Designing highly performed uricase-like nanozymes through enzymatic-like colorimetric analysis system is of vital significance for the quantitative detection of uric acid (UA). Herein, series of Ce-UiO-66 nanozymes with different surface charges through the ligand engineering strategy were rationally designed and synthesized as efficient uricase mimics with tailorable uricase-like activities to catalytically convert UA into allantoin and H2O2. Importantly, by tuning the functional groups of 1,4-benzoic acid ligands, we explored the relationships between the surface charges of Ce-UiO-66-X (X = H, NO2, Br, CH3, and OH) nanozymes and their uricase-like activity. Among them, Ce-UiO-66-CH3 with the moderate surface charge exhibited optimal substrate adsorption and product desorption, displaying the highest uricase-like activity. Significantly, H2O2, as the product of UA oxidation, enabled Ce-UiO-66-CH3 itself as a dose-dependent chromogenic substrate of H2O2, giving a white-to-orange color evolution due to the Ce-UiO-66-CH3-to-CeO2 phase transition. Afterwards, a smartphone-assisted all-in-one enzyme/reagent-free biosensor based on Ce-UiO-66-CH3 was established for the precise visual detection of UA analysis, which was featured by a wide detection range (31–4000 µM), a high sensitivity (limit of detection: 8.9 µM), a rapid response (~ 3 min), a high structural stability, and a high anti-interference ability.
Rees, F.; Hui, M.; Doherty, M. Optimizing current treatment of gout. Nat. Rev. Rheumatol. 2014, 10, 271–283.
Alvarez-Lario, B.; Macarron-Vicente, J. Uric acid and evolution. Rheumatology 2010, 49, 2010–2015.
Dehlin, M.; Jacobsson, L.; Roddy, E. Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat. Rev. Rheumatol. 2020, 16, 380–390.
Martinon, F.; Pétrilli, V.; Mayor, A.; Tardivel, A.; Tschopp, J. Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 2006, 440, 237–241.
Feig, D. I.; Kang, D. H.; Johnson, R. J. Uric acid and cardiovascular risk. N. Engl. J. Med. 2008, 359, 1811–1821.
Terkeltaub, R. Update on gout: New therapeutic strategies and options. Nat. Rev. Rheumatol. 2010, 6, 30–38.
Zhou, R. B.; Tardivel, A.; Thorens, B.; Choi, I.; Tschopp, J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat. Immunol. 2010, 11, 136–140.
Kim, J.; Imani, S.; De Araujo, W. R.; Warchall, J.; Valdés-Ramírez, G.; Paixão, T. R. L. C.; Mercier, P. P.; Wang, J. Wearable salivary uric acid mouthguard biosensor with integrated wireless electronics. Biosens. Bioelectron. 2015, 74, 1061–1068.
Sherman, M. R.; Saifer, M. G. P.; Perez-Ruiz, F. PEG-uricase in the management of treatment-resistant gout and hyperuricemia. Adv. Drug Deliv. Rev. 2008, 60, 59–68.
Sands, E.; Kivitz, A.; DeHaan, W.; Leung, S. S.; Johnston, L.; Kishimoto, T. K. Tolerogenic nanoparticles mitigate the formation of anti-drug antibodies against pegylated uricase in patients with hyperuricemia. Nat. Commun. 2022, 13, 272.
Zhang, R. F.; Jiang, B.; Fan, K. L.; Gao, L. Z.; Yan, X. Y. Designing nanozymes for in vivo applications. Nat. Rev. Bioeng. 2024, 2, 849–868.
Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Li, Z.; Liu, F. N.; Chen, C. X.; Jiang, Y. Y.; Ni, P. J.; Song, N. N.; Hu, Y.; Xi, S. B.; Liang, M. M.; Lu, Y. Z. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.
Xu, J. X.; Wu, M. J.; Yang, J.; Zhao, D. Z.; He, D.; Liu, Y. J.; Yan, X.; Liu, Y. Y.; Pu, D. J.; Tan, Q. Y. et al. Multimodal smart systems reprogramme macrophages and remove urate to treat gouty arthritis. Nat. Nanotechnol. 2024, 19, 1544–1557.
Dong, Y. Q.; Chi, Y. W.; Lin, X. M.; Zheng, L. Y.; Chen, L. C.; Chen, G. N. Nano-sized platinum as a mimic of uricase catalyzing the oxidative degradation of uric acid. Phys. Chem. Chem. Phys. 2011, 13, 6319–6324.
Xi, J. Q.; Zhang, R. F.; Wang, L. M.; Xu, W.; Liang, Q.; Li, J. Y.; Jiang, J.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 2021, 31, 2007130.
