Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The dry reforming (DR) reaction is an eco-friendly process for producing synthesis gas (CO, H2) from greenhouse gases (CH4, CO2). Despite advancements in various nickel (Ni)-supported catalysts for this reaction, achieving high catalyst stability against carbon deposition and improving conversion rates remain significant challenges. In this paper, we introduce a novel approach for synthesizing uniform Ni nanocatalysts with cesium (Cs) and cerium oxide (CeOx). This synthesis is achieved using an automated device based on a co-melt infiltration technique. Our method addresses the limitations of conventional catalyst synthesis, such as complex procedures, low reproducibility, and difficulties in scaling up. The resulting catalysts contain uniformly small Ni particles, approximately 5 nm in size, with Cs and CeOx evenly distributed throughout the alumina (Al2O3) support. The developed Ni/CeOx-Al2O3 and Cs-Ni/CeOx-Al2O3 nanocatalysts demonstrate improved conversion performance and stability under various DR conditions. This improvement is attributed to the synergistic effect of Cs and CeOx, which creates a pathway to inhibit and remove carbon deposition. Additionally, these nanocatalysts exhibited superior resistance to carbon deposition compared to conventional Ni/Al2O3 and commercial Ni catalysts under identical reaction conditions.
Abdulrasheed, A.; Jalil, A. A.; Gambo, Y.; Ibrahim, M.; Hambali, H. U.; Hamid, M. Y. S. A review on catalyst development for dry reforming of methane to syngas: Recent advances. Renew. Sustain. Energy Rev. 2019, 108, 175–193.
He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem., Int. Ed. 2022, 134, e202112835.
Pakhare, D.; Spivey, J. A review of dry (CO2) reforming of methane over noble metal catalysts. Chem. Soc. Rev. 2014, 43, 7813–7837.
Bhattar, S.; Abedin, M. A.; Kanitkar, S.; Spivey, J. J. A review on dry reforming of methane over perovskite derived catalysts. Catal. Today 2021, 365, 2–23.
Song, Y.; Ozdemir, E.; Ramesh, S.; Adishev, A.; Subramanian, S.; Harale, A.; Albuali, M.; Fadhel, B. A.; Jamal, A.; Moon, D. et al. Dry reforming of methane by stable Ni–Mo nanocatalysts on single-crystalline MgO. Science 2020, 367, 777–781.
Akri, M.; Zhao, S.; Li, X. Y.; Zang, K. T.; Lee, A. F.; Isaacs, M. A.; Xi, W.; Gangarajula, Y.; Luo, J.; Ren, Y. J. et al. Atomically dispersed nickel as coke-resistant active sites for methane dry reforming. Nat. Commun. 2019, 10, 5181.
Pawar, V.; Ray, D.; Subrahmanyam, C.; Janardhanan, V. M. Study of short-term catalyst deactivation due to carbon deposition during biogas dry reforming on supported Ni catalyst. Energy Fuels 2015, 29, 8047–8052.
Niu, J. T.; Wang, Y. L.; Liland, S. E.; Regli, S. K.; Yang, J.; Rout, K. R.; Luo, J.; Rønning, M.; Ran, J. Y.; Chen, D. Unraveling enhanced activity, selectivity, and coke resistance of Pt–Ni bimetallic clusters in dry reforming. ACS Catal. 2021, 11, 2398–2411.
Fan, M. S.; Abdullah, A. Z.; Bhatia, S. Catalytic technology for carbon dioxide reforming of methane to synthesis gas. ChemCatChem 2009, 1, 192–208.
Jang, W. J.; Shim, J. O.; Kim, H. M.; Yoo, S. Y.; Roh, H. S. A review on dry reforming of methane in aspect of catalytic properties. Catal. Today 2019, 324, 15–26.
Cai, L. H.; Han, S. L.; Xu, W. L.; Chen, S.; Shi, X. X.; Lu, J. L. Formation of a porous crystalline Mg1− x Al2O y overlayer on metal catalysts via controlled solid-state reactions for high-temperature stable catalysis. Angew. Chem., Int. Ed. 2024, 63, e202404398.
Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B: Environ. 2017, 202, 683–694.
Ferrandon, M. S.; Byron, C.; Celik, G.; Zhang, Y. Y.; Ni, C. Y.; Sloppy, J.; McCormick, R. A.; Booksh, K.; Teplyakov, A. V.; Delferro, M. Grafted nickel-promoter catalysts for dry reforming of methane identified through high-throughput experimentation. Appl. Catal. A 2022, 629, 118379.
Liu, Y.; Chen, Y.; Gao, Z. R.; Zhang, X.; Zhang, L. J.; Wang, M.; Chen, B. B.; Diao, Y. N.; Li, Y. L.; Xiao, D. Q. et al. Embedding high loading and uniform Ni nanoparticles into silicalite-1 zeolite for dry reforming of methane. Appl. Catal. B: Environ. 2022, 307, 121202.
Huang, J. J.; Yan, Y.; Saqline, S.; Liu, W.; Liu, B. High performance Ni catalysts prepared by freeze drying for efficient dry reforming of methane. Appl. Catal. B: Environ. 2020, 275, 119109.
Min, H. K.; Kweon, S.; Kim, Y. W.; An, H.; Jo, D.; Park, E. D.; Shin, C. H.; Park, M. B. Atomically dispersed nickel species in a two-dimensional molecular sieve: Origin of high activity and stability in dry reforming of methane. Appl. Catal. B: Environ. 2021, 298, 120627.
Le Saché, E.; Reina, T. R. Analysis of Dry Reforming as direct route for gas phase CO2 conversion. The past, the present and future of catalytic DRM technologies. Prog. Energy Combust. Sci. 2022, 89, 100970.
Seo, J. C.; Kim, H.; Lee, Y. L.; Nam, S.; Roh, H. S.; Lee, K.; Park, S. B. One-pot synthesis of full-featured mesoporous Ni/Al2O3 catalysts via a spray pyrolysis-assisted evaporation-induced self-assembly method for dry reforming of methane. ACS Sustainable Chem. Eng. 2021, 9, 894–904.
Aramouni, N. A. K.; Zeaiter, J.; Kwapinski, W.; Ahmad, M. N. Thermodynamic analysis of methane dry reforming: Effect of the catalyst particle size on carbon formation. Energy Convers. Manage. 2017, 150, 614–622.
Wang, F. G.; Han, B. L.; Zhang, L. J.; Xu, L. L.; Yu, H.; Shi, W. D. CO2 reforming with methane over small-sized Ni@SiO2 catalysts with unique features of sintering-free and low carbon. Appl. Catal. B: Environ. 2018, 235, 26–35.
Zhu, L. Y.; Lv, Z. Z.; Huang, X.; Ran, J. Y.; Chen, J.; Qin, C. L. Understanding the role of support structure in methane dry reforming for syngas production. Fuel 2022, 327, 125163.
Xu, L. L.; Wang, F. G.; Chen, M. D.; Fan, X. L.; Yang, H. M.; Nie, D. Y.; Qi, L. Alkaline-promoted Co–Ni bimetal ordered mesoporous catalysts with enhanced coke-resistant performance toward CO2 reforming of CH4. J. CO2 Util. 2017, 18, 1–14.
Palmer, C.; Upham, D. C.; Smart, S.; Gordon, M. J.; Metiu, H.; McFarland, E. W. Dry reforming of methane catalysed by molten metal alloys. Nat. Catal. 2020, 3, 83–89.
Bian, Z. F.; Zhong, W. Q.; Yu, Y.; Wang, Z. G.; Jiang, B.; Kawi, S. Dry reforming of methane on Ni/mesoporous-Al2O3 catalysts: Effect of calcination temperature. Int. J. Hydrogen Energy 2021, 46, 31041–31053.
Tsiotsias, A. I.; Charisiou, N. D.; Yentekakis, I. V.; Goula, M. A. The role of alkali and alkaline earth metals in the CO2 methanation reaction and the combined capture and methanation of CO2. Catalysts 2020, 10, 812.
