PDF (15.8 MB)
Collect
Submit Manuscript
Show Outline
Figures (5)

Research Article | Open Access

Magnetic tuning of optical anisotropy in 2D materials: Insights from antiferromagnetic-TMDC interfaces

Miaoxia Gao1,2Xing Xie1,2Junying Chen1,2Junnan Ding1,2Fangping Ouyang1,3Zongwen Liu4,5Jian-Tao Wang6,7,8Jun He1,2Yanping Liu1,2 ()
Institute of Quantum Physics, School of Physics, Central South University, Changsha 410083, China
State Key Laboratory of Precision Manufacturing for Extreme Service Performance, Central South University, Changsha 410083, China
School of Physics and Technology, State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Xinjiang University, Urumqi 830046, China
School of Chemical and Biomolecular Engineering, The University of Sydney, NSW 2006, Australia
The University of Sydney Nano Institute, The University of Sydney, NSW 2006, Australia
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Show Author Information

Graphical Abstract

View original image Download original image
This study investigates the magnetic modulation of optical anisotropy in two-dimensional (2D) materials by engineering a heterostructure of isotropic MoWSe2 and low-symmetric antiferromagnet NiPS3. The work reveals pronounced exciton polarization rotation under a magnetic field, highlighting the role of magnetic order in tuning optical properties, with implications for polarization-sensitive optoelectronic and magneto-optic devices.

Abstract

Atomically thin two-dimensional (2D) magnetic materials offer unique opportunities to enhance interactions between electron spin, charge, and lattice, leading to novel physical properties at low-dimensional scales. While extensive research has explored how breaking three-fold (C3) rotational symmetry in transition metal dichalcogenides (TMDC) can induce optical anisotropy at heterointerfaces, the role of magnetism in modulating these anisotropic optical properties remains underexplored. Here, we engineer an antiferromagnet/semiconductor heterostructure by coupling isotropic MoWSe2 with the low-symmetric antiferromagnet NiPS3, introducing in-plane anisotropy in the MoWSe2 alloy. Low-temperature photoluminescence (PL) measurements reveal a pronounced linear polarization-dependent exciton emission intensity at the MoWSe2/NiPS3 interface, with anisotropy ratios of 1.09 and 1.07 for charged and neutral excitons, respectively. Furthermore, applying an out-of-plane magnetic field results in a dramatic rotation of the exciton polarization direction by up to 90° at 9 T, significantly exceeding the previously reported maximum deflection of around 27°. This pronounced polarization rotation is not solely attributed to valley coherence, indicating a strong influence of the magnetic order in NiPS3. These findings provide new insights into the role of magnetic ordering in tuning optical anisotropy in 2D materials, paving the way for the development of advanced polarization-sensitive optoelectronic and magneto-optic devices.

Electronic Supplementary Material

Download File(s)
7111_ESM.pdf (798.8 KB)

References

[1]

Du, L. J.; Hasan, T.; Castellanos-Gomez, A.; Liu, G. B.; Yao, Y. G.; Lau, C. N.; Sun, Z. P. Engineering symmetry breaking in 2D layered materials. Nat. Rev. Phys. 2021, 3, 193–206.

[2]

Du, L. J.; Tang, J.; Liang, J.; Liao, M. Z.; Jia, Z. Y.; Zhang, Q. H.; Zhao, Y. C.; Yang, R.; Shi, D. X.; Gu, L. et al. Giant valley coherence at room temperature in 3R WS2 with broken inversion symmetry. Research (Wash D C) 2019, 2019, 6494565.

[3]

Finney, N. R.; Yankowitz, M.; Muraleetharan, L.; Watanabe, K.; Taniguchi, T.; Dean, C. R.; Hone, J. Tunable crystal symmetry in graphene-boron nitride heterostructures with coexisting moiré superlattices. Nat. Nanotechnol. 2019, 14, 1029–1034.

