Sens. 2023, 8, 757–766.

[91]

Wang, Y.; Zhou, C.; Wang, W.; Xu, D. D.; Zeng, F. Y.; Zhan, C.; Gu, J. H.; Li, M. Y.; Zhao, W. W.; Zhang, J. H. et al. Photocatalytically powered matchlike nanomotor for light-guided active sers sensing. Angew. Chem. 2018, 130, 13294–13297.

[92]

Wang, Z.; Tu, Y. F.; Chen, Y. M.; Peng, F. Emerging micro/nanomotor-based platforms for biomedical therapy. Adv. Intell. Syst. 2020, 2, 1900081.

[93]

Paxton, W. F.; Kistler, K. C.; Olmeda, C. C.; Sen, A.; St. Angelo, S. K.; Cao, Y. Y.; Mallouk, T. E.; Lammert, P. E.; Crespi, V. H. Catalytic nanomotors: Autonomous movement of striped nanorods. J. Am. Chem. Soc. 2004, 126, 13424–13431.

[94]

Kline, T. R.; Paxton, W. F.; Mallouk, T. E.; Sen, A. Catalytic nanomotors: Remote-controlled autonomous movement of striped metallic nanorods. Angew. Chem., Int. Ed. 2005, 44, 744–746.

[95]

Wang, W.; Castro, L. A.; Hoyos, M.; Mallouk, T. E. Autonomous motion of metallic microrods propelled by ultrasound. ACS Nano 2012, 6, 6122–6132.

[96]

Gao, W.; Pei, A.; Wang, J. Water-driven micromotors. ACS Nano 2012, 6, 8432–8438.

[97]

Wang, Y.; Duan, W. D.; Zhou, C.; Liu, Q.; Gu, J. H.; Ye, H.; Li, M. Y.; Wang, W.; Ma, X. Phoretic liquid metal micro/nanomotors as intelligent filler for targeted microwelding. Adv. Mater. 2019, 31, 1905067.

[98]

Wang, J. Z.; Xiong, Z.; Zhan, X. J.; Dai, B. H.; Zheng, J.; Liu, J.; Tang, J. Y. A silicon nanowire as a spectrally tunable light-driven nanomotor. Adv. Mater. 2017, 29, 1701451.

[99]

Liang, Z. X.; Fan, D. L. Visible light-gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv. 2018, 4, eaau0981.

[100]

Ussia, M.; Urso, M.; Dolezelikova, K.; Michalkova, H.; Adam, V.; Pumera, M. Active light-powered antibiofilm ZnO micromotors with chemically programmable properties. Adv. Funct. Mater. 2021, 31, 2101178.

[101]

Dong, R. F.; Zhang, Q. L.; Gao, W.; Pei, A.; Ren, B. Y. Highly efficient light-driven TiO2-Au Janus micromotors. ACS Nano 2016, 10, 839–844.

[102]

Wang, Q. L.; Wang, C.; Dong, R. F.; Pang, Q. Q.; Cai, Y. P. Steerable light-driven TiO2-Fe janus micromotor. Inorg. Chem. Commun. 2018, 91, 1–4.

[103]

Ying, Y. L.; Plutnar, J.; Pumera, M. Six-degree-of-freedom steerable visible-light-driven microsubmarines using water as a fuel: Application for explosives decontamination. Small 2021, 17, 2100294.

[104]

Ferreira, V. R. A.; Azenha, M. A. Recent advances in light-driven semiconductor-based micro/nanomotors: Optimization strategies and emerging applications. Molecules 2024, 29, 1154.

[105]

Feng, K.; Gong, J.; Qu, J. P.; Niu, R. Dual-mode-driven micromotor based on foam-like carbon nitride and Fe3O4 with improved manipulation and photocatalytic performance. ACS Appl. Mater. Interfaces 2022, 14, 44271–44281.

