AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (12.2 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

A universal approach for extraction of single-walled carbon nanotubes of specific chirality using aqueous two-phase extraction

Błażej Podleśny1 ( )Łukasz Czapura1Patrycja Taborowska1Luyao Zhang2Feng Yang2Dawid Janas1 ( )
Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, 44–100 Gliwice, Poland
Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
Show Author Information

Graphical Abstract

This work reported how monochiral (8,6) single-walled carbon nanotubes (SWCNTs) can be extracted and covalently modified to improve their optical properties.

Abstract

The development of effective methods for obtaining monochiral single-walled carbon nanotubes (SWCNTs) is necessary to make many applications based on them viable for everyday use. Large-diameter semiconducting SWCNTs are particularly valuable due to their low band gap, but the isolation of such SWCNTs remains difficult to achieve as the number of possible chiralities scales strongly with diameter, and there are an overwhelming number of large-diameter SWCNT types. In this study, we demonstrate how monochiral (8,6) SWCNTs, which are 0.966 nm in diameter, can be straightforwardly harvested using the aqueous two-phase extraction (ATPE) method by employing a combination of ionic and non-ionic surfactants. The universal nature of the devised technique was demonstrated by generating fractions enriched with (8,6) SWCNTs starting from various commercially available mixtures of SWCNTs with drastically different compositions. To demonstrate the practical utility of the generated material, we studied how the obtained pure SWCNTs may be chemically modified to improve their optical characteristics. Interestingly, the course of the functionalization was highly dependent on the type of dispersant used to suspend the purified SWCNTs in the aqueous medium.

Electronic Supplementary Material

Download File(s)
7112_ESM.pdf (2.6 MB)

References

[1]

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

[2]

Janas, D. Towards monochiral carbon nanotubes: A review of progress in the sorting of single-walled carbon nanotubes. Mater. Chem. Front. 2018, 2, 36–63.

[3]

Qiu, L.; Ding, F. Understanding single-walled carbon nanotube growth for chirality controllable synthesis. Acc. Mater. Res. 2021, 2, 828–841.

[4]

Tanaka, T.; Jin, H. H.; Miyata, Y.; Kataura, H. High-yield separation of metallic and semiconducting single-wall carbon nanotubes by agarose gel electrophoresis. Appl. Phys. Express 2008, 1, 114001.

[5]

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

[6]

Dzienia, A.; Just, D.; Taborowska, P.; Mielanczyk, A.; Milowska, K. Z.; Yorozuya, S.; Naka, S.; Shiraki, T.; Janas, D. Mixed-solvent engineering as a way around the trade-off between yield and purity of (7,3) single-walled carbon nanotubes obtained using conjugated polymer extraction. Small 2023, 19, 2304211.

[7]

Flavel, B. S.; Moore, K. E.; Pfohl, M.; Kappes, M. M.; Hennrich, F. Separation of single-walled carbon nanotubes with a gel permeation chromatography system. ACS Nano 2014, 8, 1817–1826.

[8]

Fagan, J. A. Aqueous two-polymer phase extraction of single-wall carbon nanotubes using surfactants. Nanoscale Adv. 2019, 1, 3307–3324.

[9]
Pereira, J. F. B.; Coutinho, J. A. P. Aqueous two-phase systems. In Liquid-Phase Extraction. Poole, C. F.; Elsevier: Amsterdam, 2020; pp. 157–182.
[10]

Iqbal, M.; Tao, Y. F.; Xie, S. Y.; Zhu, Y. F.; Chen, D. M.; Wang, X.; Huang, L. L.; Peng, D. P.; Sattar, A.; Shabbir, M. A. B. et al. Aqueous Two-Phase System (ATPS): An overview and advances in its applications. Biol. Proced. Online 2016, 18, 18.

[11]

Podlesny, B.; Gaida, B.; Brzeczek-Szafran, A.; Chrobok, A.; Janas, D. Partitioning of SWCNT mixtures using amphiphilic carbohydrate-based surfactants. Sep. Purif. Technol. 2024, 343, 127120.

