Utilization and storage are the two main themes of green hydrogen. In hydrogen-involved system, development of highly active catalysts to achieve catalytic hydrogenation under mild conditions is a prerequisite for coupling with green hydrogen, so that green hydrogen with low outlet pressure can be directly used as a hydrogen source. To achieve this aim, we developed a high active Co-CoOx@NC catalyst with metal/metal oxide induced by N-doping. The work function and Bader charge calculations reveal that N-doping can induce interfacial electrons rearrangement to form Co-CoOx interface on the surface of Co nanoparticles (NPs). The interface is the dual active sites, where Co plays a role in H2 dissociation and CoOx can enhance the adsorption and activation of aldehyde compounds. Different from traditional dissimilar metal/oxide interface, the Co-CoOx interface can effectively shorten hydrogen spillover distance and energy barrier, and thus exhibits high catalytic performance in hydrogenation of a variety of bio-derived aldehydes under aqueous-phase and mild reaction conditions that can couple with green hydrogen.
Xie, J.; Xi, Y. J.; Gao, W. S.; Zhang, H.; Wu, Y. K.; Zhang, R. H.; Yang, H. F.; Peng, Y.; Li, F. W.; Li, Z. L. et al. Hydrogenolysis of lignin model compounds on Ni nanoparticles surrounding the oxygen vacancy of CeO2. ACS Catal. 2023, 13, 9577–9587.
Fan, R. Y.; Zhang, Y. G.; Hu, Z.; Chen, C.; Shi, T. F.; Zheng, L. R.; Zhang, H. M.; Zhu, J. F.; Zhao, H. J.; Wang, G. Z. Synergistic catalysis of cluster and atomic copper induced by copper-silica interface in transfer-hydrogenation. Nano Res. 2021, 14, 4601–4609.
Cao, G. B.; Xing, H. R.; Gui, H. G.; Yao, C.; Chen, Y. J.; Chen, Y. S.; Li, X. Z. Plasmonic quantum dots modulated nano-mineral toward photothermal reduction of CO2 coupled with biomass conversion. Nano Res. 2024, 17, 5061–5072.
Tuck, C. O.; Pérez, E.; Horváth, I. T.; Sheldon, R. A.; Poliakoff, M. Valorization of biomass: Deriving more value from waste. Science. 2012, 337, 695–699.
Sheldon, R. A. Green and sustainable manufacture of chemicals from biomass: State of the art. Green Chem. 2014, 16, 950–963.
Chen, R. X.; Zhou, Y. C.; Li, X. D. Cotton-derived Fe/Fe3C-encapsulated carbon nanotubes for high-performance lithium–sulfur batteries. Nano Lett. 2022, 22, 1217–1224.
Gupta, N. K.; Reif, P.; Palenicek, P.; Rose, M. Toward renewable amines: Recent advances in the catalytic amination of biomass-derived oxygenates. ACS Catal. 2022, 12, 10400–10440.
Luo, X. L.; Li, Y. D.; Gupta, N. K.; Sels, B.; Ralph, J.; Shuai, L. Protection strategies enable selective conversion of biomass. Angew. Chem., Int. Ed. 2020, 59, 11704–11716.
Han, Y. W.; Ye, L.; Gong, T. J.; Lu, X. B.; Fu, Y. Porous composite-mediated bimetallic cluster POMs/Zr-MOF for catalytic transfer hydrogenation of biomass-derived aldehydes and ketones. Adv. Funct. Mater. 2024, 34, 2315044.
Mariscal, R.; Maireles-Torres, P.; Ojeda, M.; Sádaba, I.; Granados, M. L. Furfural: A renewable and versatile platform molecule for the synthesis of chemicals and fuels. Energy Environ. Sci. 2016, 9, 1144–1189.
Lin, W.; Chen, Y.; Zhang, Y. X.; Zhang, Y. S.; Wang, J. S.; Wang, L. C.; Xu, C. C.; Nie, R. F. Surface synergetic effects of Ni–ReO x for promoting the mild hydrogenation of furfural to tetrahydrofurfuryl alcohol. ACS Catal. 2023, 13, 11256–11267.
Li, Y. B.; Zeng, L.; Pang, G.; Wei, X. E.; Wang, M. H.; Cheng, K.; Kang, J. C.; Serra, J. M.; Zhang, Q. H.; Wang, Y. Direct conversion of carbon dioxide into liquid fuels and chemicals by coupling green hydrogen at high temperature. Appl. Catal. B: Environ. 2023, 324, 122299.
Jorschick, H.; Preuster, P.; Bösmann, A.; Wasserscheid, P. Hydrogenation of aromatic and heteroaromatic compounds-a key process for future logistics of green hydrogen using liquid organic hydrogen carrier systems. Sustain. Energy Fuels. 2021, 5, 1311–1346.