Aziz, M. A. A.; Jalil, A. A.; Wongsakulphasatch, S.; Vo, D. V. N. Understanding the role of surface basic sites of catalysts in CO2 activation in dry reforming of methane: A short review. Catal. Sci. Technol. 2020, 10, 35–45.
Zeng, F.; Zhang, J.; Xu, R.; Zhang, R. J.; Ge, J. P. Highly dispersed Ni/MgO–mSiO2 catalysts with excellent activity and stability for dry reforming of methane. Nano Res. 2022, 15, 5004–5013.
Seo, J. C.; Cho, E.; Kim, J.; Kim, S. B.; Youn, J. R.; Kim, D. H.; Ramasamy, P. K.; Lee, K.; Ko, C. H. Bifunctional metal doping engineering of Ni-supported alumina catalyst for dry methane reforming. J. Environ. Chem. Eng., 2022, 10, 108058.
Franz, R.; Kühlewind, T.; Shterk, G.; Abou-Hamad, E.; Parastaev, A.; Uslamin, E.; Hensen, E. J. M.; Kapteijn, F.; Gascon, J.; Pidko, E. A. Impact of small promoter amounts on coke structure in dry reforming of methane over Ni/ZrO2. Catal. Sci. Technol. 2020, 10, 3965–3974.
Song, P.; Su, T. M.; Luo, Y. H.; Luo, X.; Ji, H. B.; Qin, Z. Z. Ni−Mg−Al catalysts for dry reforming of methane: Effect of surface properties on coke formation and CO2 activation. Ind. Eng. Chem. Res. 2024, 63, 16077–16090.
Zhan, H. J.; Shi, X. Y.; Ma, B. J.; Liu, W. Y.; Jiao, X.; Huang, X. Facile one-step preparation of ordered mesoporous Ni–M–Al (M = K, Mg, Y, and Ce) oxide catalysts for methane dry reforming. New J. Chem. 2019, 43, 12292–12298.
Oh, K. H.; Lee, J. H.; Kim, K.; Lee, H. K.; Kang, S. W.; Yang, J. I.; Park, J. H.; Hong, C. S.; Kim, B. H.; Park, J. C. A new automated synthesis of a coke-resistant Cs-promoted Ni-supported nanocatalyst for sustainable dry reforming of methane. J. Mater. Chem. A 2023, 11, 1666–1675.
Lorber, K.; Zavašnik, J.; Arčon, I.; Huš, M.; Teržan, J.; Likozar, B.; Djinović, P. CO2 activation over nanoshaped CeO2 decorated with nickel for low-temperature methane dry reforming. ACS Appl. Mater. Interfaces 2022, 14, 31862–31878.
Vasiliades, M. A.; Damaskinos, C. M.; Lykaki, M.; Stefa, S.; Binas, V. D.; Kentri, T.; Boghosian, S.; Konsolakis, M.; Efstathiou, A. M. Deciphering the role of nano-CeO2 morphology on the dry reforming of methane over Ni/CeO2 using transient and isotopic techniques. Appl. Catal. B: Environ. 2024, 350, 123906.
Kim, B. J.; Seo, J. C.; Kim, D. H.; Lee, Y. L.; Lee, K.; Roh, H. S. Oxygen defective bimodal porous Ni–CeO2– x– MgO–Al2O3 catalyst with multi-void spherical structure for CO2 reforming of CH4. J. CO2 Util. 2022, 58, 101917.
Kawi, S.; Kathiraser, Y.; Ni, J.; Oemar, U.; Li, Z. W.; Saw, E. T. Progress in synthesis of highly active and stable nickel-based catalysts for carbon dioxide reforming of methane. ChemSusChem 2015, 8, 3556–3575.
Arora, S.; Prasad, R. An overview on dry reforming of methane: Strategies to reduce carbonaceous deactivation of catalysts. RSC Adv. 2016, 6, 108668–108688.
Park, J. C.; Chun, D. H.; Yang, J. I.; Lee, H. T.; Hong, S.; Rhim, G. B.; Jang, S.; Jung, H. Cs promoted Fe5C2/charcoal nanocatalysts for sustainable liquid fuel production. RSC Adv. 2015, 5, 44211–44217.