Lin, A. Q.; Sun, Z. Y.; Xu, X. Q.; Zhao, S.; Li, J. W.; Sun, H.; Wang, Q.; Jiang, Q.; Wei, H.; Shi, D. Q. Self-cascade uricase/catalase mimics alleviate acute gout. Nano Lett. 2022, 22, 508–516.
Wang, K. Y.; Hong, Q.; Zhu, C. X.; Xu, Y.; Li, W.; Wang, Y.; Chen, W. H.; Gu, X.; Chen, X. H.; Fang, Y. F. et al. Metal-ligand dual-site single-atom nanozyme mimicking urate oxidase with high substrates specificity. Nat. Commun. 2024, 15, 5705.
Xi, Z.; Xie, J.; Hu, J.; Wang, Q. C.; Wang, Z. Y.; Yang, X. Q.; Zong, L. Y.; Zhang, M. Y.; Sun, X. H.; Sun, S. H. et al. Polyvinylpyrrolidone-coated cubic hollow nanocages of PdPt3 and PdIr3 as highly efficient self-cascade uricase/peroxidase mimics. Nano Lett. 2024, 24, 3432–3440.
Hu, J.; Zhao, R. F.; Gu, J. K.; Xi, Z.; Wang, Y.; Sun, X. H.; Xu, Z. B.; Sha, K. X.; Xi, J. Q.; Liu, Y. et al. Crystal facet controlled metal–support interaction in uricase mimics for highly efficient hyperuricemia treatment. Nano Lett. 2024, 24, 6634–6643.
Liu, Y.; Li, N.; Su, K.; Du, J. M.; Guo, R. Arginine-rich peptide-rhodium nanocluster@reduced graphene oxide composite as a highly selective and active uricase-like nanozyme for the degradation of uric acid and inhibition of urate crystal. Inorg. Chem. 2024, 63, 13602–13612.
Liu, D. H.; Yi, S. M.; Ni, X.; Zhang, J. J.; Wang, F. Q.; Yang, P.; Liu, M. R.; Peng, J.; Dramou, P.; He, H. Preparation and application of nanozymes with uricase-like activity based on molecularly imprinted polymers. ChemPlusChem 2023, 88, e202200286.
Liu, D. H.; Yang, P.; Wang, F. Q.; Wang, C.; Chen, L.; Ye, S. J.; Dramou, P.; Chen, J. H.; He, H. Study on performance of mimic uricase and its application in enzyme-free analysis. Anal. Bioanal. Chem. 2021, 413, 6571–6580.
Parmekar, M. V.; Salker, A. V. Highly tuned cobalt-doped MnO2 nanozyme as remarkably efficient uricase mimic. Appl. Nanosci. 2020, 10, 317–328.
Chen, Z.; Yu, Y. X.; Gao, Y. H.; Zhu, Z. L. Rational design strategies for nanozymes. ACS Nano 2023, 17, 13062–13080.
Somerville, S. V.; Li, Q. Y.; Wordsworth, J.; Jamali, S.; Eskandarian, M. R.; Tilley, R. D.; Gooding, J. J. Approaches to improving the selectivity of nanozymes. Adv. Mater. 2024, 36, 2211288.
Shen, X. M.; Wang, Z. Z.; Gao, X. J.; Gao, X. F. Reaction mechanisms and kinetics of nanozymes: Insights from theory and computation. Adv. Mater. 2024, 36, 2211151.
Liu, B. W.; Liu, J. W. Surface modification of nanozymes. Nano Res. 2017, 10, 1125–1148.
Dong, H. J.; Fan, Y. Y.; Zhang, W.; Gu, N.; Zhang, Y. Catalytic mechanisms of nanozymes and their applications in biomedicine. Bioconjugate Chem. 2019, 30, 1273–1296.
Zandieh, M.; Liu, J. W. Surface science of nanozymes and defining a nanozyme unit. Langmuir 2022, 38, 3617–3622.
Yang, L.; Dong, S. M.; Gai, S. L.; Yang, D.; Ding, H.; Feng, L. L.; Yang, G. X.; Rehman, Z.; Yang, P. P. Deep insight of design, mechanism, and cancer theranostic strategy of nanozymes. Nano-Micro Lett. 2024, 16, 28.
Chandio, I.; Ai, Y. J.; Wu, L.; Liang, Q. L. Recent progress in MOFs-based nanozymes for biosensing. Nano Res. 2024, 17, 39–64.
Li, L.; Wen, Q. L.; Wang, T.; Xiao, S. T.; Gao, Y.; Wang, M.; Xu, X. H.; Ma, L.; Cheng, C. Metal-organic frameworks-engineered reactive-oxygen catalytic materials: Enzyme-mimicking coordinations, structure evolutions, and biotherapeutic applications. Mater. Today 2024, 78, 142–180.
