PDF (14.9 MB)
Collect
Submit Manuscript
Research Article | Open Access

Room temperature aqueous-phase hydrogenation coupling with green hydrogen: Sustainable technologies innovating by efficient Co-CoOx@NC catalyst derived from N-induced interfacial electron rearrangement

Yue Shen1,2Chun Chen1,2()Zidan Zou1,2Wenchao Li1Yunxia Zhang1,2Haimin Zhang1,2Zhixin Yu3()Huijun Zhao4Guozhong Wang1,2()
Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
University of Science and Technology of China, Hefei 230026, China
Department of Energy and Petroleum Engineering, University of Stavanger, 4036 Stavanger, Norway
Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
Show Author Information

Graphical Abstract

View original image Download original image
A dual-site catalyst (Co-CoOx@NC) with a Co0–Coδ+ interface pair, which can hydrogenate bio-derived furan-aldehydes toward furan-alcohols in water under room temperature and low H2 pressure, thus can directly use green H2 as reducing atmosphere.

Abstract

Utilization and storage are the two main themes of green hydrogen. In hydrogen-involved system, development of highly active catalysts to achieve catalytic hydrogenation under mild conditions is a prerequisite for coupling with green hydrogen, so that green hydrogen with low outlet pressure can be directly used as a hydrogen source. To achieve this aim, we developed a high active Co-CoOx@NC catalyst with metal/metal oxide induced by N-doping. The work function and Bader charge calculations reveal that N-doping can induce interfacial electrons rearrangement to form Co-CoOx interface on the surface of Co nanoparticles (NPs). The interface is the dual active sites, where Co plays a role in H2 dissociation and CoOx can enhance the adsorption and activation of aldehyde compounds. Different from traditional dissimilar metal/oxide interface, the Co-CoOx interface can effectively shorten hydrogen spillover distance and energy barrier, and thus exhibits high catalytic performance in hydrogenation of a variety of bio-derived aldehydes under aqueous-phase and mild reaction conditions that can couple with green hydrogen.

Electronic Supplementary Material

Download File(s)
7118_ESM.pdf (2.9 MB)

References

[1]

Xie, J.; Xi, Y. J.; Gao, W. S.; Zhang, H.; Wu, Y. K.; Zhang, R. H.; Yang, H. F.; Peng, Y.; Li, F. W.; Li, Z. L. et al. Hydrogenolysis of lignin model compounds on Ni nanoparticles surrounding the oxygen vacancy of CeO2. ACS Catal. 2023, 13, 9577–9587.

[2]

Fan, R. Y.; Zhang, Y. G.; Hu, Z.; Chen, C.; Shi, T. F.; Zheng, L. R.; Zhang, H. M.; Zhu, J. F.; Zhao, H. J.; Wang, G. Z. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation. Nano Res. 2021, 14, 4601–4609.

[3]

Cao, G. B.; Xing, H. R.; Gui, H. G.; Yao, C.; Chen, Y. J.; Chen, Y. S.; Li, X. Z. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Res. 2024, 17, 5061–5072.

[4]

Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science. 2012, 337, 695–699.

[5]

Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963.

[6]

Chen, R. X.; Zhou, Y. C.; Li, X. D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium–sulfur batteries. Nano Lett. 2022, 22, 1217–1224.

[7]

Gupta, N. K.; Reif, P.; Palenicek, P.; Rose, M. Toward renewable amines: Recent advances in the catalytic amination of biomass-derived oxygenates. ACS Catal. 2022, 12, 10400–10440.

[8]

Luo, X. L.; Li, Y. D.; Gupta, N. K.; Sels, B.; Ralph, J.; Shuai, L. Protection strategies enable selective conversion of biomass. Angew. Chem., Int. Ed. 2020, 59, 11704–11716.

[9]

Han, Y. W.; Ye, L.; Gong, T. J.; Lu, X. B.; Fu, Y. Porous composite-mediated bimetallic cluster POMs/Zr-MOF for catalytic transfer hydrogenation of biomass-derived aldehydes and ketones. Adv. Funct. Mater. 2024, 34, 2315044.

[10]

Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189.

[11]

Lin, W.; Chen, Y.; Zhang, Y. X.; Zhang, Y. S.; Wang, J. S.; Wang, L. C.; Xu, C. C.; Nie, R. F. Surface synergetic effects of Ni–ReO x for promoting the mild hydrogenation of furfural to tetrahydrofurfuryl alcohol. ACS Catal. 2023, 13, 11256–11267.

