PDF (27 MB)
Collect
Submit Manuscript
Show Outline
Figures (7)

Research Article | Open Access

Ce-UiO-66 nanozymes with charge-regulated uricase-like activity for enzyme/reagent-free detection of uric acid

Zhixiong Guo1,§Da Chen1,§Wei Gao2 ()Yongquan Qu1 ()Zhimin Tian1 ()
Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710054, China
State Key Laboratory of Solidification Processing, Center for Nano Energy Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China

§ Zhixiong Guo and Da Chen contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
In this work, we revealed that the uricase-like activities of Ce-UiO-66-X nanozymes could be effectively optimized by the surface charge via ligand regulation strategy. Subsequently, a smartphone-assisted all-in-one enzyme/reagent-free sensor based on Ce-UiO-66-CH3 was successfully constructed for the rapid, robust, and conveniently quantified detection of uric acid.

Abstract

Designing highly performed uricase-like nanozymes through enzymatic-like colorimetric analysis system is of vital significance for the quantitative detection of uric acid (UA). Herein, series of Ce-UiO-66 nanozymes with different surface charges through the ligand engineering strategy were rationally designed and synthesized as efficient uricase mimics with tailorable uricase-like activities to catalytically convert UA into allantoin and H2O2. Importantly, by tuning the functional groups of 1,4-benzoic acid ligands, we explored the relationships between the surface charges of Ce-UiO-66-X (X = H, NO2, Br, CH3, and OH) nanozymes and their uricase-like activity. Among them, Ce-UiO-66-CH3 with the moderate surface charge exhibited optimal substrate adsorption and product desorption, displaying the highest uricase-like activity. Significantly, H2O2, as the product of UA oxidation, enabled Ce-UiO-66-CH3 itself as a dose-dependent chromogenic substrate of H2O2, giving a white-to-orange color evolution due to the Ce-UiO-66-CH3-to-CeO2 phase transition. Afterwards, a smartphone-assisted all-in-one enzyme/reagent-free biosensor based on Ce-UiO-66-CH3 was established for the precise visual detection of UA analysis, which was featured by a wide detection range (31–4000 µM), a high sensitivity (limit of detection: 8.9 µM), a rapid response (~ 3 min), a high structural stability, and a high anti-interference ability.

Electronic Supplementary Material

Video
7115_Video S1.mp4
7115_Video S2.mp4
Download File(s)
7115_ESM.pdf (1.2 MB)

References

[1]

Rees, F.; Hui, M.; Doherty, M. Optimizing current treatment of gout. Nat. Rev. Rheumatol. 2014, 10, 271–283.

[2]

Alvarez-Lario, B.; Macarron-Vicente, J. Uric acid and evolution. Rheumatology 2010, 49, 2010–2015.

[3]

Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390.

[4]

Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241.

[5]

Feig, D. I.; Kang, D. H.; Johnson, R. J. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821.

[6]

Terkeltaub, R. Update on gout: New therapeutic strategies and options. Nat. Rev. Rheumatol. 2010, 6, 30–38.

[7]

Zhou, R. B.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010, 11, 136–140.

[8]

Kim, J.; Imani, S.; De Araujo, W. R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T. R. L. C.; Mercier, P. P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068.

[9]

Sherman, M. R.; Saifer, M. G. P.; Perez-Ruiz, F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv. Drug Deliv. Rev. 2008, 60, 59–68.

[10]

Sands, E.; Kivitz, A.; DeHaan, W.; Leung, S. S.; Johnston, L.; Kishimoto, T. K. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. Nat. Commun. 2022, 13, 272.

[11]

Zhang, R. F.; Jiang, B.; Fan, K. L.; Gao, L. Z.; Yan, X. Y. Designing nanozymes for in vivo applications. Nat. Rev. Bioeng. 2024, 2, 849–868.

[12]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[13]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[14]
Li, Z.; Wu, D. H.; Wang, Q. C.; Zhang, Q. X.; Xu, P.; Liu, F. N.; Xi, S. B.; Ma, D. W.; Lu, Y. Z.; Jiang, L. et al. Bioinspired homonuclear diatomic iron active site regulation for efficient antifouling osmotic energy conversion. Adv. Mater., in press, https://doi.org/10.1002/adma.202408364.
[15]

Li, Z.; Liu, F. N.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Song, N. N.; Hu, Y.; Xi, S. B.; Liang, M. M.; Lu, Y. Z. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.

[16]

Xu, J. X.; Wu, M. J.; Yang, J.; Zhao, D. Z.; He, D.; Liu, Y. J.; Yan, X.; Liu, Y. Y.; Pu, D. J.; Tan, Q. Y. et al. Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis. Nat. Nanotechnol. 2024, 19, 1544–1557.