Wang, D. D.; Jana, D.; Zhao, Y. L. Metal-organic framework derived nanozymes in biomedicine. Acc. Chem. Res. 2020, 53, 1389–1400.
Ma, Y. Y.; Tian, Z. M.; Zhai, W. F.; Qu, Y. Q. Insights on catalytic mechanism of CeO2 as multiple nanozymes. Nano Res. 2022, 15, 10328–10342.
Kim, Y. G.; Lee, Y.; Lee, N.; Soh, M.; Kim, D.; Hyeon, T. Ceria-based therapeutic antioxidants for biomedical applications. Adv. Mater. 2024, 36, 2210819.
Wang, T. T.; Guo, W. F.; Lv, X. X.; Li, H. R.; Zhou, L.; Feng, L.; Xia, D.; Han, X.; Wang, Q.; Qu, Y. Q. et al. Catalytically self-supplied oxygen to alleviate hypoxia for treatment of acute kidney injury. Adv. Funct. Mater. 2024, 34, 2404774.
Xu, K. Q.; Cheng, Y.; Yan, J.; Feng, Y. L.; Zheng, R. X.; Wu, X. Q.; Wang, Y. J.; Song, P. P.; Zhang, H. Y. Polydopamine and ammonium bicarbonate coated and doxorubicin loaded hollow cerium oxide nanoparticles for synergistic tumor therapy. Nano Res. 2019, 12, 2947–2953.
Dong, S. M.; Dong, Y. S.; Jia, T.; Liu, S. K.; Liu, J.; Yang, D.; He, F.; Gai, S. L.; Yang, P. P.; Lin, J. GSH-depleted nanozymes with hyperthermia-enhanced dual enzyme-mimic activities for tumor nanocatalytic therapy. Adv. Mater. 2020, 32, 2002439.
Weng, Q. J.; Sun, H.; Fang, C. Y.; Xia, F.; Liao, H. W.; Lee, J.; Wang, J. C.; Xie, A.; Ren, J. F.; Guo, X. et al. Catalytic activity tunable ceria nanoparticles prevent chemotherapy-induced acute kidney injury without interference with chemotherapeutics. Nat. Commun. 2021, 12, 1436.
Huang, Y. K.; Zhang, M. Z.; Jin, M. D.; Ma, T. F.; Guo, J. L.; Zhai, X. Y.; Du, Y. P. Recent advances on cerium oxide-based biomaterials: Toward the next generation of intelligent theranostics platforms. Adv. Healthc. Mater. 2023, 12, 2300748.
Yao, C.; Xu, Y. W.; Tang, J. P.; Hu, P.; Qi, H. D.; Yang, D. Y. Dynamic assembly of DNA-ceria nanocomplex in living cells generates artificial peroxisome. Nat. Commun. 2022, 13, 7739.
Liu, C.; Gui, L.; Zheng, J. J.; Xu, Y. Q.; Song, B. L.; Yi, L.; Jia, Y. J.; Taledaohan, A.; Wang, Y. J.; Gao, X. F. et al. Intrinsic strain-mediated ultrathin ceria nanoantioxidant. J. Am. Chem. Soc. 2023, 145, 19086–19097.
Guo, Z. X.; Tian, Z. M.; Qu, Y. Q. One-step reagentless colorimetric analysis platform of biomineralized Ce-UiO-66 for universal detection of biomarkers. Sens. Actuators B: Chem. 2023, 397, 134705.
Luan, X. W.; Pan, Y. C.; Zhou, D. T.; He, B. S.; Liu, X. L.; Gao, Y. F.; Yang, J. J.; Song, Y. J. Cerium metal organic framework mediated molecular threading for point-of-care colorimetric assays. Biosens. Bioelectron. 2020, 165, 112406.
Xia, C. Q.; Zhang, X. M.; Liu, X. T.; Wu, D. H.; Guo, L. Q. Old dogs, new trick: Classical starch˗sodium iodide reagent as the chromogenic substrate of peroxidase-like nanozymes. Sens. Actuators B: Chem. 2022, 368, 132229.
Li, Y. Y.; Zeng, Z. H.; Tong, J. J.; Yang, T.; Liu, G. H.; Feng, B.; Zhang, P.; Liu, X. F.; Qing, T. Surface ligand-regulated nanointerfaces: Enhancing the catalytic activity and selectivity of platinum nanozymes for biomedical applications. Appl. Surf. Sci. 2024, 655, 159695.
Chiu, Y. C.; Hsu, T. S.; Huang, C. Y.; Hsu, C. H. Molecular elucidation of a urate oxidase from Deinococcus radiodurans for hyperuricemia and gout therapy. Int. J. Mol. Sci. 2021, 22, 5611.