Oh, K. H.; Lee, H. K.; Kang, S. W.; Yang, J. I.; Nam, G.; Lim, T.; Lee, S. H.; Hong, C. S.; Park, J. C. Automated synthesis and data accumulation for fast production of high-performance Ni nanocatalsts. J. Ind. Eng. Chem. 2022, 106, 449–459.
Cho, E. H.; Kim, M. J.; Yoon, B. S.; Kim, Y. J.; Song, D.; Koo, K. Y.; Jung, U.; Jeon, S. G.; Park, Y. K.; Ko, C. H. Enhancement in nickel-silica interface generation by surfactant-assisted melt-infiltration: Surfactant selection and application in CO2 hydrogenation. Chem. Eng. J. 2022, 437, 135166.
Lee, H. K.; Kang, S. W.; Yang, J. I.; Chun, D. H.; Lee, J. H.; Oh, D.; Ban, J. M.; Jung, T.; Jung, H.; Park, J. C. A new systematic synthesis of ultimate nickel nanocatalysts for compact hydrogen generation. React. Chem. Eng. 2020, 5, 1218–1223.
Oh, J.; Joo, S.; Lim, C.; Kim, H. J.; Ciucci, F.; Wang, J. Q.; Han, J. W.; Kim, G. Precise modulation of triple-phase boundaries towards a highly functional exsolved catalyst for dry reforming of methane under a dilution-free system. Angew. Chem., Int. Ed. 2022, 61, e202204990.
Djinović, P.; Črnivec, I.G.O.; Pintar, A. Biogas to syngas conversion without carbonaceous deposits via the dry reforming reaction using transition metal catalysts. Catal. Today 2015, 253, 155–162.
Zhu, H. B.; Chen, H. C.; Zhang, M. H.; Liang, C.; Duan, L. H. Recent advances in promoting dry reforming of methane using nickel-based catalysts. Catal. Sci. Technol. 2024, 14, 1712–1729.
Zhao, X. H.; Joseph, B.; Kuhn, J.; Ozcan, S. Biogas reforming to syngas: A review. iScience 2020, 23, 101082.
Dou, J.; Bao, Z. H.; Yu, F. Mesoporous Ni(OH)2/CeNi x O y composites derived Ni/CeNi x O y catalysts for dry reforming of methane. ChemCatChem 2018, 10, 250–258.
Baron, M.; Bondarchuk, O.; Stacchiola, D.; Shaikhutdinov, S.; Freund, H. J. Interaction of gold with cerium oxide supports: CeO2(111) thin films vs CeO x nanoparticles. J. Phys. Chem. C 2009, 113, 6042–6049.
Fang, Y.; Zhao, C. B.; Gong, Z. M.; Wang, S. P.; Ye, X. Q.; Pan, Q. F.; Li, G.; Cui, Y.; Yao, Y. X.; Luo, W. H. In situ NAP-XPS study of CO2 and H2O adsorption on cerium oxide thin films. Chem. Phys. Lett. 2022, 794, 139496.
Liang, T. Y.; Lin, C. Y.; Chou, F. C.; Wang, M. Q.; Tsai, D. H. Gas-phase synthesis of Ni–CeO x hybrid nanoparticles and their synergistic catalysis for simultaneous reforming of methane and carbon dioxide to syngas. J. Phys. Chem. C 2018, 122, 11789–11798.
Wittich, K.; Krämer, M.; Bottke, N.; Schunk, S. A. Catalytic dry reforming of methane: Insights from model systems. ChemCatChem 2020, 12, 2130–2147.
Kahle, L. C. S.; Roussière, T.; Maier, L.; Herrera Delgado, K.; Wasserschaff, G.; Schunk, S. A.; Deutschmann, O. Methane dry reforming at high temperature and elevated pressure: Impact of gas-phase reactions. Ind. Eng. Chem. Res. 2013, 52, 11920–11930.
Apuzzo, J.; Cimino, S.; Lisi, L. Ni or Ru supported on MgO/γ–Al2O3 pellets for the catalytic conversion of ethanol into butanol. RSC Adv. 2018, 8, 25846–25855.
319
Views
68
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).