[12]

Podlesny, B.; Hinkle, K. R.; Hayashi, K.; Niidome, Y.; Shiraki, T.; Janas, D. Highly-selective harvesting of (6,4) SWCNTs using the aqueous two-phase extraction method and nonionic surfactants. Adv. Sci. 2023, 10, 2207218.

[13]

Podlesny, B.; Olszewska, B.; Yaari, Z.; Jena, P. V.; Ghahramani, G.; Feiner, R.; Heller, D. A.; Janas, D. En route to single-step, two-phase purification of carbon nanotubes facilitated by high-throughput spectroscopy. Sci. Rep. 2021, 11, 10618.

[14]

Fagan, J. A.; Hároz, E. H.; Ihly, R.; Gui, H.; Blackburn, J. L.; Simpson, J. R.; Lam, S.; Hight Walker, A. R.; Doorn, S. K.; Zheng, M. Isolation of > 1 nm diameter single-wall carbon nanotube species using aqueous two-phase extraction. ACS Nano 2015, 9, 5377–5390.

[15]

Podlesny, B.; Shiraki, T.; Janas, D. One-step sorting of single-walled carbon nanotubes using aqueous two-phase extraction in the presence of basic salts. Sci. Rep. 2020, 10, 9250.

[16]

Wei, L.; Liu, B. L.; Wang, X. T.; Gui, H.; Yuan, Y.; Zhai, S. L.; Ng, A. K.; Zhou, C. W.; Chen, Y. (9,8) Single-walled carbon nanotube enrichment via aqueous two-phase separation and their thin-film transistor applications. Adv. Electron. Mater. 2015, 1, 1500151.

[17]

Turek, E.; Shiraki, T.; Shiraishi, T.; Shiga, T.; Fujigaya, T.; Janas, D. Single-step isolation of carbon nanotubes with narrow-band light emission characteristics. Sci. Rep. 2019, 9, 535.

[18]

Li, H.; Gordeev, G.; Garrity, O.; Peyyety, N. A.; Selvasundaram, P. B.; Dehm, S.; Krupke, R.; Cambré, S.; Wenseleers, W.; Reich, S. et al. Separation of specific single-enantiomer single-wall carbon nanotubes in the large-diameter regime. ACS Nano 2020, 14, 948–963.

[19]

Podlesny, B.; Kumanek, B.; Borah, A.; Yamaguchi, R.; Shiraki, T.; Fujigaya, T.; Janas, D. Thermoelectric properties of thin films from sorted single-walled carbon nanotubes. Materials 2020, 13, 3808.

[20]

Tambasov, I. A.; Voronin, A. S.; Evsevskaya, N. P.; Volochaev, M. N.; Fadeev, Y. V.; Simunin, M. M.; Aleksandrovsky, A. S.; Smolyarova, T. Е.; Abelian, S. R.; Tambasova, E. V. et al. Thermoelectric properties of low-cost transparent single wall carbon nanotube thin films obtained by vacuum filtration. Phys. E: Low-Dimens. Syst. Nanostructures 2019, 114, 113619.

[21]

Li, H.; Gordeev, G.; Garrity, O.; Reich, S.; Flavel, B. S. Separation of small-diameter single-walled carbon nanotubes in one to three steps with aqueous two-phase extraction. ACS Nano 2019, 13, 2567.

[22]

Tu, X. M.; Manohar, S.; Jagota, A.; Zheng, M. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 2009, 460, 250–253.

[23]

Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804.

[24]

Ao, G. Y.; Streit, J. K.; Fagan, J. A.; Zheng, M. Differentiating left- and right-handed carbon nanotubes by DNA. J. Am. Chem. Soc. 2016, 138, 16677–16685.

[25]

Sims, C. M.; Fagan, J. A. Surfactant chemistry and polymer choice affect single-wall carbon nanotube extraction conditions in aqueous two-polymer phase extraction. Carbon 2022, 191, 215–226.

