PDF (11.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Mesoporous N-incorporated carbon with Ti single atom-regulated electronic structure as high performance cathodes for Li-S batteries

Jiafeng Hu1,§Yunfei Xiao2,§Zhengguang Hu1,§Guanghao He1Zhongheng Zhu1Fengping Xie1Li Wang1Li Zuo2Yong Zhao1 ()
Department of Physics, School of Physics and Materials Science, Nanchang University, Nanchang 330031, China
National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Jiangxi Medical College, Nanchang University, Nanchang 330031, China

§ Jiafeng Hu, Yunfei Xiao, and Zhengguang Hu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The titanium single atom-anchored mesoporous N-incorporated carbon (TiSA-NC) was prepared by pyrolysis of titanium incorporated zeolitic imidazolate framework-8, the isolated Ti atom in mesoporous N-incorporated carbon adjusted the density of states at the Fermi level. The strengthened polarity and the declined reaction barrier enhanced the performance of the Li-S batteries.

Abstract

Lithium-sulfur (Li-S) batteries are considered as strong competitors for next-generation energy storage because of their high theoretical energy density. However, some challenges, such as shuttle effect of lithium polysulfides (LiPSs), volume expansion of sulfur during charge/discharge process and poor conductivity of the cathode, hindered their commercial application. In this paper, an excellent sulfur host material, the titanium single atom (TiSA)-anchored mesoporous N-incorporated carbon (TiSA-NC) was successfully obtained. The introduction of TiSAs onto the NC textures optimized their electronic structures including the charge distribution between the constituent atoms and the total density of states (TDOS) near the Fermi level. Consequently, the button battery constructed by TiSA-NC delivered impressive energy storage performance: a high reversible capacity of 1077 mAh·g−1 at 0.1 C; an outstanding rate capacity of 541 mAh·g−1 at 3 C; a superior long-term stability with a capacity fading rate of 0.053% per cycle for 500 cycles at 0.5 C. This work provided an effective strategy for manufacturing high performance Li-S batteries by designing and constructing single atom catalysts.

Electronic Supplementary Material

Download File(s)
7114_ESM.pdf (1.5 MB)

References

[1]

Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J. M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29.

[2]

Li, Y. J.; Guo, S. J. Material design and structure optimization for rechargeable lithium-sulfur batteries. Matter 2021, 4, 1142–1188.

[3]

Pang, Q.; Liang, X.; Kwok, C. Y.; Nazar, L. F. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat. Energy 2016, 1, 16132.

[4]

Manthiram, A.; Fu, Y. Z.; Chung, S. H.; Zu, C. X.; Su, Y. S. Rechargeable lithium-sulfur batteries. Chem. Rev. 2014, 114, 11751–11787.

[5]

Kim, H.; Bang, S.; Min, K. J.; Ham, Y. G.; Park, S. J.; Sun, Y. K. Achieving high-performance Li–S batteries via polysulfide adjoining interface engineering. ACS Appl. Mater. Interfaces 2021, 13, 39435–39445.

[6]

Seo, H. K.; Hwa, Y.; Chang, J. H.; Park, J. Y.; Lee, J. S.; Park, J.; Cairns, E. J.; Yuk, J. M. Direct visualization of lithium polysulfides and their suppression in liquid electrolyte. Nano Lett. 2020, 20, 2080–2086.

[7]

Luo, S. R.; Wu, F. X.; Yushin, G. Strategies for fabrication, confinement and performance boost of Li2S in lithium-sulfur, silicon-sulfur & related batteries. Mater. Today 2021, 49, 253–270.

[8]

Chen, F.; Ma, L. L.; Ren, J. G.; Luo, X. Y.; Liu, B. B.; Zhou, X. Y. Sandwich-type nitrogen and sulfur codoped graphene-backboned porous carbon coated separator for high performance lithium-sulfur batteries. Nanomaterials 2018, 8, 191.

[9]

Guo, W.; Fu, Y. Z. A Perspective on energy densities of rechargeable Li-S batteries and alternative sulfur-based cathode materials. Energy Environ. Mater. 2018, 1, 20–27.

