PDF (17.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Ultra-low potential formaldehyde electrooxidation to formate and H2 on an Ag/Ag2O heterostructure catalyst

Haitao Shi1,§Rui Zhang1,§Chongchong Wang1Xiaoping Kong1Linlin Pan1Meijie Wei1Wei Wang1 ()Weixin Lv1 ()Lei Wang2 ()
School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051, China
Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People’s Republic of China, Heilongjiang University, Harbin 150080, China

§ Haitao Shi and Rui Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
This work found that the formaldehyde oxidation reaction (FOR) activity of the Ag/Ag2O NPs@NF electrode is excellent. At 100 mA·cm−2, the potential for FOR on the Ag/Ag2O NPs@NF electrode was only 0.16 V.

Abstract

Formaldehyde oxidation reaction (FOR) is a promising reaction alternative to the anodic oxygen evolution reaction (OER) owing to its ultra-low electrolysis potential and ability to produce formate and hydrogen gas. In this work, the electrode for FOR is prepared using Ag/Ag2O nanoparticles (Ag/Ag2O NPs) covered with Nafion membrane as the catalysts modified onto nickel foam (NF). Ag/Ag2O NPs@NF exhibits significantly higher FOR activity than Ag NPs@NF and Ag2O NPs@NF. At 100 mA·cm−2, the FOR potential on the Ag/Ag2O NPs@NF electrode is only 0.16 V (vs. RHE). Meanwhile, the Faradaic efficiencies can reach up to 100% for both formate and H2 produced by FOR. Density functional theory (DFT) calculations indicate that the Ag/Ag2O heterostructure exhibits lower reaction energy barriers for generating formate and H2 than pure Ag and Ag2O. This work introduces a new synthetic approach for developing novel FOR catalysts and offers insights into the potential application prospects of FOR.

Electronic Supplementary Material

Download File(s)
7110_ESM.pdf (1.3 MB)

References

[1]

Xie, H. P.; Zhao, Z. Y.; Liu, T.; Wu, Y. F.; Lan, C.; Jiang, W. C.; Zhu, L. Y.; Wang, Y. P.; Yang, D. S.; Shao, Z. P. A membrane-based seawater electrolyser for hydrogen generation. Nature 2022, 612, 673–678.

[2]

Li, Y.; Han, J.; Bao, W. W.; Zhang, J. J.; Ai, T. T.; Yang, M. M.; Yang, C. M.; Zhang, P. F. Self-derivation and reconstruction of silver nanoparticle reinforced cobalt-nickel bimetallic hydroxides through interface engineering for overall water splitting. J. Energy Chem. 2024, 90, 590–599.

[3]

Yu, H. J.; Jiang, S. J.; Zhan, W. J.; Liang, Y. Q.; Deng, K.; Wang, Z. Q.; Xu, Y.; Wang, H. J.; Wang, L. Formaldehyde oxidation boosts ultra-low cell voltage industrial current density water electrolysis for dual hydrogen production. Chem. Eng. J. 2023, 475, 146210.

[4]

Wu, Z. Y.; Chen, F. Y.; Li, B. Y.; Yu, S. W.; Finfrock, Y. Z.; Meira, D. M.; Yan, Q. Q.; Zhu, P.; Chen, M. X.; Song, T. W. et al. Non-iridium-based electrocatalyst for durable acidic oxygen evolution reaction in proton exchange membrane water electrolysis. Nat. Mater. 2023, 22, 100–108.

[5]

Zhong, C. Z.; Zhang, J. X.; Zhang, L. H.; Tu, Y. H.; Song, H. Y.; Du, L.; Cui, Z. M. Composition-tunable Co3– x Fe x Mo3N electrocatalysts for the oxygen evolution reaction. ACS Energy Lett. 2023, 8, 1455–1462.