[12]

Li, Y. B.; Zeng, L.; Pang, G.; Wei, X. E.; Wang, M. H.; Cheng, K.; Kang, J. C.; Serra, J. M.; Zhang, Q. H.; Wang, Y. Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature. Appl. Catal. B: Environ. 2023, 324, 122299.

[13]

Jorschick, H.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Hydrogenation of aromatic and heteroaromatic compounds-a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems. Sustain. Energy Fuels. 2021, 5, 1311–1346.

[14]

Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65–77.

[15]

Biradar, N. S.; Hengne, A. M.; Birajdar, S. N.; Niphadkar, P. S.; Joshi, P. N.; Rode, C. V. Single-pot formation of THFAL via catalytic hydrogenation of FFR over Pd/MFI catalyst. ACS Sustain. Chem. Eng. 2014, 2, 272–281.

[16]

Ramirez-Barria, C.; Isaacs, M.; Wilson, K.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Optimization of ruthenium based catalysts for the aqueous phase hydrogenation of furfural to furfuryl alcohol. Appl. Catal. A: Gen. 2018, 563, 177–184.

[17]

Lee, J.; Burt, S. P.; Carrero, C. A.; Alba-Rubio, A. C.; Ro, I.; O’Neill, B. J.; Kim, H. J.; Jackson, D. H. K.; Kuech, T. F.; Hermans, I. et al. Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. J. Catal. 2015, 330, 19–27.

[18]

Li, H. X.; Zhang, S. Y.; Luo, H. S. A Ce-promoted Ni–B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol. Mater. Lett. 2004, 58, 2741–2746.

[19]

Yang, X. H.; Meng, Q. W.; Ding, G. Q.; Wang, Y. Q.; Chen, H. M.; Zhu, Y. L.; Li, Y. W. Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components. Appl. Catal. A: Gen. 2018, 561, 78–86.

[20]

Ferrin, P.; Kandoi, S.; Nilekar, A. U.; Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689.

[21]

Watson, G. W.; Wells, R. P. K.; Willock, D. J.; Hutchings, G. J. A comparison of the adsorption and diffusion of hydrogen on the {111} surfaces of Ni, Pd, and Pt from density functional theory calculations. J. Phys. Chem. B 2001, 105, 4889–4894.

[22]

Wellendorff, J.; Silbaugh, T. L.; Garcia-Pintos, D.; Nørskov, J. K.; Bligaard, T.; Studt, F.; Campbell, C. T. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 2015, 640, 36–44.

[23]

Greeley, J.; Mavrikakis, M. Surface and subsurface hydrogen: Adsorption properties on transition metals and near-surface alloys. J. Phys. Chem. B 2005, 109, 3460–3471.

[24]

Aireddy, D. R.; Ding, K. L. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 2022, 12, 4707–4723.

[25]

Shi, Y.; Zhu, Y. L.; Yang, Y.; Li, Y. W.; Jiao, H. J. Exploring furfural catalytic conversion on Cu(111) from computation. ACS Catal. 2015, 5, 4020–4032.

[26]

Ren, G. Q.; Wang, G. R.; Mei, H.; Xu, Y.; Huang, L. A theoretical insight into furfural conversion catalyzed on the Ni(111) surface. Phys. Chem. Chem. Phys. 2019, 21, 23685–23696.

[27]

Xiang, S.; Dong, L.; Wang, Z. Q.; Han, X.; Daemen, L. L.; Li, J.; Cheng, Y. Q.; Guo, Y.; Liu, X. H.; Hu, Y. F. et al. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nat. Commun. 2022, 13, 3657.

[28]

Robinson, A. M.; Hensley, J. E.; Medlin, J. W. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review. ACS Catal. 2016, 6, 5026–5043.

[29]

Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704–7710.

[30]

Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.

[31]

Deng, Q.; Zhou, R.; Zhang, Y. C.; Li, X.; Li, J. H.; Tu, S. B.; Sheng, G.; Wang, J.; Zeng, Z. L.; Yoskamtorn, T. et al. H+−H pairs in partially oxidized MAX phases for bifunctional catalytic conversion of furfurals into linear ketones. Angew. Chem., Int. Ed. 2022, 62, e202211461.

[32]

Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Selective hydrogenation of crotonaldehyde to crotyl alcohol over metal oxide modified Ir catalysts and mechanistic insight. ACS Catal. 2016, 6, 3600–3609.