[10]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[11]

Pang, Q.; Kwok, C. Y.; Kundu, D.; Liang, X.; Nazar, L. F. Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 2019, 3, 136–148.

[12]

Ji, X. L.; Lee, K. T.; Nazar, L. F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 2009, 8, 500–506.

[13]

Seh, Z. W.; Sun, Y. M.; Zhang, Q. F.; Cui, Y. Designing high-energy lithium-sulfur batteries. Chem. Soc. Rev. 2016, 45, 5605–5634.

[14]

Seh, W. Z.; Li, W. Y.; Cha, J. J.; Zheng, G. Y.; Yang, Y.; McDowell, M. T.; Hsu, P. C.; Cui, Y. Sulphur-TiO2 yolk–shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries. Nat. Commun. 2013, 4, 1331.

[15]

Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

[16]

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

[17]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeO x . Nat. Chem. 2011, 3, 634–641.

[18]

Xie, J.; Li, B. Q.; Peng, H. J.; Song, Y. W.; Zhao, M.; Chen, X.; Zhang, Q.; Huang, J. Q. Implanting atomic cobalt within mesoporous carbon toward highly stable lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903813.

[19]

Wang, C. G.; Song, H. W.; Yu, C. C.; Ullah, Z.; Guan, Z. X.; Chu, R. R.; Zhang, Y. F.; Zhao, L. Y.; Li, Q.; Liu, L. W. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries. J. Mater. Chem. A 2020, 8, 3421–3430.

[20]

Wu, J. L.; Chen, J. M.; Huang, Y.; Feng, K.; Deng, J.; Huang, W.; Wu, Y. L.; Zhong, J.; Li, Y. G. Cobalt atoms dispersed on hierarchical carbon nitride support as the cathode electrocatalyst for high-performance lithium-polysulfide batteries. Sci. Bull. 2019, 64, 1875–1880.

[21]

Zhang, L. L.; Liu, D. B.; Muhammad, Z.; Wan, F.; Xie, W.; Wang, Y. J.; Song, L.; Niu, Z. Q.; Chen, J. Single nickel atoms on nitrogen-doped graphene enabling enhanced kinetics of lithium-sulfur batteries. Adv. Mater. 2019, 31, 1903955.

[22]

Zhou, G. M.; Zhao, S. Y.; Wang, T. S.; Yang, S. Z.; Johannessen, B.; Chen, H.; Liu, C. W.; Ye, Y. S.; Wu, Y. C.; Peng, Y. et al. Theoretical calculation guided design of single-atom catalysts toward fast kinetic and long-life Li–S batteries. Nano Lett. 2020, 20, 1252–1261.

[23]

Han, Z. Y.; Zhao, S. Y.; Xiao, J. W.; Zhong, X. W.; Sheng, J. Z.; Lv, W.; Zhang, Q. F.; Zhou, G. M.; Cheng, H. M. Engineering d–p orbital hybridization in single-atom metal-embedded three-dimensional electrodes for Li-S batteries. Adv. Mater. 2021, 33, 2105947.

[24]

Cao, F. L.; Zhang, X. K.; Jin, Z. H.; Zhang, J. Y.; Tian, Z. Y.; Kong, D. B.; Li, Y. P.; Li, Y. T.; Zhi, L. J. Electronegativity matching of asymmetrically coordinated single-atom catalysts for high-performance lithium-sulfur batteries. Adv. Energy Mater. 2024, 14, 2303893.

[25]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[26]

Bai, J. R.; Fu, Y.; Zhou, P.; Xu, P.; Wang, L. L.; Zhang, J. P.; Jiang, X. K.; Zhou, Q. F.; Deng, Y. Y. Synergies of atomically dispersed Mn/Fe single atoms and Fe nanoparticles on N-doped carbon toward high-activity eletrocatalysis for oxygen reduction. ACS Appl. Mater. Interfaces 2022, 14, 29986–29992.

[27]

Chang, F. F.; Zhu, K.; Liu, C. H.; Wei, J. C.; Yang, S. W.; Zhang, Q.; Yang, L.; Wang, X. L.; Bai, Z. Y. Construction of Cu–Ni atomic pair with bimetallic atom-cluster sites for enhanced CO2 electroreduction. Adv. Funct. Mater. 2024, 34, 2400893.

