PDF (11 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

Coaxial Ni-Ag nanowires network with high stability for stretchable supercapacitors

Hao Tang§Zhoulu Wang§()Zhengdao PanYuanyuan XuZhen ZhangJiaying SunSuchong TanXinchi ZhouXingyou RaoYutong WuXiang LiuYi Zhang
School of Energy Sciences and Engineering, Nanjing Tech University, Nanjing 211816, China

§ Hao Tang and Zhoulu Wang contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A highly-robust universal stretchable current collector (with a voltage range of 0–1.1 V) is suitable for alkaline electrolytes. Any electrode active material may be prepared as a slurry loaded on Ni-Ag nanowires (Ni-AgNWs) embedded into thermoplastic polyurethane (Ni-AgNWs@TPU) a stretchable current collector.

Abstract

Despite their excellent electrical and mechanical properties, silver nanowires (AgNWs) are often limited by electrochemical corrosion when used directly in stretchable and wearable energy storage. On the other hand, the electrodes of stretchable energy storage devices are mostly conductive energy storage materials designed as stretchable structures or combined with elastic substrates or relied on conductive polymers. The complex structural design often leads to low specific capacity. Herewith, we designed a coaxial Ni-AgNWs embedded into thermoplastic polyurethane (Ni-AgNWs@TPU) as a stretchable current collector, which effectively protects the AgNWs network by electrodeposition of a nickel layer. We demonstrated a simple activated carbon (A.C.) slurry loading on Ni-AgNWs@TPU stretchable collector, stretchable electrodes with a loading of 25 mg·cm–2 can be obtained with triethyl phosphate (TEP) as the solvent for A.C. preparation. The stretchable supercapacitors assembled with the gel electrolyte have a high areal capacitance of 489 mF·cm–2 and are cycled 5000 times at 5 mA·cm–2 with a capacity retention rate of 92.96%. An excellent capacity retention of 92.77% at a maximum strain of 80% and almost no capacity degradation at 60% strain for 6000 stretch/release cycles evidenced superior mechanical stability.

Electronic Supplementary Material

Video
7113_Movie S1.mp4
Download File(s)
7113_ESM.pdf (1.1 MB)

References

[1]

Shi, X.; Zuo, Y.; Zhai, P.; Shen, J. H.; Yang, Y. Y. W.; Gao, Z.; Liao, M.; Wu, J. X.; Wang, J. W.; Xu, X. J. et al. Large-area display textiles integrated with functional systems. Nature 2021, 591, 240–245.

[2]

Jadon, A.; Prabhudev, S.; Buvat, G.; Patnaik, S. G.; Djafari-Rouhani, M.; Estève, A.; Guay, D.; Pech, D. Rethinking pseudocapacitance: A way to harness charge storage of crystalline RuO2. ACS Appl. Energy Mater. 2020, 3, 4144–4148.

[3]

Lopes, P. A.; Vaz Gomes, D.; Green Marques, D.; Faia, P.; Góis, J.; Patrício, T. F.; Coelho, J.; Serra, A.; de Almeida, A. T.; Majidi, C. et al. Soft bioelectronic stickers: Selection and evaluation of skin-interfacing electrodes. Adv. Healthcare Mater. 2019, 8, 1900234.

[4]

Leal, C.; Lopes, P. A.; Serra, A.; Coelho, J. F. J.; de Almeida, A. T.; Tavakoli, M. Untethered disposable health monitoring electronic patches with an integrated Ag2O-Zn battery, a AgInGa current collector, and hydrogel electrodes. ACS Appl. Mater. Interfaces 2020, 12, 3407–3414.

[5]

Seabra, R.; Wethey, D. S.; Santos, A. M.; Lima, F. P. Understanding complex biogeographic responses to climate change. Sci. Rep. 2015, 5, 12930.

[6]

Lopes, P. A.; Paisana, H.; De Almeida, A. T.; Majidi, C.; Tavakoli, M. Hydroprinted electronics: Ultrathin stretchable Ag-In-Ga E-skin for bioelectronics and human-machine interaction. ACS Appl. Mater. Interfaces 2018, 10, 38760–38768.