[26]

Turek, E.; Kumanek, B.; Boncel, S.; Janas, D. Manufacture of networks from large diameter single-walled carbon nanotubes of particular electrical character. Nanomaterials 2019, 9, 614.

[27]

Omachi, H.; Komuro, T.; Matsumoto, K.; Nakajima, M.; Watanabe, H.; Hirotani, J.; Ohno, Y.; Shinohara, H. Aqueous two-phase extraction of semiconducting single-wall carbon nanotubes with isomaltodextrin and thin-film transistor applications. Appl. Phys. Express 2019, 12, 097003.

[28]

Cao, L. T.; Li, Y. H.; Liu, Y.; Zhao, J. T.; Nan, Z. Y.; Xiao, W. X.; Qiu, S.; Kang, L. X.; Jin, H. H.; Li, Q. W. Iterative strategy for sorting single-chirality single-walled carbon nanotubes from aqueous to organic systems. ACS Nano 2024, 18, 3783–3790.

[29]

Luo, X.; Wei, X. J.; Liu, L.; Yao, Z. H.; Xiong, F. B.; Zhou, W. Y.; Xie, S. S.; Liu, H. P. One-step separation of high-purity single-chirality single-wall carbon nanotubes using sodium hyodeoxycholate. Carbon 2023, 207, 129–135.

[30]

Just, D.; Dzienia, A.; Milowska, K. Z.; Mielańczyk, A.; Janas, D. High-yield and chirality-selective isolation of single-walled carbon nanotubes using conjugated polymers and small molecular chaperones. Mater. Horiz. 2024, 11, 758–767.

[31]

Dzienia, A.; Just, D.; Wasiak, T.; Milowska, K. Z.; Mielańczyk, A.; Labedzki, N.; Kruss, S.; Janas, D. Size matters in conjugated polymer chirality-selective SWCNT extraction. Adv. Sci. 2024, 202402176.

[32]

Li, Y. H.; Zheng, M. M.; Yao, J.; Gong, W. B.; Li, Y. J.; Tang, J. S.; Feng, S.; Han, R. Y.; Sui, Q.; Qiu, S. et al. High-purity monochiral carbon nanotubes with a 1.2 nm diameter for high-performance field-effect transistors. Adv. Funct. Mater. 2022, 32, 2107119.

[33]

Berton, N.; Lemasson, F.; Poschlad, A.; Meded, V.; Tristram, F.; Wenzel, W.; Hennrich, F.; Kappes, M. M.; Mayor, M. Selective dispersion of large-diameter semiconducting single-walled carbon nanotubes with pyridine-containing copolymers. Small 2014, 10, 360–367.

[34]

Lei, T.; Lai, Y. C.; Hong, G. S.; Wang, H. L.; Hayoz, P.; Weitz, R. T.; Chen, C. X.; Dai, H. J.; Bao, Z. N. Diketopyrrolopyrrole (DPP)-based donor-acceptor polymers for selective dispersion of large-diameter semiconducting carbon nanotubes. Small 2015, 11, 2946–2954.

[35]

Tange, M.; Okazaki, T.; Iijima, S. Selective extraction of large-diameter single-wall carbon nanotubes with specific chiral indices by poly(9,9-dioctylfluorene-alt-benzothiadiazole). J. Am. Chem. Soc. 2011, 133, 11908–11911.

[36]

Zhang, P.; Yi, W. H.; Bai, L.; Tian, Y. L.; Hou, J.; Jin, W. Q.; Si, J. H.; Hou, X. Enrichment of large-diameter semiconducting single-walled carbon nanotubes by a mixed-extractor strategy. Chem. - Asian J. 2019, 14, 3855–3862.

[37]

Li, Y. H.; Liu, Y.; Jin, F.; Cao, L. T.; Jin, H. H.; Qiu, S.; Li, Q. W. Polymer removal and dispersion exchange of (10,5) chiral carbon nanotubes with enhanced 1.5 μm photoluminescence. Nanoscale Adv. 2024, 6, 792–797.