[33]

Zhang, Y. F.; Fan, G. L.; Yang, L.; Li, F. Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts. Appl. Catal. A: Gen. 2018, 561, 117–126.

[34]

Gong, W. B.; Han, M. M.; Chen, C.; Lin, Y.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. CoO x @Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem. 2020, 12, 1019–1024.

[35]

Yang, Q. Y.; Zhu, Y.; Tian, L.; Xie, S. H.; Pei, Y.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Preparation and characterization of Au-In/APTMS-SBA-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol. Appl. Catal. A: Gen. 2009, 369, 67–76.

[36]

Taniya, K.; Jinno, H.; Kishida, M.; Ichihashi, Y.; Nishiyama, S. Preparation of Sn-modified silica-coated Pt catalysts: A new PtSn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. J. Catal. 2012, 288, 84–91.

[37]

Rodiansono; Khairi, S.; Hara, T.; Ichikuni, N.; Shimazu, S. Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catal. Sci. Technol. 2012, 2, 2139–2145.

[38]

Ahmadi, M.; Mistry, H.; Roldan Cuenya, B. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 2016, 7, 3519–3533.

[39]

Jin, X. J.; Tsukimura, R.; Aihara, T.; Miura, H.; Shishido, T.; Nozaki, K. Metal-support cooperation in Al(PO3)3-supported platinum nanoparticles for the selective hydrogenolysis of phenols to arenes. Nat. Catal. 2021, 4, 312–321.

[40]

Shen, Y.; Chen, C.; Zou, Z. D.; Hu, Z.; Fu, Z.; Li, W. C.; Pan, S. L.; Zhang, Y. X.; Zhang, H. M.; Yu, Z. X. et al. Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: Tunable activity and selectivity via N,P co-doping. J. Catal. 2023, 421, 65–76.

[41]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 1996, 54, 11169–11186.

[42]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[43]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[44]

Dalverny, A. L.; Filhol, J. S.; Lemoigno, F.; Doublet, M. L. Interplay between magnetic and orbital ordering in the strongly correlated cobalt oxide: A DFT+ U study. J. Phys. Chem. C 2010, 114, 21750–21756.

[45]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[46]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[47]

Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

[48]

Cui, P. X.; Yang, Q.; Liu, C.; Wang, Y.; Fang, G. D.; Dionysiou, D. D.; Wu, T. L.; Zhou, Y. Y.; Ren, J. X.; Hou, H. B. et al. An N,S-anchored single-atom catalyst derived from domestic waste for environmental remediation. ACS ES&T Eng. 2021, 1, 1460–1469.

[49]

Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.

[50]

Wang, J.; Zhou, J. G.; Hu, Y. F.; Regier, T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 2013, 6, 926–934.

[51]

Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.

[52]

Zhang, J. Y.; Jia, Z.; Yu, S. T.; Liu, S. W.; Li, L.; Xie, C. X.; Wu, Q.; Zhang, Y. Z.; Yu, H. L.; Liu, Y. X. et al. Regulating the Cu0–Cu+ ratio to enhance metal-support interaction for selective hydrogenation of furfural under mild conditions. Chem. Eng. J. 2023, 468, 143755.

[53]

Chen, X. Y.; Yang, Z. Y.; Yang, F. X.; Zhang, J.; Pizzi, A.; Essawy, H.; Du, G. B.; Zhou, X. J. Development of easy-handled, formaldehyde-free, high-bonding performance bio-sourced wood adhesives by co-reaction of furfuryl alcohol and wheat gluten protein. Chem. Eng. J. 2023, 462, 142161.

[54]

Pushkarev, V. V.; Musselwhite, N.; An, K.; Alayoglu, S.; Somorjai, G. A. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett. 2012, 12, 5196–5201.

[55]

Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016, 351, 361–365.

[56]

Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128.

[57]

An, Z.; Ning, X.; He, J. Ga-promoted CO insertion and C–C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas. J. Catal. 2017, 356, 157–164.

Nano Research
Article number: 94907118
Cite this article:
Shen Y, Chen C, Zou Z, et al. Room temperature aqueous-phase hydrogenation coupling with green hydrogen: Sustainable technologies innovating by efficient Co-CoOx@NC catalyst derived from N-induced interfacial electron rearrangement. Nano Research, 2025, 18(2): 94907118. https://doi.org/10.26599/NR.2025.94907118
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return