[7]

Keum, K.; Kim, J. W.; Hong, S. Y.; Son, J. G.; Lee, S. S.; Ha, J. S. Flexible/stretchable supercapacitors with novel functionality for wearable electronics. Adv. Mater. 2020, 32, 2002180.

[8]

Li, Y. M.; Shan, M. Q.; Peng, J. M.; Lan, L. Z.; Wei, L. Q.; Guo, L. M.; Wang, F. J.; Zhang, Z.; Wang, L.; Mao, J. F. A highly stretchable and conductive continuous composite filament with buckled polypyrrole coating for stretchy electronic textiles. Appl. Surf. Sci. 2023, 610, 155515.

[9]

Zhao, C.; Jia, X. T.; Shu, K. W.; Yu, C. C.; Min, Y. G.; Wang, C. Y. Stretchability enhancement of buckled polypyrrole electrodes for stretchable supercapacitors via engineering substrate surface roughness. Electrochim. Acta 2020, 343, 136099.

[10]

Li, L.; Lou, Z.; Han, W.; Chen, D.; Jiang, K.; Shen, G. Z. Highly stretchable micro-supercapacitor arrays with hybrid MWCNT/PANI electrodes. Adv. Mater. Technol. 2017, 2, 1600282.

[11]

Liang, X.; Zhao, L.; Wang, Q. F.; Ma, Y.; Zhang, D. H. A dynamic stretchable and self-healable supercapacitor with a CNT/graphene/PANI composite film. Nanoscale 2018, 10, 22329–22334.

[12]

Volkov, A. V.; Wijeratne, K.; Mitraka, E.; Ail, U.; Zhao, D.; Tybrandt, K.; Andreasen, J. W.; Berggren, M.; Crispin, X.; Zozoulenko, I. V. Understanding the capacitance of PEDOT: PSS. Adv. Funct. Mater. 2017, 27, 1700329.

[13]

Kayser, L. V.; Lipomi, D. J. Stretchable conductive polymers and composites based on PEDOT and PEDOT: PSS. Adv. Mater. 2019, 31, 1806133.

[14]

Ren, D. Y.; Dong, L. B.; Wang, J. J.; Ma, X. P.; Xu, C. J.; Kang, F. Y. Facile preparation of high-performance stretchable fiber-like electrodes and supercapacitors. ChemistrySelect 2018, 3, 4179–4184.

[15]

Feng, S. X.; Wang, X.; Wang, M. D.; Bai, C.; Cao, S. T.; Kong, D. S. Crumpled MXene electrodes for ultrastretchable and high-area-capacitance supercapacitors. Nano Lett. 2021, 21, 7561–7568.

[16]

Yan, C. Y.; Wang, J. X.; Wang, X.; Kang, W. B.; Cui, M. Q.; Foo, C. Y.; Lee, P. S. An intrinsically stretchable nanowire photodetector with a fully embedded structure. Adv. Mater. 2014, 26, 943–950.

[17]

Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

[18]

Luo, Z. Q.; Jiang, Y. W.; Myers, B. D.; Isheim, D.; Wu, J. S.; Zimmerman, J. F.; Wang, Z.; Li, Q. Q.; Wang, Y. C.; Chen, X. Q. et al. Atomic gold-enabled three-dimensional lithography for silicon mesostructures. Science 2015, 348, 1451–1455.

[19]

Wang, Y.; Gong, S.; Wang, S. J.; Yang, X. Y.; Ling, Y. Z.; Yap, L. W.; Dong, D. S.; Simon, G. P.; Cheng, W. L. Standing enokitake-like nanowire films for highly stretchable elastronics. ACS Nano 2018, 12, 9742–9749.

[20]

Saerens, G.; Bloch, E.; Frizyuk, K.; Sergaeva, O.; Vogler-Neuling, V. V.; Semenova, E.; Lebedkina, E.; Petrov, M.; Grange, R.; Timofeeva, M. Second-harmonic generation tuning by stretching arrays of GaAs nanowires. Nanoscale 2022, 14, 8858–8864.