[6]

Zhang, R.; Zhu, L.; Lv, W. X.; Wei, M. J.; Wang, L.; Wang, W. Facile synthesis of Ni3S2 nanosheets with abundant active sites induced by Fe incorporation on Ni foam for enhanced oxygen evolution reaction. Appl. Surf. Sci. 2023, 610, 155537.

[7]

Lv, W. X.; Zhu, L.; Kong, X. P.; Shi, H. T.; Wang, C. C.; Zhang, R.; Wang, W. Enhancement effects of Fe-doped Ni3S2 on efficient electrochemical urea oxidation and mechanism insights. J. Alloys Compd. 2023, 965, 171292.

[8]

Yang, M.; Li, Y. Y.; Dong, C. L.; Li, S. K.; Xu, L. T.; Chen, W.; Wu, J. C.; Lu, Y. X.; Pan, Y. P.; Wu, Y. D. et al. Correlating the valence state with the adsorption behavior of a Cu-based electrocatalyst for furfural oxidation with anodic hydrogen production reaction. Adv. Mater. 2023, 35, 2304203.

[9]

Wang, Y.; Xia, S.; Cai, R.; Zhang, J. F.; Yu, C. P.; Cui, J. W.; Zhang, Y.; Wu, J. J.; Wu, Y. C. Dynamic reconstruction of two-dimensional defective Bi nanosheets for efficient electrocatalytic urea synthesis. Angew. Chem., Int. Ed. 2024, 63, e202318589.

[10]

Wu, X. H.; Wang, Y.; Wu, Z. S. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022, 8, 2594–2629.

[11]

Luo, F.; Pan, S. Y.; Xie, Y. H.; Li, C.; Yu, Y. J.; Yang, Z. H. Atomically dispersed Ni electrocatalyst for superior urea-assisted water splitting. J. Energy Chem. 2024, 90, 1–6.

[12]

Chen, R. Z.; Yang, Y. K.; Wu, W.; Chen, S. H.; Wang, Z. C.; Zhu, Y.; Cheng, N. C. Reconstructed β-NiOOH enabling highly efficient and ultrastable oxygen evolution at large current density. Chem. Eng. J. 2024, 480, 148100.

[13]

Zhao, L.; Lv, Z.; Shi, Y.; Zhou, S. L.; Liu, Y.; Han, J. N.; Zhang, Q.; Lai, J. P.; Wang, L. Simultaneous generation of furfuryl alcohol, formate, and H2 by co-electrolysis of furfuryl and HCHO over bifunctional CuAg bimetallic electrocatalysts at ultra-low voltage. Energy Environ. Sci. 2024, 17, 770–779.

[14]

Ji, K. Y.; Xu, M.; Xu, S. M.; Wang, Y.; Ge, R. X.; Hu, X. Y.; Sun, X. M.; Duan, H. H. Electrocatalytic hydrogenation of 5-hydroxymethylfurfural promoted by a Ru1Cu single-atom alloy catalyst. Angew. Chem., Int. Ed. 2022, 61, e202209849.

[15]

Zhu, Y. Q.; Zhou, H.; Dong, J. C.; Xu, S. M.; Xu, M.; Zheng, L. R.; Xu, Q.; Ma, L. N.; Li, Z. H.; Shao, M. F. et al. Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation. Angew. Chem., Int. Ed. 2023, 62, e202219048.

[16]

Yi, Y. N.; Li, J. S.; Cui, C. H. Trimetallic FeCoNi disulfide nanosheets for CO2-emission-free methanol conversion. Chin. Chem. Lett. 2022, 33, 1006–1010.

[17]

Chen, J. H.; Ahmad, M.; Zhang, Y.; Ye, H. Q.; Wang, L.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Versatile Mo modulation effects enable efficient electrocatalytic aqueous methanol electro-reforming over surface-engineered NiCoMo alloy. Chem. Eng. J. 2023, 454, 140056.

[18]

Lestarini, D. T.; Hong, J. W. Intermetallic Pd3Pb nanobranches with low-coordinated surface atoms for highly efficient ethanol oxidation reaction. Appl. Surf. Sci. 2023, 610, 155311.