[4]

Velasco, J.; Jing, L.; Bao, W.; Lee, Y.; Kratz, P.; Aji, V.; Bockrath, M.; Lau, C. N.; Varma, C.; Stillwell, R. et al. Transport spectroscopy of symmetry-broken insulating states in bilayer graphene. Nat. Nanotechnol. 2012, 7, 156–160.

[5]

Zhang, W. X.; Huang, Z. S.; Zhang, W. L.; Li, Y. R. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 2014, 7, 1731–1737.

[6]

Zhang, Y. J.; Kamiya, K.; Yamamoto, T.; Sakano, M.; Yang, X. H.; Masubuchi, S.; Okazaki, S.; Shinokita, K.; Chen, T. M.; Aso, K. et al. Symmetry engineering in twisted bilayer WTe2. Nano Lett. 2023, 23, 9280–9286.

[7]

Q.; Ray, E. L.; Song, T. C.; Taniguchi, T.; Watanabe, K.; McGuire, M. A.; Xiao, D.; Xu, X. D. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 2020, 15, 212–216.

[8]

Geim, A. K.; Grigorieva, I. V. Van der Waals heterostructures. Nature 2013, 499, 419–425.

[9]

Li, Z. Y.; Huang, J. W.; Zhou, L.; Xu, Z. A.; Qin, F.; Chen, P.; Sun, X. J.; Liu, G.; Sui, C.; Qiu, C. Y. et al. An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces. Nat. Communi. 2023, 14, 5568.

[10]

Neupane, G. P.; Zhou, K.; Chen, S. S.; Yildirim, T.; Zhang, P. X.; Lu, Y. P. In-plane isotropic/anisotropic 2D van der Waals Heterostructures for Future Devices. Small 2019, 15, 1804733.

[11]

X.; Yang, Y. H.; Wu, M. H.; Hu, C. G.; Shen, W. F.; Gong, Y. J.; Huang, L.; Jiang, C. B.; Zhang, Y. Z.; Ajayan, P. M. Highly in-plane optical and electrical anisotropy of 2D germanium arsenide. Adv. Funct. Mater. 2018, 28, 1707379.

[12]

Xu, X. Z.; Liu, C.; Sun, Z. H.; Cao, T.; Zhang, Z. H.; Wang, E. G.; Liu, Z. F.; Liu, K. H. Interfacial engineering in graphene bandgap. Chem. Soc. Rev. 2018, 47, 3059–3099.

[13]

Usman, A.; Adel Aly, M.; Masenda, H.; Thompson, J. J. P.; Gunasekera, S. M.; Mucha-Kruczyński, M.; Brem, S.; Malic, E.; Koch, M. Enhanced excitonic features in an anisotropic ReS2/WSe2 heterostructure. Nanoscale 2022, 14, 10851–10861.

[14]

X.; Hao, H.; Kang, Y.; Liu, Q. R.; Sui, Y.; Wei, K.; Cheng, X. A.; Jiang, T. Distinctive interfacial charge behavior and versatile photoresponse performance in isotropic/anisotropic WS2/ReS2 heterojunctions. ACS Appl. Mater. Interfaces 2020, 12, 53475–53483.

[15]

Zhao, M.; Zhang, W. T.; Liu, M. M.; Zou, C.; Yang, K. Q.; Yang, Y.; Dong, Y. Q.; Zhang, L. J.; Huang, S. M. Interlayer coupling in anisotropic/isotropic van der Waals heterostructures of ReS2 and MoS2 monolayers. Nano Res. 2016, 9, 3772–3780.

[16]

Li, X. Z.; Jones, A. C.; Choi, J.; Zhao, H.; Chandrasekaran, V.; Pettes, M. T.; Piryatinski, A.; Tschudin, M. A.; Reiser, P.; Broadway, D. A. et al. Proximity-induced chiral quantum light generation in strain-engineered WSe2/NiPS3 heterostructures. Nat. Mater. 2023, 22, 1311–1316.