[106]

Gao, C.; Feng, Y.; Liu, S. Y.; Fu, D. M.; Chen, B.; Du, D. L.; Zhang, W. J.; Gao, Z.; Yang, H. H.; Wilson, D. A. et al. Water-powered Cu@MoS2 micromotor swarm for a collaborative oscillation of living cells. Matter 2023, 6, 3956–3974.

[107]

Wang, D. L.; Han, X. X.; Dong, B.; Shi, F. Stimuli responsiveness, propulsion and application of the stimuli-responsive polymer based micromotor. Appl. Mater. Today 2021, 25, 101250.

[108]

Gao, W.; Sattayasamitsathit, S.; Orozco, J.; Wang, J. Efficient bubble propulsion of polymer-based microengines in real-life environments. Nanoscale 2013, 5, 8909–8914.

[109]

Mei, Y. F.; Solovev, A. A.; Sanchez, S.; Schmidt, O. G. Rolled-up nanotech on polymers: From basic perception to self-propelled catalytic microengines. Chem. Soc. Rev. 2011, 40, 2109–2119.

[110]

Pavlick, R. A.; Sengupta, S.; McFadden, T.; Zhang, H.; Sen, A. A polymerization-powered motor. Angew. Chem. 2011, 123, 9546–9549.

[111]

Zhang, H.; Yeung, K.; Robbins, J. S.; Pavlick, R. A.; Wu, M.; Liu, R.; Sen, A.; Phillips, S. T. Self-powered microscale pumps based on analyte-initiated depolymerization reactions. Angew. Chem., Int. Ed. 2012, 51, 2400–2404.

[112]

Wu, Z. G.; Wu, Y. J.; He, W. P.; Lin, X. K.; Sun, J. M.; He, Q. Self-propelled polymer-based multilayer nanorockets for transportation and drug release. Angew. Chem., Int. Ed. 2013, 52, 7000–7003.

[113]

Wilson, D. A.; Nolte, R. J. M.; Van Hest, J. C. M. Autonomous movement of platinum-loaded stomatocytes. Nat. Chem. 2012, 4, 268–274.

[114]

Liu, L. M.; Dong, Y. G.; Sun, Y. Y.; Liu, M.; Su, Y. J.; Zhang, H.; Dong, B. Motion-based pH sensing using spindle-like micromotors. Nano Res. 2016, 9, 1310–1318.

[115]

Okmen Altas, B.; Goktas, C.; Topcu, G.; Aydogan, N. Multi-stimuli-responsive tadpole-like polymer/lipid janus microrobots for advanced smart material applications. ACS Appl. Mater. Interfaces 2024, 16, 15533–15547.

[116]

Xuan, M. J.; Mestre, R.; Gao, C. Y.; Zhou, C.; He, Q.; Sánchez, S. Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor. Angew. Chem. 2018, 130, 6954–6958.

[117]

Venugopalan, P. L.; Esteban-Fernández de Ávila, B.; Pal, M.; Ghosh, A.; Wang, J. Fantastic voyage of nanomotors into the cell. ACS Nano 2020, 14, 9423–9439.

[118]

Mayorga-Martinez, C. C.; Fojtů, M.; Vyskočil, J.; Cho, N. J.; Pumera, M. Pollen-based magnetic microrobots are mediated by electrostatic forces to attract, manipulate, and kill cancer cells. Adv. Funct. Mater. 2022, 32, 2207272.

[119]

Ma, X.; Jang, S.; Popescu, M. N.; Uspal, W. E.; Miguel-López, A.; Hahn, K.; Kim, D. P.; Sánchez, S. Reversed janus micro/nanomotors with internal chemical engine. ACS Nano 2016, 10, 8751–8759.

[120]

Liu, R.; Sen, A. Autonomous nanomotor based on copper-platinum segmented nanobattery. J. Am. Chem. Soc. 2011, 133, 20064–20067.

[121]

Qin, F. Y.; Zhang, Y. H.; Peng, F. Fabrication of magnetically driven helical micro/nanoscale motors and their functionalization for targeted drug delivery. ChemNanoMat 2021, 7, 415–428.