[38]

Diao, S.; Hong, G. S.; Robinson, J. T.; Jiao, L. Y.; Antaris, A. L.; Wu, J. Z.; Choi, C. L.; Dai, H. J. Chirality enriched (12,1) and (11,3) single-walled carbon nanotubes for biological imaging. J. Am. Chem. Soc. 2012, 134, 16971–16974.

[39]

Welsher, K.; Liu, Z.; Sherlock, S. P.; Robinson, J. T.; Chen, Z.; Daranciang, D.; Dai, H. J. A route to brightly fluorescent carbon nanotubes for near-infrared imaging in mice. Nat. Nanotechnol. 2009, 4, 773–780.

[40]
TUBALLTM graphene nanotubes[Online]. https://tuball.com/about-tuball (accessed Jul 27, 2024).
[41]

Tsyboulski, D. A.; Rocha, J. D. R.; Bachilo, S. M.; Cognet, L.; Weisman, R. B. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett. 2007, 7, 3080–3085.

[42]

Jorio, A.; Saito, R. Raman spectroscopy for carbon nanotube applications. J. Appl. Phys. 2021, 129, 021102.

[43]

Yang, F.; Wang, M.; Zhang, D. Q.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

[44]

Smith, A. M.; Mancini, M. C.; Nie, S. M. Second window for in vivo imaging. Nat. Nanotechnol. 2009, 4, 710–711.

[45]

Pekker, Á.; Kamarás, K. Wide-range optical studies on various single-walled carbon nanotubes: Origin of the low-energy gap. Phys. Rev. B 2011, 84, 075475.

[46]

Li, Y. D.; Rahman, A. F. M. M.; Liu, G.; Xiong, Z. C.; Koezuka, K.; Xu, Z. G.; Komatsu, N.; Wang, F. Enrichment of large-diameter single-walled carbon nanotubes (SWNTs) with metallo-octaethylporphyrins. Materials 2013, 6, 3064–3078.

[47]

Janas, D. Perfectly imperfect: A review of chemical tools for exciton engineering in single-walled carbon nanotubes. Mater. Horiz. 2020, 7, 2860–2881.

[48]

Yu, B. D.; Naka, S.; Aoki, H.; Kato, K.; Yamashita, D.; Fujii, S.; Kato, Y. K.; Fujigaya, T.; Shiraki, T. Ortho-substituted aryldiazonium design for the defect configuration-controlled photoluminescent functionalization of chiral single-walled carbon nanotubes. ACS Nano 2022, 16, 21452–21461.

[49]
Paschotta, R. Optical fiber communications. In RP Photonics Encyclopedia. RP Photonics AG, 2005. https://www.rp-photonics.com/optical_fiber_communications.html (accessed July 27, 2024).
[50]

Berger, F. J.; Lüttgens, J.; Nowack, T.; Kutsch, T.; Lindenthal, S.; Kistner, L.; Müller, C. C.; Bongartz, L. M.; Lumsargis, V. A.; Zakharko, Y. et al. Brightening of long, polymer-wrapped carbon nanotubes by sp3 functionalization in organic solvents. ACS Nano 2019, 13, 9259–9269.

[51]

He, X. W.; Hartmann, N. F.; Ma, X. D.; Kim, Y.; Ihly, R.; Blackburn, J. L.; Gao, W. L.; Kono, J.; Yomogida, Y.; Hirano, A. et al. Tunable room-temperature single-photon emission at telecom wavelengths from sp3 defects in carbon nanotubes. Nat. Photonics 2017, 11, 577–582.

[52]

Hilmer, A. J.; McNicholas, T. P.; Lin, S. C.; Zhang, J. Q.; Wang, Q. H.; Mendenhall, J. D.; Song, C.; Heller, D. A.; Barone, P. W.; Blankschtein, D. et al. Role of adsorbed surfactant in the reaction of aryl diazonium salts with single-walled carbon nanotubes. Langmuir 2012, 28, 1309–1321.

[53]

Blanch, A. J.; Lenehan, C. E.; Quinton, J. S. Dispersant effects in the selective reaction of aryl diazonium salts with single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. C 2012, 116, 1709–1723.