[21]

Wu, S.; Yao, S. S.; Liu, Y. X.; Hu, X. G.; Huang, H. H.; Zhu, Y. Buckle-delamination-enabled stretchable silver nanowire conductors. ACS Appl. Mater. Interfaces 2020, 12, 41696–41703.

[22]

Zhang, B. W.; Li, W. L.; Nogi, M.; Chen, C. T.; Yang, Y.; Sugahara, T.; Koga, H.; Suganuma, K. Alloying and embedding of Cu-core/Ag-shell nanowires for ultrastable stretchable and transparent electrodes. ACS Appl. Mater. Interfaces 2019, 11, 18540–18547.

[23]

Lee, H.; Hong, S.; Lee, J.; Suh, Y. D.; Kwon, J.; Moon, H.; Kim, H.; Yeo, J.; Ko, S. H. Highly stretchable and transparent supercapacitor by Ag-Au core–shell nanowire network with high electrochemical stability. ACS Appl. Mater. Interfaces 2016, 8, 15449–15458.

[24]

Song, T. B.; Chen, Y.; Chung, C. H.; Yang, Y.; Bob, B.; Duan, H. S.; Li, G.; Tu, K. N.; Huang, Y.; Yang, Y. Nanoscale joule heating and electromigration enhanced ripening of silver nanowire contacts. ACS Nano 2014, 8, 2804–2811.

[25]

Tokuno, T.; Nogi, M.; Karakawa, M.; Jiu, J.; Nge, T. T.; Aso, Y.; Suganuma, K. Fabrication of silver nanowire transparent electrodes at room temperature. Nano Res. 2011, 4, 1215–1222.

[26]

Celano, T. A.; Hill, D. J.; Zhang, X.; Pinion, C. W.; Christesen, J. D.; Flynn, C. J.; McBride, J. R.; Cahoon, J. F. Capillarity-driven welding of semiconductor nanowires for crystalline and electrically ohmic junctions. Nano Lett. 2016, 16, 5241–5246.

[27]

Lu, H. F.; Zhang, D.; Cheng, J. Q.; Liu, J.; Mao, J.; Choy, W. C. H. Locally welded silver nano-network transparent electrodes with high operational stability by a simple alcohol-based chemical approach. Adv. Funct. Mater. 2015, 25, 4211–4218.

[28]

Lee, P.; Lee, J.; Lee, H.; Yeo, J.; Hong, S.; Nam, K. H.; Lee, D.; Lee, S. S.; Ko, S. H. Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network. Adv. Mater. 2012, 24, 3326–3332.

[29]

Hong, S.; Lee, H.; Yeo, J.; Ko, S. H. Digital selective laser methods for nanomaterials: From synthesis to processing. Nano Today 2016, 11, 547–564.

[30]

Lee, J.; Lee, P.; Lee, H.; Lee, D.; Lee, S. S.; Ko, S. H. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel. Nanoscale 2012, 4, 6408–6414.

[31]

Lee, P.; Ham, J.; Lee, J.; Hong, S.; Han, S.; Suh, Y. D.; Lee, S. E.; Yeo, J.; Lee, S. S.; Lee, D. et al. Highly stretchable or transparent conductor fabrication by a hierarchical multiscale hybrid nanocomposite. Adv. Funct. Mater. 2014, 24, 5671–5678.

[32]

Lee, J.; Lee, P.; Lee, H. B.; Hong, S.; Lee, I.; Yeo, J.; Lee, S. S.; Kim, T. S.; Lee, D.; Ko, S. H. Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-assisted joining for a flexible touch-panel application. Adv. Funct. Mater. 2013, 23, 4171–4176.

[33]

Cho, C.; Shin, W.; Kim, M.; Bang, J.; Won, P.; Hong, S.; Ko, S. H. Monolithically programmed stretchable conductor by laser-induced entanglement of liquid metal and metallic nanowire backbone. Small 2022, 18, 2202841.