[28]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[29]

Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

[30]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple [Phys. Rev. Lett. 77, 3865 (1996)]. Phys. Rev. Lett. 1997, 78, 1396.

[31]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[32]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276.

[33]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[34]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[35]

Ma, R. Z.; Li, Q. H.; Yan, J.; Tao, Y.; Hu, S. Y.; Liu, D. H.; Gong, J. X.; Xiong, Y. Thermodynamically controllable synthesis of ZIF-8 exposing different facets and their applications in single atom catalytic oxygen reduction reactions. Nano Res. 2023, 16, 9618–9624.

[36]

Zhu, J.; Wang, X. Y.; Ke, T.; Jia, M. J.; Jin, B. Y.; Li, Y. Y.; Yang, Q. W.; Ren, L. H.; Ren, Y. Y.; Cheng, D. G. et al. Nickel single atom overcoordinated active sites to accelerate the electrochemical reaction kinetics for Li-S cathode. J. Energy Chem. 2023, 78, 203–210.

[37]

Xu, Z. L.; Zhang, S. L.; Liu, J. Y.; Xiao, Z. H.; Yang, M.; Tang, A. D. Kaolinite nanoscroll significantly inhibiting polysulfide ions shuttle in lithium sulfur batteries. Appl. Clay Sci. 2022, 224, 106516.

[38]

Qi, C.; Zu, S.; Zhu, X. K.; Zhang, T.; Li, L. Y.; Song, L.; Jin, Y. C.; Zhang, M. D. Bamboo-shaped Co@NCNTs as superior sulfur host for Li-S batteries. Appl. Surf. Sci. 2022, 601, 154245.

[39]

Xiao, T. J.; Yang, Y. M.; Yang, M. Z.; Liu, W. L.; Li, M.; Ren, M. M.; Cai, F. P.; Wang, Y. H. CoOOH-hierarchical porous carbon-sulfur as an excellent cathode for Li-S batteries. J. Alloys Compd. 2022, 923, 166334.

[40]

Tian, Y. H.; Yang, Z. Y.; Wang, H.; Xiong, W. L.; Lin, X. L.; Wang, S. J.; Kong, F. G.; Li, P.; Xi, Y. B.; Zhang, F. S. et al. Nitrogen-doped 3D carbon hybrids based on modified lignin as sulfur host for high-performance lithium-sulfur batteries. J. Power Sources 2024, 621, 235322.

[41]

Liu, C.; Wu, P. F.; Chen, X. Z.; Gu, C.; Chen, S. H.; Mei, X.; Liu, A. H. Synergy of physical and chemical constraints for stable lithium-sulfur batteries. J. Alloys Compd. 2022, 927, 167038.

[42]

Tao, X. Y.; Wang, J. G.; Liu, C.; Wang, H. T.; Yao, H. B.; Zheng, G. Y.; Seh, Z. W.; Cai, Q. X.; Li, W. Y.; Zhou, G. M. et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design. Nat. Commun. 2016, 7, 11203.

[43]

Tian, S. H.; Zeng, Q.; Liu, G.; Huang, J. J.; Sun, X.; Wang, D.; Yang, H. C.; Liu, Z.; Mo, X. C.; Wang, Z. X. et al. Multi-dimensional composite frame as bifunctional catalytic medium for ultra-fast charging lithium-sulfur battery. Nanomicro Lett. 2022, 14, 196.

[44]

Wang, R. R.; Wu, R. B.; Yan, X. X.; Liu, D.; Guo, P. F.; Li, W.; Pan, H. G. Implanting single Zn atoms coupled with metallic Co nanoparticles into porous carbon nanosheets grafted with carbon nanotubes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2200424.

Nano Research
Article number: 94907114
Cite this article:
Hu J, Xiao Y, Hu Z, et al. Mesoporous N-incorporated carbon with Ti single atom-regulated electronic structure as high performance cathodes for Li-S batteries. Nano Research, 2025, 18(2): 94907114. https://doi.org/10.26599/NR.2025.94907114
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return