[19]

Wang, X. H.; Zhang, Z. N.; Wang, Z.; Ding, Y.; Zhai, Q. G.; Jiang, Y. C.; Li, S. N.; Chen, Y. Ultra-thin CoNi0.2P nanosheets for plastics and biomass participated hybrid water electrolysis. Chem. Eng. J. 2023, 465, 142938.

[20]

Han, G. Q.; Li, G. D.; Sun, Y. J. Electrocatalytic dual hydrogenation of organic substrates with a Faradaic efficiency approaching 200%. Nat. Catal. 2023, 6, 224–233.

[21]

Li, S. L.; Liu, D. M.; Wang, G. W.; Ma, P. J.; Wang, X. L.; Wang, J. C.; Ma, R. G. Vertical 3D nanostructures boost efficient hydrogen production coupled with glycerol oxidation under alkaline conditions. Nano-Micro Lett. 2023, 15, 189.

[22]

Yang, Y. Y.; Zou, R.; Gan, J. Y.; Wei, Y. J.; Chen, Z. X.; Li, X. H.; Admassie, S.; Liu, Y. P.; Peng, X. W. Integrating electrocatalytic seawater splitting and biomass upgrading via bifunctional nickel cobalt phosphide nanorods. Green Chem. 2023, 25, 4104–4112.

[23]

Wu, K. L.; Cao, C. Y.; Li, K. R.; Lyu, C. J.; Cheng, J. R.; Li, H. Y.; Hu, P. F.; Wu, J. W.; Lau, W. M.; Zhu, X. X. et al. Regulating electronic structure by Mn doping for nickel cobalt hydroxide nanosheets/carbon nanotube to promote oxygen evolution reaction and oxidation of urea and hydrazine. Chem. Eng. J. 2023, 452, 139527.

[24]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

[25]

Li, G. D.; Han, G. Q.; Wang, L.; Cui, X. Y.; Moehring, N. K.; Kidambi, P. R.; Jiang, D. E.; Sun, Y. J. Dual hydrogen production from electrocatalytic water reduction coupled with formaldehyde oxidation via a copper-silver electrocatalyst. Nat. Commun. 2023, 14, 525.

[26]

Xiao, L.; Dai, W. D.; Mou, S. Y.; Wang, X. Y.; Cheng, Q.; Dong, F. Coupling electrocatalytic cathodic nitrate reduction with anodic formaldehyde oxidation at ultra-low potential over Cu2O. Energy Environ. Sci. 2023, 16, 2696–2704.

[27]

Li, M. Y.; Wang, T. H.; Zhao, W. X.; Wang, S. Y.; Zou, Y. Q. A pair-electrosynthesis for formate at ultra-low voltage via coupling of CO2 reduction and formaldehyde oxidation. Nano-Micro Lett. 2022, 14, 211.

[28]

Pan, Y. P.; Li, Y. Y.; Dong, C. L.; Huang, Y. C.; Wu, J. C.; Shi, J. Q.; Lu, Y. X.; Yang, M.; Wang, S. Y.; Zou, Y. Q. Unveiling the synergistic effect of multi-valence Cu species to promote formaldehyde oxidation for anodic hydrogen production. Chem 2023, 9, 963–977.

[29]

Wang, P.; Zheng, J.; Xu, X.; Zhang, Y. Q.; Shi, Q. F.; Wan, Y.; Ramakrishna, S.; Zhang, J.; Zhu, L. Y.; Yokoshima, T. et al. Unlocking efficient hydrogen production: Nucleophilic oxidation reactions coupled with water splitting. Adv. Mater. 2024, 36, 2404806.

[30]

Chen, Y. H.; Kanan, M. W. Tin oxide dependence of the CO2 reduction efficiency on tin electrodes and enhanced activity for tin/tin oxide thin-film catalysts. J. Am. Chem. Soc. 2012, 134, 1986–1989.