[17]

Ramos, M.; Marques-Moros, F.; Esteras, D. L.; Mañas-Valero, S.; Henríquez-Guerra, E.; Gadea, M.; Baldoví, J. J.; Canet-Ferrer, J.; Coronado, E.; Calvo, M. R. Photoluminescence enhancement by band alignment engineering in MoS2/FePS3 van der Waals heterostructures. ACS Appl. Mater. Interfaces 2022, 14, 33482–33490.

[18]

M.; Wei, Y. H.; Zhang, X. Z.; Wei, Z. H.; Luo, W.; Guo, X.; Liu, J.; Peng, G.; Cai, W. W.; Huang, H. et al. Symmetry engineering induced in-plane polarization in MoS2 through van der Waals interlayer coupling. Adv. Funct. Mater. 2022, 32, 2202658.

[19]

Lee, J. U.; Lee, S.; Ryoo, J. H.; Kang, S.; Kim, T. Y.; Kim, P.; Park, C. H.; Park, J. G.; Cheong, H. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 2016, 16, 7433–7438.

[20]

Kim, K.; Lim, S. Y.; Lee, J. U.; Lee, S.; Kim, T. Y.; Park, K.; Jeon, G. S.; Park, C. H.; Park, J. G.; Cheong, H. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Communi. 2019, 10, 345.

[21]

Yang, S. X.; Hu, C. G.; Wu, M. H.; Shen, W. F.; Tongay, S.; Wu, K. D.; Wei, B.; Sun, Z. Y.; Jiang, C. B.; Huang, L. et al. In-plane optical anisotropy and linear dichroism in low-symmetry layered TlSe. ACS Nano 2018, 12, 8798–8807.

[22]

Mehlawat, K.; Alfonsov, A.; Selter, S.; Shemerliuk, Y.; Aswartham, S.; Büchner, B.; Kataev, V. Low-energy excitations and magnetic anisotropy of the layered van der Waals antiferromagnet Ni2P2S3. Phys. Rev. B 2022, 105, 214427.

[23]

Tongay, S.; Narang, D. S.; Kang, J.; Fan, W.; Ko, C.; Luce, A. V.; Wang, K. X.; Suh, J.; Patel, K. D.; Pathak, V. M. et al. Two-dimensional semiconductor alloys: Monolayer Mo1– x W x Se2. Appl. Phys. Lett. 2014, 104, 012101.

[24]

Komsa, H. P.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenide alloys: Stability and electronic properties. J. Phys. Chem. Lett. 2012, 3, 3652–3656.

[25]

Akamatsu, T.; Ideue, T.; Zhou, L.; Dong, Y.; Kitamura, S.; Yoshii, M.; Yang, D. Y.; Onga, M.; Nakagawa, Y.; Watanabe, K. et al. A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect. Science 2021, 372, 68–72.

[26]

Li, X. R.; Xie, X.; Wu, B.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Observation of robust anisotropy in WS2/BP heterostructures. Nano Res. 2024, 17, 6749–6756.

[27]

Xie, X.; Wu, B.; Ding, J. N.; Li, S. F.; Chen, J. Y.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Emergence of optical anisotropy in moiré superlattice via heterointerface engineering. Nano Lett. 2024, 24, 9186–9194.

[28]

Wu, B.; Zheng, H. H.; Li, S. F.; Wang, C. T.; Ding, J. N.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Effect of layered-coupling in twisted WSe2 moiré superlattices. Nano Res. 2023, 16, 3435–3442.

[29]

Zheng, H. H.; Wu, B.; Li, S. F.; He, J.; Chen, K. Q.; Liu, Z. W.; Liu, Y. P. Evidence for interlayer coupling and moiré excitons in twisted WS2/WS2 homostructure superlattices. Nano Res. 2023, 16, 3429–3434.