[54]

Rehorek, D.; Janzen, E. G. Spin-trapping von radikalen bei der zersetzung aromatischer diazoniumsalze mittels ultraschall. J. für Prakt. Chem. 1984, 326, 935–940.

[55]

O’Connell, M. J.; Eibergen, E. E.; Doorn, S. K. Chiral selectivity in the charge-transfer bleaching of single-walled carbon-nanotube spectra. Nat. Mater. 2005, 4, 412–418.

[56]

Hou, Z. T.; Krauss, T. D. Photoluminescence brightening of isolated single-walled carbon nanotubes. J. Phys. Chem. Lett. 2017, 8, 4954–4959.

[57]

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synth. Met. 1999, 103, 2555–2558.

[58]

Kumanek, B.; Milowska, K. Z.; Przypis, Ł.; Stando, G.; Matuszek, K.; MacFarlane, D.; Payne, M. C.; Janas, D. Doping Engineering of single-walled carbon nanotubes by nitrogen compounds using basicity and alignment. ACS Appl. Mater. Interfaces 2022, 14, 25861–25877.

[59]

Liu, K. H.; Deslippe, J.; Xiao, F. J.; Capaz, R. B.; Hong, X. P.; Aloni, S.; Zettl, A.; Wang, W. L.; Bai, X. D.; Louie, S. G. et al. An atlas of carbon nanotube optical transitions. Nat. Nanotechnol. 2012, 7, 325–329.

[60]

Haque, M. E.; Das, A. R.; Moulik, S. P. Mixed micelles of sodium deoxycholate and polyoxyethylene sorbitan monooleate (Tween 80). J. Colloid Interface Sci. 1999, 217, 1–7.

[61]

Hsieh, Y. Z.; Kuo, K. L. Separation of retinoids by micellar electrokinetic capillary chromatography. J. Chromatogr. A 1997, 761, 307–313.

[62]

Tiwari, P.; Podleśny, B.; Krzywiecki, M.; Milowska, K. Z.; Janas, D. Understanding the partitioning behavior of single-walled carbon nanotubes using an aqueous two-phase extraction system composed of non-ionic surfactants and polymers. Nanoscale Horiz. 2023, 8, 685–694.

[63]

Costas-Costas, U.; Gonzalez-Romero, E.; Bravo-Diaz, C. Effects of ascorbic acid on arenediazonium salts reactivity: Kinetics and mechanism of the reaction. 3.0.CO;2-0">Helv. Chim. Acta 2001, 84, 632–648.

[64]

Doyle, M. P.; Nesloney, C. L.; Shanklin, M. S.; Marsh, C. A.; Brown, K. C. Formation and characterization of 3-O-arenediazoascorbic acids. New stable diazo ethers. J. Org. Chem. 1989, 54, 3785–3789.

[65]

Settele, S.; Schrage, C. A.; Jung, S.; Michel, E.; Li, H.; Flavel, B. S.; Hashmi, A. S. K.; Kruss, S.; Zaumseil, J. Ratiometric Fluorescent sensing of pyrophosphate with sp3-functionalized single-walled carbon nanotubes. Nat. Commun. 2024, 15, 706.

[66]

Ma, C.; Mohr, J. M.; Lauer, G.; Metternich, J. T.; Neutsch, K.; Ziebarth, T.; Reiner, A.; Kruss, S. Ratiometric imaging of catecholamine neurotransmitters with nanosensors. Nano Lett. 2024, 24, 2400–2407.

Nano Research
Article number: 94907112
Cite this article:
Podleśny B, Czapura Ł, Taborowska P, et al. A universal approach for extraction of single-walled carbon nanotubes of specific chirality using aqueous two-phase extraction. Nano Research, 2025, 18(2): 94907112. https://doi.org/10.26599/NR.2025.94907112

506

Views

121

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 20 September 2024
Revised: 24 October 2024
Accepted: 04 November 2024
Published: 03 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return