[122]

Gao, Y. W.; Li, Y.; Yan, X. S.; Zhu, Y.; Xu, Z. W.; Xu, Y.; Yu, S. J.; Wan, J. H.; Liu, J. Q.; Sun, H. C. NIR-II light-powered core–shell prodrug nanomotors enhance cancer therapy through synergistic oxidative stress-photothermo modulation. Acta Biomater. 2024, 185, 396–409.

[123]

Zhou, H. F.; Yuan, Y.; Wang, Z. X.; Ren, Z. X.; Hu, M. X.; Lu, J. K.; Gao, H. X.; Pan, C.; Zhao, W. J.; Zhu, B. H. Co-delivery of doxorubicin and quercetin by Janus hollow silica nanomotors for overcoming multidrug resistance in breast MCF-7/Adr cells. Colloids Surf. A: Physicochem. Eng. Asp. 2023, 658, 130654.

[124]

Yan, M.; Liang, K.; Zhao, D. Y.; Kong, B. Core–shell structured micro-nanomotors: Construction, shell functionalization, applications, and perspectives. Small 2022, 18, 2102887.

[125]

Xing, Y.; Du, X.; Xu, T. L.; Zhang, X. J. Janus dendritic silica/carbon@Pt nanomotors with multiengines for H2O2, near-infrared light and lipase powered propulsion. Soft Matter 2020, 16, 9553–9558.

[126]

Zheng, Y. H.; Zhao, H.; Cai, Y. P.; Jurado-Sánchez, B.; Dong, R. F. Recent advances in one-dimensional micro/nanomotors: Fabrication, propulsion and application. Nano-Micro Lett. 2023, 15, 20.

[127]

Jang, B.; Wang, W.; Wiget, S.; Petruska, A. J.; Chen, X. Z.; Hu, C. Z.; Hong, A.; Folio, D.; Ferreira, A.; Pané, S. et al. Catalytic locomotion of core-shell nanowire motors. ACS Nano 2016, 10, 9983–9991.

[128]

Huang, J. B.; Yu, X. Y.; Li, L. Y.; Wang, W. X.; Zhang, H. T.; Zhang, Y.; Zhu, J.; Ma, J. Design of light-driven biocompatible and biodegradable microrobots containing Mg-based metallic glass nanowires. ACS Nano 2024, 18, 2006–2016.

[129]

Gao, Y. X.; Ou, L. Y.; Liu, K. F.; Guo, Y.; Li, W. Y.; Xiong, Z.; Wu, C. J.; Wang, J. Z.; Tang, J. Y.; Li, D. Template-guided silicon micromotor assembly for enhanced cell manipulation. Angew. Chem., Int. Ed. 2024, 63, e202405895.

[130]

Li, J. J.; He, X. L.; Jiang, H. D.; Xing, Y.; Fu, B.; Hu, C. Z. Enhanced and robust directional propulsion of light-activated Janus micromotors by magnetic spinning and the magnus effect. ACS Appl. Mater. Interfaces 2022, 14, 36027–36037.

[131]

Lin, X. K.; Wu, Z. G.; Wu, Y. J.; Xuan, M. J.; He, Q. Self-propelled micro-/nanomotors based on controlled assembled architectures. Adv. Mater. 2016, 28, 1060–1072.

[132]

Yoshizumi, Y.; Suzuki, H. Self-propelled metal-polymer hybrid micromachines with bending and rotational motions. ACS Appl. Mater. Interfaces 2017, 9, 21355–21361.

[133]

Hu, N.; Sun, M. M.; Lin, X. K.; Gao, C. Y.; Zhang, B.; Zheng, C.; Xie, H.; He, Q. Self-propelled rolled-up polyelectrolyte multilayer microrockets. Adv. Funct. Mater. 2018, 28, 1705684.

[134]

Liu, K.; Liu, Q. Y.; Yang, J. R.; Xie, C.; Wang, S. H.; Tong, F.; Gao, J. B.; Liu, L.; Ye, Y. C.; Chen, B. et al. Micromotor based mini-tablet for oral delivery of insulin. ACS Nano 2023, 17, 300–311.