[30]

Li, S. F.; Zheng, H. H.; Ding, J. N.; Wu, B.; He, J.; Liu, Z. W.; Liu, Y. P. Dynamic control of moiré potential in twisted WS2–WSe2 heterostructures. Nano Res. 2022, 15, 7688–7694.

[31]

Zhong, J. H.; Wu, B.; Madoune, Y.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. PdSe2/MoSe2 vertical heterojunction for self-powered photodetector with high performance. Nano Res. 2022, 15, 2489–2496.

[32]

C. T.; Neumann, M.; Balamurugan, K.; Park, H. J.; Kang, S.; Shiu, H. W.; Kang, J. H.; Hong, B. H.; Han, M.; Noh, T. W. et al. Exfoliation and Raman spectroscopic fingerprint of few-layer NiPS3 van der Waals crystals. Sci. Rep. 2016, 6, 20904.

[33]

Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.

[34]

Wu, B.; Zheng, H. H.; Ding, J. N.; Wang, Y. P.; Liu, Z. W.; Liu, Y. P. Observation of interlayer excitons in trilayer type-II transition metal dichalcogenide heterostructures. Nano Res. 2022, 15, 9588–9594.

[35]

Zhang, M.; Wu, J. X.; Zhu, Y. M.; Dumcenco, D. O.; Hong, J. H.; Mao, N. N.; Deng, S. B.; Chen, Y. F.; Yang, Y. L.; Jin, C. H. et al. Two-dimensional molybdenum tungsten diselenide alloys: Photoluminescence, Raman scattering, and electrical transport. ACS Nano 2014, 8, 7130–7137.

[36]

Kunstmann, J.; Mooshammer, F.; Nagler, P.; Chaves, A.; Stein, F.; Paradiso, N.; Plechinger, G.; Strunk, C.; Schüller, C.; Seifert, G. et al. Momentum-space indirect interlayer excitons in transition-metal dichalcogenide van der Waals heterostructures. Nat. Phys. 2018, 14, 801–805.

[37]

Liang, J.; Zhang, J.; Li, Z. Z.; Hong, H.; Wang, J. H.; Zhang, Z. H.; Zhou, X.; Qiao, R. X.; Xu, J. Y.; Gao, P. et al. Monitoring local strain vector in atomic-layered MoSe2 by second-harmonic generation. Nano Lett. 2017, 17, 7539–7543.

[38]

Dang, J. C.; Yang, M. W.; Xie, X.; Yang, Z.; Dai, D. J.; Zuo, Z. C.; Wang, C.; Jin, K. J.; Xu, X. L. Enhanced valley polarization in WS2/LaMnO3 heterostructure. Small 2022, 18, 2106029.

[39]

Huang, J. N.; Hoang, T. B.; Mikkelsen, M. H. Probing the origin of excitonic states in monolayer WSe2. Sci. Rep. 2016, 6, 22414.

[40]

Fang, Y. T.; Wang, L.; Sun, Q. L.; Lu, T. P.; Deng, Z.; Ma, Z. G.; Jiang, Y.; Jia, H. Q.; Wang, W. X.; Zhou, J. M. et al. Investigation of temperature-dependent photoluminescence in multi-quantum wells. Sci. Rep. 2015, 5, 12718.

[41]

Ross, J. S.; Wu, S. F.; Yu, H. Y.; Ghimire, N. J.; Jones, A. M.; Aivazian, G.; Yan, J. Q.; Mandrus, D. G.; Xiao, D.; Yao, W. et al. Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat. Communi. 2013, 4, 1474.

[42]

Tongay, S.; Zhou, J.; Ataca, C.; Lo, K.; Matthews, T. S.; Li, J. B.; Grossman, J. C.; Wu, J. Q. Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett. 2012, 12, 5576–5580.

[43]

Hu, B. Q.; Xie, X.; Ouyang, X. Y.; Chen, J. Y.; Li, S. F.; He, J.; Liu, Z. W.; Wang, J. T.; Liu, Y. P. Unveiling optical anisotropy in disrupted symmetry WSe2/SiP heterostructures. Nano Res. 2024, 17, 8585–8591.