Kahn, K.; Serfozo, P.; Tipton, P. A. Identification of the true product of the urate oxidase reaction. J. Am. Chem. Soc. 1997, 119, 5435–5442.
Yang, Q. H.; Wang, Y. M.; Tang, X.; Zhang, Q. J.; Dai, S.; Peng, H. T.; Lin, Y. C.; Tian, Z. Q.; Lu, Z. Y.; Chen, L. Ligand defect density regulation in metal-organic frameworks by functional group engineering on linkers. Nano Lett. 2022, 22, 838–845.
Jiang, X. Z.; Wang, W.; Tang, J. C.; Han, M.; Xu, Y. C.; Zhang, L. C.; Wu, J.; Huang, Y. Y.; Ding, Z. Y.; Sun, H. W. et al. Ligand-screened cerium-based MOF microcapsules promote nerve regeneration via mitochondrial energy supply. Adv. Sci. 2024, 11, 2306780.
Wu, J. J. X.; Yu, Y. J.; Cheng, Y.; Cheng, C. Q.; Zhang, Y. H.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, H. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal-organic framework nanozyme for therapy. Angew. Chem., Int. Ed. 2021, 60, 1227–1234.
Ma, C. Y.; Jiang, N.; Sun, X. Y.; Kong, L. B.; Liang, T.; Wei, X. W.; Wang, P. Progress in optical sensors-based uric acid detection. Biosens. Bioelectron. 2023, 237, 115495.
Wu, H. J.; Liu, J.; Chen, Z. Y.; Lin, P. C.; Ou, W. T.; Wang, Z. A.; Xiao, W.; Chen, Y.; Cao, D. L. Mechanism and application of surface-charged ferrite nanozyme-based biosensor toward colorimetric detection of L-cysteine. Langmuir 2022, 38, 8266–8279.
He, Y. F.; Qi, F.; Niu, X. H.; Zhang, W. C.; Zhang, X. F.; Pan, J. M. Uricase-free on-demand colorimetric biosensing of uric acid enabled by integrated CoP nanosheet arrays as a monolithic peroxidase mimic. Anal. Chim. Acta 2018, 1021, 113–120.
Qin, X.; Yuan, C. L.; Geng, G. X.; Shi, R.; Cheng, S. Q.; Wang, Y. L. Enzyme-free colorimetric determination of uric acid based on inhibition of gold nanorods etching. Sens. Actuators B: Chem. 2021, 333, 129638.
Li, N. S.; Chen, Y. T.; Hsu, Y. P.; Pang, H. H.; Huang, C. Y.; Shiue, Y. L.; Wei, K. C.; Yang, H. W. Mobile healthcare system based on the combination of a lateral flow pad and smartphone for rapid detection of uric acid in whole blood. Biosens. Bioelectron. 2020, 164, 112309.
Huang, L.; Qin, S. Y.; Xu, Y. J.; Cheng, S. Q.; Yang, J.; Wang, Y. L. Enzyme-free colorimetric detection of uric acid on the basis of MnO2 nanosheets-mediated oxidation of 3,3′,5,5′-tetramethylbenzidine. Microchem. J. 2023, 190, 108719.
Li, L.; Wang, J. L.; Chen, Z. B. Colorimetric determination of uric acid based on the suppression of oxidative etching of silver nanoparticles by chloroauric acid. Microchim. Acta 2020, 187, 18.
Wang, Y. Y.; Yang, Y.; Liu, W.; Ding, F.; Zhao, Q. B.; Zou, P.; Wang, X. X.; Rao, H. B. Colorimetric and fluorometric determination of uric acid based on the use of nitrogen-doped carbon quantum dots and silver triangular nanoprisms. Microchim. Acta 2018, 185, 281.
Fan, K. X.; Zeng, J. Y.; Yang, C. Y.; Wang, G. L.; Lian, K.; Zhou, X. H.; Deng, Y. P.; Liu, G. Z. Digital quantification method for sensitive point-of-care detection of salivary uric acid using smartphone-assisted μPADs. ACS Sens. 2022, 7, 2049–2057.
Ji, K. X.; Xia, S. Y.; Sang, X. Q.; Zeid, A. M.; Hussain, A.; Li, J. P.; Xu, G. B. Enhanced luminol chemiluminescence with oxidase-like properties of FeOOH nanorods for the sensitive detection of uric acid. Anal. Chem. 2023, 95, 3267–3273.
Hazra, P.; Vadnere, S.; Mishra, S.; Halder, S.; Mandal, S.; Ghosh, P. Review on uric acid recognition by MOFs with a future in machine learning. ACS Appl. Mater. Interfaces 2023, 15, 52065–52082.