[34]

Kim, M.; Cho, C.; Shin, W.; Park, J. J.; Kim, J.; Won, P.; Majidi, C.; Ko, S. H. Nanowire-assisted freestanding liquid metal thin-film patterns for highly stretchable electrodes on 3D surfaces. npj Flex. Electron. 2022, 6, 99.

[35]

Park, T.; Chang, I.; Lee, H. B.; Ko, S. H.; Cha, S. W. Performance variation of bendable polymer electrolyte fuel cell based on Ag nanowire current collector under mixed bending and twisting load. Int. J. Hydrogen Energy 2017, 42, 1884–1890.

[36]

Chang, I.; Park, T.; Lee, J.; Lee, H. B.; Ji, S.; Lee, M. H.; Ko, S. H.; Cha, S. W. Performance enhancement in bendable fuel cell using highly conductive Ag nanowires. Int. J. Hydrogen Energy 2014, 39, 7422–7427.

[37]

Chang, I.; Park, T.; Lee, J.; Lee, M. H.; Ko, S. H.; Cha, S. W. Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J. Mater. Chem. A 2013, 1, 8541–8546.

[38]

Giovanni, M.; Pumera, M. Size dependant electrochemical behavior of silver nanoparticles with sizes of 10, 20, 40, 80 and 107 nm. Electroanalysis 2012, 24, 615–617.

[39]

Park, S.; Tan, A. W. M.; Wang, J. X.; Lee, P. S. Coaxial Ag-base metal nanowire networks with high electrochemical stability for transparent and stretchable asymmetric supercapacitors. Nanoscale Horiz. 2017, 2, 199–204.

[40]

Won, P.; Park, J. J.; Lee, T.; Ha, I.; Han, S.; Choi, M.; Lee, J.; Hong, S.; Cho, K. J.; Ko, S. H. Stretchable and transparent kirigami conductor of nanowire percolation network for electronic skin applications. Nano Lett. 2019, 19, 6087–6096.

[41]

Choi, J.; Min, J.; Kim, D.; Kim, J.; Kim, J.; Yoon, H.; Lee, J.; Jeong, Y.; Kim, C. Y.; Ko, S. H. Hierarchical 3D percolation network of Ag-Au core–shell nanowire-hydrogel composite for efficient biohybride electrodes. ACS Nano 2023, 17, 17966–17978.

[42]

Yoon, H.; Choi, J.; Kim, J.; Kim, J.; Min, J.; Kim, D.; Jeong, S.; Lee, J. G.; Bang, J.; Choi, S. H. et al. Adaptive epidermal bioelectronics by highly breathable and stretchable metal nanowire bioelectrodes on electrospun nanofiber membrane. Adv. Funct. Mater. 2024, 34, 2313504.

[43]

Jiu, J.; Araki, T.; Wang, J.; Nogi, M.; Sugahara, T.; Nagao, S.; Koga, H.; Suganuma, K.; Nakazawa, E.; Hara, M. et al. Facile synthesis of very-long silver nanowires for transparent electrodes. J. Mater. Chem. A 2014, 2, 6326–6330.

[44]

Chen, C.; Wang, L.; Yu, H. J.; Jiang, G. H.; Yang, Q.; Zhou, J. F.; Xiang, W. D.; Zhang, J. F. Study on the growth mechanism of silver nanorods in the nanowire-seeding polyol process. Mater. Chem. Phys 2008, 107, 13–17.

[45]

Zhang, L. W.; Chen, Y. N.; Xu, C. W.; Liu, Z. G.; Qiu, Y. J. Nickel-enhanced silver nanowire-based transparent heater with large size. RSC Adv. 2018, 8, 14532–14538.

[46]

Kundu, A.; Fisher, T. S. Symmetric all-solid-state supercapacitors operating at 1.5 V using a redox-active gel electrolyte. ACS Appl. Energy Mater. 2018, 1, 5800–5809.

[47]

Yan, J.; Liu, C.; Yang, J. J.; Wang, Z.; Yao, W. X.; Huang, L. L.; Cui, J. W.; Liu, J. Q.; Hu, X. Y.; Wu, Y. C. A 2.6 V flexible supercapacitor based on Al-MnO2-Na2SO4//AC-KOH with high specific energy. ACS Energy Lett. 2023, 8, 2033–2041.