Bhogeswararao, S.; Srinivas, D. Catalytic conversion of furfural to industrial chemicals over supported Pt and Pd catalysts. J. Catal. 2015, 327, 65–77.
Biradar, N. S.; Hengne, A. M.; Birajdar, S. N.; Niphadkar, P. S.; Joshi, P. N.; Rode, C. V. Single-pot formation of THFAL via catalytic hydrogenation of FFR over Pd/MFI catalyst. ACS Sustain. Chem. Eng. 2014, 2, 272–281.
Ramirez-Barria, C.; Isaacs, M.; Wilson, K.; Guerrero-Ruiz, A.; Rodríguez-Ramos, I. Optimization of ruthenium based catalysts for the aqueous phase hydrogenation of furfural to furfuryl alcohol. Appl. Catal. A: Gen. 2018, 563, 177–184.
Lee, J.; Burt, S. P.; Carrero, C. A.; Alba-Rubio, A. C.; Ro, I.; O’Neill, B. J.; Kim, H. J.; Jackson, D. H. K.; Kuech, T. F.; Hermans, I. et al. Stabilizing cobalt catalysts for aqueous-phase reactions by strong metal-support interaction. J. Catal. 2015, 330, 19–27.
Li, H. X.; Zhang, S. Y.; Luo, H. S. A Ce-promoted Ni–B amorphous alloy catalyst (Ni-Ce-B) for liquid-phase furfural hydrogenation to furfural alcohol. Mater. Lett. 2004, 58, 2741–2746.
Yang, X. H.; Meng, Q. W.; Ding, G. Q.; Wang, Y. Q.; Chen, H. M.; Zhu, Y. L.; Li, Y. W. Construction of novel Cu/ZnO-Al2O3 composites for furfural hydrogenation: The role of Al components. Appl. Catal. A: Gen. 2018, 561, 78–86.
Ferrin, P.; Kandoi, S.; Nilekar, A. U.; Mavrikakis, M. Hydrogen adsorption, absorption and diffusion on and in transition metal surfaces: A DFT study. Surf. Sci. 2012, 606, 679–689.
Watson, G. W.; Wells, R. P. K.; Willock, D. J.; Hutchings, G. J. A comparison of the adsorption and diffusion of hydrogen on the {111} surfaces of Ni, Pd, and Pt from density functional theory calculations. J. Phys. Chem. B 2001, 105, 4889–4894.
Wellendorff, J.; Silbaugh, T. L.; Garcia-Pintos, D.; Nørskov, J. K.; Bligaard, T.; Studt, F.; Campbell, C. T. A benchmark database for adsorption bond energies to transition metal surfaces and comparison to selected DFT functionals. Surf. Sci. 2015, 640, 36–44.
Greeley, J.; Mavrikakis, M. Surface and subsurface hydrogen: Adsorption properties on transition metals and near-surface alloys. J. Phys. Chem. B 2005, 109, 3460–3471.
Aireddy, D. R.; Ding, K. L. Heterolytic dissociation of H2 in heterogeneous catalysis. ACS Catal. 2022, 12, 4707–4723.
Shi, Y.; Zhu, Y. L.; Yang, Y.; Li, Y. W.; Jiao, H. J. Exploring furfural catalytic conversion on Cu(111) from computation. ACS Catal. 2015, 5, 4020–4032.
Ren, G. Q.; Wang, G. R.; Mei, H.; Xu, Y.; Huang, L. A theoretical insight into furfural conversion catalyzed on the Ni(111) surface. Phys. Chem. Chem. Phys. 2019, 21, 23685–23696.
Xiang, S.; Dong, L.; Wang, Z. Q.; Han, X.; Daemen, L. L.; Li, J.; Cheng, Y. Q.; Guo, Y.; Liu, X. H.; Hu, Y. F. et al. A unique Co@CoO catalyst for hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran. Nat. Commun. 2022, 13, 3657.
Robinson, A. M.; Hensley, J. E.; Medlin, J. W. Bifunctional catalysts for upgrading of biomass-derived oxygenates: A review. ACS Catal. 2016, 6, 5026–5043.
Weng, Z.; Liu, W.; Yin, L. C.; Fang, R. P.; Li, M.; Altman, E. I.; Fan, Q.; Li, F.; Cheng, H. M.; Wang, H. L. Metal/oxide interface nanostructures generated by surface segregation for electrocatalysis. Nano Lett. 2015, 15, 7704–7710.
Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.