[44]

Wang, G.; Marie, X.; Liu, B. L.; Amand, T.; Robert, C.; Cadiz, F.; Renucci, P.; Urbaszek, B. Control of exciton valley coherence in transition metal dichalcogenide monolayers. Phys. Rev. Lett. 2016, 117, 187401.

[45]

Nagler, P.; Ballottin, M. V.; Mitioglu, A. A.; Durnev, M. V.; Taniguchi, T.; Watanabe, K.; Chernikov, A.; Schüller, C.; Glazov, M. M.; Christianen, P. C. M. et al. Zeeman splitting and inverted polarization of biexciton emission in monolayer WS2. Phys. Rev. Lett. 2018, 121, 057402.

[46]

Schmidt, R.; Arora, A.; Plechinger, G.; Nagler, P.; del Águila, A. G.; Ballottin, M. V.; Christianen, P. C. M.; de Vasconcellos, S. M.; Schüller, C.; Korn, T. et al. Magnetic-field-induced rotation of polarized light emission from monolayer WS2. Phys. Rev. Lett. 2016, 117, 077402.

[47]

Wu, B.; Zheng, H. H.; Li, S. F.; Ding, J. N.; He, J.; Liu, Z. W.; Liu, Y. P. Enhanced interlayer neutral excitons and trions in MoSe2/MoS2/MoSe2 trilayer heterostructure. Nano Res. 2022, 15, 5640–5645.

[48]

Li, X.; Liu, H. Y.; Ke, C. M.; Tang, W. Q.; Liu, M. Y.; Huang, F. H.; Wu, Y. P.; Wu, Z. M.; Kang, J. Y. Review of anisotropic 2D materials: Controlled growth, optical anisotropy modulation, and photonic applications. Laser Photonics Rev. 2021, 15, 2100322.

[49]

Li, L.; Han, W.; Pi, L. J.; Niu, P.; Han, J. B.; Wang, C. L.; Su, B.; Li, H. Q.; Xiong, J.; Bando, Y. et al. Emerging in-plane anisotropic two-dimensional materials. InfoMat 2019, 1, 54–73.

[50]

Huang, Y.; Pan, Y. H.; Yang, R.; Bao, L. H.; Meng, L.; Luo, H. L.; Cai, Y. Q.; Liu, G. D.; Zhao, W. J.; Zhou, Z. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Communi. 2020, 11, 2453.

[51]

Huang, Y.; Sutter, E.; Shi, N. N.; Zheng, J. B.; Yang, T. Z.; Englund, D.; Gao, H. J.; Sutter, P. Reliable exfoliation of large-area high-quality flakes of graphene and other two-dimensional materials. ACS Nano 2015, 9, 10612–10620.

[52]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[53]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[54]

Perdew, J. P.; Ruzsinszky, A.; Csonka, G. I.; Vydrov, O. A.; Scuseria, G. E.; Constantin, L. A.; Zhou, X. L.; Burke, K. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 2008, 100, 136406.

[55]

Gu, Y. H.; Zhang, Q.; Le, C. C.; Li, Y. X.; Xiang, T.; Hu, J. P. Ni-based transition metal trichalcogenide monolayer: A strongly correlated quadruple-layer graphene. Phys. Rev. B 2019, 100, 165405.

[56]

Becke, A. D.; Johnson, E. R. A simple effective potential for exchange. J. Chem. Phys. 2006, 124, 221101.

Nano Research
Article number: 94907111
Cite this article:
Gao M, Xie X, Chen J, et al. Magnetic tuning of optical anisotropy in 2D materials: Insights from antiferromagnetic-TMDC interfaces. Nano Research, 2025, 18(2): 94907111. https://doi.org/10.26599/NR.2025.94907111
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return