[135]

Xu, H. F.; Medina-Sánchez, M.; Schmidt, O. G. Magnetic micromotors for multiple motile sperm cells capture, transport, and enzymatic release. Angew. Chem., Int. Ed. 2020, 59, 15029–15037.

[136]

Yang, L.; Chen, X. X.; Wang, L.; Hu, Z. J.; Xin, C.; Hippler, M.; Zhu, W. L.; Hu, Y. L.; Li, J. W.; Wang, Y. C. et al. Targeted single-cell therapeutics with magnetic tubular micromotor by one-step exposure of structured femtosecond optical vortices. Adv. Funct. Mater. 2019, 29, 1905745.

[137]

Shao, J. X.; Abdelghani, M.; Shen, G. Z.; Cao, S. P.; Williams, D. S.; van Hest, J. C. M. Erythrocyte membrane modified janus polymeric motors for thrombus therapy. ACS Nano 2018, 12, 4877–4885.

[138]

Zhou, J. R.; Karshalev, E.; Mundaca-Uribe, R.; Esteban-Fernández de Ávila, B.; Krishnan, N.; Xiao, C.; Ventura, C. J.; Gong, H.; Zhang, Q.; Gao, W. W. et al. Physical disruption of solid tumors by immunostimulatory microrobots enhances antitumor immunity. Adv. Mater. 2021, 33, 2103505.

[139]

Tu, Y. F.; Peng, F.; White, P. B.; Wilson, D. A. Redox-sensitive stomatocyte nanomotors: Destruction and drug release in the presence of glutathione. Angew. Chem., Int. Ed. 2017, 56, 7620–7624.

[140]

Huang, H.; Li, J.; Yuan, M. G.; Yang, H. W.; Zhao, Y.; Ying, Y. L.; Wang, S. Large-scale self-assembly of MOFs colloidosomes for bubble-propelled micromotors and stirring-free environmental remediation. Angew. Chem., Int. Ed. 2022, 61, e202211163.

[141]

Cai, L. J.; Zhao, C.; Chen, H. X.; Fan, L.; Zhao, Y. J.; Qian, X. Y.; Chai, R. J. Suction-cup-inspired adhesive micromotors for drug delivery. Adv. Sci. 2022, 9, 2103384.

[142]

Xing, Y.; Zhou, M. Y.; Xu, T. L.; Tang, S. S.; Fu, Y.; Du, X.; Su, L.; Wen, Y. Q.; Zhang, X. J.; Ma, T. Y. Core@satellite janus nanomotors with pH-responsive multi-phoretic propulsion. Angew. Chem., Int. Ed. 2020, 59, 14368–14372.

[143]

Zhang, Q. H.; Yan, Y. W.; Liu, J.; Wu, Y. J.; He, Q. Supramolecular colloidal motors via chemical self-assembly. Curr. Opin. Colloid Interface Sci. 2022, 62, 101642.

[144]

Ye, Z. H.; Wang, Y.; Liu, S. H.; Xu, D. D.; Wang, W.; Ma, X. Construction of nanomotors with replaceable engines by supramolecular machine-based host-guest assembly and disassembly. J. Am. Chem. Soc. 2021, 143, 15063–15072.

[145]

Liu, J.; Wu, Y. J.; Li, Y.; Yang, L.; Wu, H.; He, Q. Rotary biomolecular motor-powered supramolecular colloidal motor. Sci. Adv. 2023, 9, eabg3015.

[146]

Ortiz-Rivera, I.; Mathesh, M.; Wilson, D. A. A supramolecular approach to nanoscale motion: Polymersome-based self-propelled nanomotors. Acc. Chem. Res. 2018, 51, 1891–1900.

[147]

Alabusheva, V. S.; Shilovskikh, V. V.; Bridenko, L. A.; Gurzhiy, V. V.; Skorb, E. V. Synthesis of catalytic microswimmers based on anisotropic platinum sorption on melamine barbiturate supramolecular structures. Adv. Intell. Syst. 2023, 5, 2200436.