[48]

Xu, S. F.; Xiao, H. Z.; Shi, B. The improvement of dispersity, thermal stability and mechanical properties of collagen fibers by silane modification: An exploration for developing new leather making technology. J. Leather Sci. Eng. 2022, 4, 26.

[49]

Zhao, W. W.; Jiang, M. Y.; Wang, W. K.; Liu, S. J.; Huang, W.; Zhao, Q. Flexible transparent supercapacitors: Materials and devices. Adv. Funct. Mater. 2021, 31, 2009136.

[50]

Liu, Y. H.; Xu, J. L.; Gao, X.; Sun, Y. L.; Lv, J. J.; Shen, S.; Chen, L. S.; Wang, S. D. Freestanding transparent metallic network based ultrathin, foldable and designable supercapacitors. Energy Environ. Sci. 2017, 10, 2534–2543.

[51]

Zhang, C. F.; Nicolosi, V. Graphene and MXene-based transparent conductive electrodes and supercapacitors. Energy Storage Mater. 2019, 16, 102–125.

[52]

Kiruthika, S.; Sneha, N.; Gupta, R. Visibly transparent supercapacitors. J. Mater. Chem. A 2023, 11, 4907–4936.

[53]

Funes-Hernando, D.; Pelaez-Fernandez, M.; Winterauer, D.; Mevellec, J. Y.; Arenal, R.; Batten, T.; Humbert, B.; Duvail, J. L. Coaxial nanowires as plasmon-mediated remote nanosensors. Nanoscale 2018, 10, 6437–6444.

[54]

Yuksel, R.; Coskun, S.; Unalan, H. E. Coaxial silver nanowire network core molybdenum oxide shell supercapacitor electrodes. Electrochim. Acta 2016, 193, 39–44.

[55]

Wang, D. A.; Li, F. H.; Shi, Y.; Liu, M. H.; Liu, B.; Chang, Q. Optimization of the preparation parameters of high-strength nickel layers by electrodeposition on mild steel substrates. Materials 2021, 14, 5461.

[56]

Zhu, Q. C.; Zhao, D. Y.; Cheng, M. Y.; Zhou, J. Q.; Owusu, K. A.; Mai, L. Q.; Yu, Y. A new view of supercapacitors: Integrated supercapacitors. Adv. Energy Mater. 2019, 9, 1901081.

[57]

Libich, J.; Máca, J.; Vondrák, J.; Čech, O.; Sedlaříková, M. Supercapacitors: Properties and applications. J. Energy Storage 2018, 17, 224–227.

[58]

Yu, D. S.; Qian, Q. H.; Wei, L.; Jiang, W. C.; Goh, K.; Wei, J.; Zhang, J.; Chen, Y. Emergence of fiber supercapacitors. Chem. Soc. Rev. 2015, 44, 647–662.

[59]

Pang, L.; Zhang, Y. Y.; Yang, H. Q.; Zhang, M. J.; Huang, Z. L.; Wang, H. Z.; Jin, B. D. The gas phase retention volume behavior of organophosphate esters on polyurethane foam. Chemosphere 2022, 300, 134506.

[60]

Troev, K.; Grancharov, G.; Tsevi, R.; Tsekova, A. Erratum to “A novel approach to recycling of polyurethanes: Chemical degradation of flexible polyurethane foams by triethyl phosphate” [Polymer, 41 (2000) 7017]. Polymer 2001, 42, 5501–5502.

[61]

Zeng, J.; Dong, L. B.; Sha, W. X.; Wei, L.; Guo, X. Highly stretchable, compressible and arbitrarily deformable all-hydrogel soft supercapacitors. Chem. Eng. J. 2020, 383, 123098.

Nano Research
Article number: 94907113
Cite this article:
Tang H, Wang Z, Pan Z, et al. Coaxial Ni-Ag nanowires network with high stability for stretchable supercapacitors. Nano Research, 2025, 18(2): 94907113. https://doi.org/10.26599/NR.2025.94907113
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return