[17]

Dong, Y. Q.; Chi, Y. W.; Lin, X. M.; Zheng, L. Y.; Chen, L. C.; Chen, G. N. Nano-sized platinum as a mimic of uricase catalyzing the oxidative degradation of uric acid. Phys. Chem. Chem. Phys. 2011, 13, 6319–6324.

[18]

Xi, J. Q.; Zhang, R. F.; Wang, L. M.; Xu, W.; Liang, Q.; Li, J. Y.; Jiang, J.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 2021, 31, 2007130.

[19]

Lin, A. Q.; Sun, Z. Y.; Xu, X. Q.; Zhao, S.; Li, J. W.; Sun, H.; Wang, Q.; Jiang, Q.; Wei, H.; Shi, D. Q. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 2022, 22, 508–516.

[20]

Wang, K. Y.; Hong, Q.; Zhu, C. X.; Xu, Y.; Li, W.; Wang, Y.; Chen, W. H.; Gu, X.; Chen, X. H.; Fang, Y. F. et al. Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity. Nat. Commun. 2024, 15, 5705.

[21]

Xi, Z.; Xie, J.; Hu, J.; Wang, Q. C.; Wang, Z. Y.; Yang, X. Q.; Zong, L. Y.; Zhang, M. Y.; Sun, X. H.; Sun, S. H. et al. Polyvinylpyrrolidone-coated cubic hollow nanocages of PdPt3 and PdIr3 as highly efficient self-cascade uricase/peroxidase mimics. Nano Lett. 2024, 24, 3432–3440.

[22]

Hu, J.; Zhao, R. F.; Gu, J. K.; Xi, Z.; Wang, Y.; Sun, X. H.; Xu, Z. B.; Sha, K. X.; Xi, J. Q.; Liu, Y. et al. Crystal facet controlled metal–support interaction in uricase mimics for highly efficient hyperuricemia treatment. Nano Lett. 2024, 24, 6634–6643.

[23]

Liu, Y.; Li, N.; Su, K.; Du, J. M.; Guo, R. Arginine-rich peptide-rhodium nanocluster@reduced graphene oxide composite as a highly selective and active uricase-like nanozyme for the degradation of uric acid and inhibition of urate crystal. Inorg. Chem. 2024, 63, 13602–13612.

[24]

Liu, D. H.; Yi, S. M.; Ni, X.; Zhang, J. J.; Wang, F. Q.; Yang, P.; Liu, M. R.; Peng, J.; Dramou, P.; He, H. Preparation and application of nanozymes with uricase-like activity based on molecularly imprinted polymers. ChemPlusChem 2023, 88, e202200286.

[25]

Liu, D. H.; Yang, P.; Wang, F. Q.; Wang, C.; Chen, L.; Ye, S. J.; Dramou, P.; Chen, J. H.; He, H. Study on performance of mimic uricase and its application in enzyme-free analysis. Anal. Bioanal. Chem. 2021, 413, 6571–6580.

[26]

Parmekar, M. V.; Salker, A. V. Highly tuned cobalt-doped MnO2 nanozyme as remarkably efficient uricase mimic. Appl. Nanosci. 2020, 10, 317–328.

[27]

Chen, Z.; Yu, Y. X.; Gao, Y. H.; Zhu, Z. L. Rational design strategies for nanozymes. ACS Nano 2023, 17, 13062–13080.

[28]

Somerville, S. V.; Li, Q. Y.; Wordsworth, J.; Jamali, S.; Eskandarian, M. R.; Tilley, R. D.; Gooding, J. J. Approaches to improving the selectivity of nanozymes. Adv. Mater. 2024, 36, 2211288.

[29]

Shen, X. M.; Wang, Z. Z.; Gao, X. J.; Gao, X. F. Reaction mechanisms and kinetics of nanozymes: Insights from theory and computation. Adv. Mater. 2024, 36, 2211151.

[30]
Zheng, J. J.; Zhu, F. Y.; Song, N. N.; Deng, F.; Chen, Q.; Chen, C.; He, J. Y.; Gao, X. F.; Liang, M. M. Optimizing the standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc., in press, https://doi.org/10.1038/s41596-024-01034-7.
[31]

Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.

[32]

Dong, H. J.; Fan, Y. Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjugate Chem. 2019, 30, 1273–1296.

[33]

Zandieh, M.; Liu, J. W. Surface science of nanozymes and defining a nanozyme unit. Langmuir 2022, 38, 3617–3622.