[148]

Xu, P.; Yu, Y. Q.; Li, T.; Chen, H.; Wang, Q.; Wang, M.; Wan, M. M.; Mao, C. Near-infrared-driven fluorescent nanomotors for detection of circulating tumor cells in whole blood. Anal. Chim. Acta 2020, 1129, 60–68.

[149]

Xing, Y.; Zhou, M. Y.; Liu, X. M.; Qiao, M. H.; Zhou, L. P.; Xu, T. L.; Zhang, X. J.; Du, X. Bioinspired jellyfish-like carbon/manganese nanomotors with H2O2 and NIR light dual-propulsion for enhanced tumor penetration and chemodynamic therapy. Chem. Eng. J. 2023, 461, 142142.

[150]

Vilela, D.; Stanton, M. M.; Parmar, J.; Sánchez, S. Microbots decorated with silver nanoparticles kill bacteria in aqueous media. ACS Appl. Mater. Interfaces 2017, 9, 22093–22100.

[151]

Gao, W.; Feng, X. M.; Pei, A.; Gu, Y. E.; Li, J. X.; Wang, J. Seawater-driven magnesium based Janus micromotors for environmental remediation. Nanoscale 2013, 5, 4696–4700.

[152]

Dai, J.; Cheng, X.; Li, X. F.; Wang, Z. S.; Wang, Y. F.; Zheng, J.; Liu, J.; Chen, J. W.; Wu, C. J.; Tang, J. Y. Solution-synthesized multifunctional janus nanotree microswimmer. Adv. Funct. Mater. 2021, 31, 2106204.

[153]

Li, W. Y.; Wu, C. J.; Xiong, Z.; Liang, C. W.; Li, Z. Y.; Liu, B. Y.; Cao, Q. Y.; Wang, J. Z.; Tang, J. Y.; Li, D. Self-driven magnetorobots for recyclable and scalable micro/nanoplastic removal from nonmarine waters. Sci. Adv. 2022, 8, eade1731.

[154]

Beladi-Mousavi, S. M.; Hermanová, S.; Ying, Y. L.; Plutnar, J.; Pumera, M. A maze in plastic wastes: Autonomous motile photocatalytic microrobots against microplastics. ACS Appl. Mater. Interfaces 2021, 13, 25102–25110.

[155]

Li, X. J.; Zhao, Y. M.; Wang, D.; Du, X. Dual-propelled PDA@MnO2 nanomotors with NIR light and H2O2 for effective removal of heavy metal and organic dye. Colloids Surf. A: Physicochem. Eng. Asp. 2023, 658, 130712.

[156]

Kim, J.; Mayorga-Martinez, C. C.; Pumera, M. Magnetically boosted 1D photoactive microswarm for COVID-19 face mask disruption. Nat. Commun. 2023, 14, 935.

[157]

Peng, X.; Urso, M.; Ussia, M.; Pumera, M. Shape-controlled self-assembly of light-powered microrobots into ordered microchains for cells transport and water remediation. ACS Nano 2022, 16, 7615–7625.

[158]

Huang, Y. X.; Wu, C. J.; Chen, J. Y.; Tang, J. Y. Colloidal self-assembly: From passive to active systems. Angew. Chem., Int. Ed. 2024, 63, e202313885.

[159]

Zhan, X. J.; Wang, J. Z.; Xiong, Z.; Zhang, X.; Zhou, Y.; Zheng, J.; Chen, J. N.; Feng, S. P.; Tang, J. Y. Enhanced ion tolerance of electrokinetic locomotion in polyelectrolyte-coated microswimmer. Nat. Commun. 2019, 10, 3921.

Nano Research
Cite this article:
Wu C, Li X, Shum HC. Micro/nanomotors from single modal to multimodal propulsion. Nano Research, 2024, https://doi.org/10.26599/NR.2025.94907105
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return