[31]

Baruch, M. F.; Pander III, J. E.; White, J. L.; Bocarsly, A. B. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal. 2015, 5, 3148–3156.

[32]

Lv, W. X.; Zhou, J.; Bei, J. J.; Zhang, R.; Wang, L.; Xu, Q.; Wang, W. Electrodeposition of nano-sized bismuth on copper foil as electrocatalyst for reduction of CO2 to formate. Appl. Surf. Sci. 2017, 393, 191–196.

[33]

Zhang, R.; Lv, W. X.; Lei, L. X. Role of the oxide layer on Sn electrode in electrochemical reduction of CO2 to formate. Appl. Surf. Sci. 2015, 356, 24–29.

[34]

Zhang, R.; Lv, W. X.; Li, G. H.; Mezaal, M. A.; Li, X. J.; Lei, L. X. Retarding of electrochemical oxidation of formate on the platinum anode by a coat of Nafion membrane. J. Power Sources 2014, 272, 303–310.

[35]

Rejal, S. Z.; Masdar, M. S.; Kamarudin, S. K. A parametric study of the direct formic acid fuel cell (DFAFC) performance and fuel crossover. Int. J. Hydrogen Energy 2014, 39, 10267–10274.

[36]

Rhee, Y. W.; Ha, S. Y.; Masel, R. I. Crossover of formic acid through Nafion® membranes. J. Power Sources 2003, 117, 35–38.

[37]

Sugianto Prabowo Rahardjo, S.; Shih, Y. J. In- situ phase transformation of silver oxide nanoparticles encapsulated in reduced graphene oxide (Ag/rGO) for direct electrochemical ammonia oxidation. Chem. Eng. J. 2023, 473, 145396.

[38]

Cheng, L. Z.; Zhang, R.; Lv, W. X.; Shao, L. Y.; Wang, Z.; Wang, W. Surface phosphation of 3D NiCo2O4 nanowires grown on Ni foam as an efficient bifunctional catalyst for water splitting. Nano 2020, 15, 2050024.

[39]

Yang, Y.; Wu, X. X.; Ahmad, M.; Si, F. Z.; Chen, S. J.; Liu, C. H.; Zhang, Y.; Wang, L.; Zhang, J. J.; Luo, J. L. et al. A direct formaldehyde fuel cell for CO2-emission free co-generation of electrical energy and valuable chemical/hydrogen. Angew. Chem., Int. Ed. 2023, 62, e202302950.

[40]

An, S. Y.; Zhao, Z. H.; Bu, J.; He, J. X.; Ma, W. X.; Lin, J.; Bai, R.; Shang, L.; Zhang, J. Multi-functional formaldehyde-nitrate batteries for wastewater refining, electricity generation, and production of ammonia and formate. Angew. Chem., Int. Ed. 2024, 63, e202318989.

[41]

Zhou, H.; Ren, Y.; Li, Z. H.; Xu, M.; Wang, Y.; Ge, R. X.; Kong, X. G.; Zheng, L. R.; Duan, H. H. Electrocatalytic upcycling of polyethylene terephthalate to commodity chemicals and H2 fuel. Nat. Commun. 2021, 12, 4679.

[42]

Lin, Y.; Zhai, J. L.; Wang, Y. T.; Guo, P. T.; Zhang, J.; Wang, C. K.; Jin, L.; Gao, Y. Y. Potassium diformate alleviated inflammation of IPEC-J2 cells infected with EHEC. Vet. Microbiol. 2024, 291, 110013.

Nano Research
Article number: 94907110
Cite this article:
Shi H, Zhang R, Wang C, et al. Ultra-low potential formaldehyde electrooxidation to formate and H2 on an Ag/Ag2O heterostructure catalyst. Nano Research, 2025, 18(2): 94907110. https://doi.org/10.26599/NR.2025.94907110
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return