[34]

Yang, L.; Dong, S. M.; Gai, S. L.; Yang, D.; Ding, H.; Feng, L. L.; Yang, G. X.; Rehman, Z.; Yang, P. P. Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 2024, 16, 28.

[35]

Chandio, I.; Ai, Y. J.; Wu, L.; Liang, Q. L. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024, 17, 39–64.

[36]

Li, L.; Wen, Q. L.; Wang, T.; Xiao, S. T.; Gao, Y.; Wang, M.; Xu, X. H.; Ma, L.; Cheng, C. Metal-organic frameworks-engineered reactive-oxygen catalytic materials: Enzyme-mimicking coordinations, structure evolutions, and biotherapeutic applications. Mater. Today 2024, 78, 142–180.

[37]

Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.

[38]

Ma, Y. Y.; Tian, Z. M.; Zhai, W. F.; Qu, Y. Q. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res. 2022, 15, 10328–10342.

[39]

Kim, Y. G.; Lee, Y.; Lee, N.; Soh, M.; Kim, D.; Hyeon, T. Ceria-based therapeutic antioxidants for biomedical applications. Adv. Mater. 2024, 36, 2210819.

[40]

Wang, T. T.; Guo, W. F.; Lv, X. X.; Li, H. R.; Zhou, L.; Feng, L.; Xia, D.; Han, X.; Wang, Q.; Qu, Y. Q. et al. Catalytically self-supplied oxygen to alleviate hypoxia for treatment of acute kidney injury. Adv. Funct. Mater. 2024, 34, 2404774.

[41]

Xu, K. Q.; Cheng, Y.; Yan, J.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Wang, Y. J.; Song, P. P.; Zhang, H. Y. Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy. Nano Res. 2019, 12, 2947–2953.

[42]

Dong, S. M.; Dong, Y. S.; Jia, T.; Liu, S. K.; Liu, J.; Yang, D.; He, F.; Gai, S. L.; Yang, P. P.; Lin, J. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv. Mater. 2020, 32, 2002439.

[43]

Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021, 12, 1436.

[44]

Huang, Y. K.; Zhang, M. Z.; Jin, M. D.; Ma, T. F.; Guo, J. L.; Zhai, X. Y.; Du, Y. P. Recent advances on cerium oxide-based biomaterials: Toward the next generation of intelligent theranostics platforms. Adv. Healthc. Mater. 2023, 12, 2300748.

[45]

Yao, C.; Xu, Y. W.; Tang, J. P.; Hu, P.; Qi, H. D.; Yang, D. Y. Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat. Commun. 2022, 13, 7739.

[46]

Liu, C.; Gui, L.; Zheng, J. J.; Xu, Y. Q.; Song, B. L.; Yi, L.; Jia, Y. J.; Taledaohan, A.; Wang, Y. J.; Gao, X. F. et al. Intrinsic strain-mediated ultrathin ceria nanoantioxidant. J. Am. Chem. Soc. 2023, 145, 19086–19097.

[47]

Guo, Z. X.; Tian, Z. M.; Qu, Y. Q. One-step reagentless colorimetric analysis platform of biomineralized Ce-UiO-66 for universal detection of biomarkers. Sens. Actuators B: Chem. 2023, 397, 134705.

[48]

Luan, X. W.; Pan, Y. C.; Zhou, D. T.; He, B. S.; Liu, X. L.; Gao, Y. F.; Yang, J. J.; Song, Y. J. Cerium metal organic framework mediated molecular threading for point-of-care colorimetric assays. Biosens. Bioelectron. 2020, 165, 112406.

[49]

Xia, C. Q.; Zhang, X. M.; Liu, X. T.; Wu, D. H.; Guo, L. Q. Old dogs, new trick: Classical starch˗sodium iodide reagent as the chromogenic substrate of peroxidase-like nanozymes. Sens. Actuators B: Chem. 2022, 368, 132229.

[50]

Li, Y. Y.; Zeng, Z. H.; Tong, J. J.; Yang, T.; Liu, G. H.; Feng, B.; Zhang, P.; Liu, X. F.; Qing, T. Surface ligand-regulated nanointerfaces: Enhancing the catalytic activity and selectivity of platinum nanozymes for biomedical applications. Appl. Surf. Sci. 2024, 655, 159695.

[51]

Chiu, Y. C.; Hsu, T. S.; Huang, C. Y.; Hsu, C. H. Molecular elucidation of a urate oxidase from Deinococcus radiodurans for hyperuricemia and gout therapy. Int. J. Mol. Sci. 2021, 22, 5611.

[52]

Kahn, K.; Serfozo, P.; Tipton, P. A. Identification of the true product of the urate oxidase reaction. J. Am. Chem. Soc. 1997, 119, 5435–5442.

[53]

Yang, Q. H.; Wang, Y. M.; Tang, X.; Zhang, Q. J.; Dai, S.; Peng, H. T.; Lin, Y. C.; Tian, Z. Q.; Lu, Z. Y.; Chen, L. Ligand defect density regulation in metal-organic frameworks by functional group engineering on linkers. Nano Lett. 2022, 22, 838–845.

[54]

Jiang, X. Z.; Wang, W.; Tang, J. C.; Han, M.; Xu, Y. C.; Zhang, L. C.; Wu, J.; Huang, Y. Y.; Ding, Z. Y.; Sun, H. W. et al. Ligand-screened cerium-based MOF microcapsules promote nerve regeneration via mitochondrial energy supply. Adv. Sci. 2024, 11, 2306780.

[55]

Wu, J. J. X.; Yu, Y. J.; Cheng, Y.; Cheng, C. Q.; Zhang, Y. H.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, H. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem., Int. Ed. 2021, 60, 1227–1234.

[56]

Ma, C. Y.; Jiang, N.; Sun, X. Y.; Kong, L. B.; Liang, T.; Wei, X. W.; Wang, P. Progress in optical sensors-based uric acid detection. Biosens. Bioelectron. 2023, 237, 115495.

[57]

Wu, H. J.; Liu, J.; Chen, Z. Y.; Lin, P. C.; Ou, W. T.; Wang, Z. A.; Xiao, W.; Chen, Y.; Cao, D. L. Mechanism and application of surface-charged ferrite nanozyme-based biosensor toward colorimetric detection of L-cysteine. Langmuir 2022, 38, 8266–8279.

[58]

He, Y. F.; Qi, F.; Niu, X. H.; Zhang, W. C.; Zhang, X. F.; Pan, J. M. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal. Chim. Acta 2018, 1021, 113–120.

[59]

Qin, X.; Yuan, C. L.; Geng, G. X.; Shi, R.; Cheng, S. Q.; Wang, Y. L. Enzyme-free colorimetric determination of uric acid based on inhibition of gold nanorods etching. Sens. Actuators B: Chem. 2021, 333, 129638.

[60]

Li, N. S.; Chen, Y. T.; Hsu, Y. P.; Pang, H. H.; Huang, C. Y.; Shiue, Y. L.; Wei, K. C.; Yang, H. W. Mobile healthcare system based on the combination of a lateral flow pad and smartphone for rapid detection of uric acid in whole blood. Biosens. Bioelectron. 2020, 164, 112309.

[61]

Huang, L.; Qin, S. Y.; Xu, Y. J.; Cheng, S. Q.; Yang, J.; Wang, Y. L. Enzyme-free colorimetric detection of uric acid on the basis of MnO2 nanosheets-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine. Microchem. J. 2023, 190, 108719.

[62]

Li, L.; Wang, J. L.; Chen, Z. B. Colorimetric determination of uric acid based on the suppression of oxidative etching of silver nanoparticles by chloroauric acid. Microchim. Acta 2020, 187, 18.

[63]

Wang, Y. Y.; Yang, Y.; Liu, W.; Ding, F.; Zhao, Q. B.; Zou, P.; Wang, X. X.; Rao, H. B. Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Microchim. Acta 2018, 185, 281.

[64]

Fan, K. X.; Zeng, J. Y.; Yang, C. Y.; Wang, G. L.; Lian, K.; Zhou, X. H.; Deng, Y. P.; Liu, G. Z. Digital quantification method for sensitive point-of-care detection of salivary uric acid using smartphone-assisted μPADs. ACS Sens. 2022, 7, 2049–2057.

[65]

Ji, K. X.; Xia, S. Y.; Sang, X. Q.; Zeid, A. M.; Hussain, A.; Li, J. P.; Xu, G. B. Enhanced luminol chemiluminescence with oxidase-like properties of FeOOH nanorods for the sensitive detection of uric acid. Anal. Chem. 2023, 95, 3267–3273.

[66]

Hazra, P.; Vadnere, S.; Mishra, S.; Halder, S.; Mandal, S.; Ghosh, P. Review on uric acid recognition by MOFs with a future in machine learning. ACS Appl. Mater. Interfaces 2023, 15, 52065–52082.

Nano Research
Article number: 94907115
Cite this article:
Guo Z, Chen D, Gao W, et al. Ce-UiO-66 nanozymes with charge-regulated uricase-like activity for enzyme/reagent-free detection of uric acid. Nano Research, 2025, 18(2): 94907115. https://doi.org/10.26599/NR.2025.94907115
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return