Deng, Q.; Zhou, R.; Zhang, Y. C.; Li, X.; Li, J. H.; Tu, S. B.; Sheng, G.; Wang, J.; Zeng, Z. L.; Yoskamtorn, T. et al. H+−H− pairs in partially oxidized MAX phases for bifunctional catalytic conversion of furfurals into linear ketones. Angew. Chem., Int. Ed. 2022, 62, e202211461.
Tamura, M.; Tokonami, K.; Nakagawa, Y.; Tomishige, K. Selective hydrogenation of crotonaldehyde to crotyl alcohol over metal oxide modified Ir catalysts and mechanistic insight. ACS Catal. 2016, 6, 3600–3609.
Zhang, Y. F.; Fan, G. L.; Yang, L.; Li, F. Efficient conversion of furfural into cyclopentanone over high performing and stable Cu/ZrO2 catalysts. Appl. Catal. A: Gen. 2018, 561, 117–126.
Gong, W. B.; Han, M. M.; Chen, C.; Lin, Y.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. CoO x @Co nanoparticle-based catalyst for efficient selective transfer hydrogenation of α,β-unsaturated aldehydes. ChemCatChem. 2020, 12, 1019–1024.
Yang, Q. Y.; Zhu, Y.; Tian, L.; Xie, S. H.; Pei, Y.; Li, H.; Li, H. X.; Qiao, M. H.; Fan, K. N. Preparation and characterization of Au-In/APTMS-SBA-15 catalysts for chemoselective hydrogenation of crotonaldehyde to crotyl alcohol. Appl. Catal. A: Gen. 2009, 369, 67–76.
Taniya, K.; Jinno, H.; Kishida, M.; Ichihashi, Y.; Nishiyama, S. Preparation of Sn-modified silica-coated Pt catalysts: A new PtSn bimetallic model catalyst for selective hydrogenation of crotonaldehyde. J. Catal. 2012, 288, 84–91.
Rodiansono; Khairi, S.; Hara, T.; Ichikuni, N.; Shimazu, S. Highly efficient and selective hydrogenation of unsaturated carbonyl compounds using Ni–Sn alloy catalysts. Catal. Sci. Technol. 2012, 2, 2139–2145.
Ahmadi, M.; Mistry, H.; Roldan Cuenya, B. Tailoring the catalytic properties of metal nanoparticles via support interactions. J. Phys. Chem. Lett. 2016, 7, 3519–3533.
Jin, X. J.; Tsukimura, R.; Aihara, T.; Miura, H.; Shishido, T.; Nozaki, K. Metal-support cooperation in Al(PO3)3-supported platinum nanoparticles for the selective hydrogenolysis of phenols to arenes. Nat. Catal. 2021, 4, 312–321.
Shen, Y.; Chen, C.; Zou, Z. D.; Hu, Z.; Fu, Z.; Li, W. C.; Pan, S. L.; Zhang, Y. X.; Zhang, H. M.; Yu, Z. X. et al. Geometric and electronic effects of Co@NPC catalyst in chemoselective hydrogenation: Tunable activity and selectivity via N,P co-doping. J. Catal. 2023, 421, 65–76.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B: Condens. Matter 1996, 54, 11169–11186.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Dalverny, A. L.; Filhol, J. S.; Lemoigno, F.; Doublet, M. L. Interplay between magnetic and orbital ordering in the strongly correlated cobalt oxide: A DFT+ U study. J. Phys. Chem. C 2010, 114, 21750–21756.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT: A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.
Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.
Cui, P. X.; Yang, Q.; Liu, C.; Wang, Y.; Fang, G. D.; Dionysiou, D. D.; Wu, T. L.; Zhou, Y. Y.; Ren, J. X.; Hou, H. B. et al. An N,S-anchored single-atom catalyst derived from domestic waste for environmental remediation. ACS ES&T Eng. 2021, 1, 1460–1469.
Liu, Z. Q.; Cheng, H.; Li, N.; Ma, T. Y.; Su, Y. Z. ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 2016, 28, 3777–3784.
Wang, J.; Zhou, J. G.; Hu, Y. F.; Regier, T. Chemical interaction and imaging of single Co3O4/graphene sheets studied by scanning transmission X-ray microscopy and X-ray absorption spectroscopy. Energy Environ. Sci. 2013, 6, 926–934.
Bajdich, M.; García-Mota, M.; Vojvodic, A.; Nørskov, J. K.; Bell, A. T. Theoretical investigation of the activity of cobalt oxides for the electrochemical oxidation of water. J. Am. Chem. Soc. 2013, 135, 13521–13530.
Zhang, J. Y.; Jia, Z.; Yu, S. T.; Liu, S. W.; Li, L.; Xie, C. X.; Wu, Q.; Zhang, Y. Z.; Yu, H. L.; Liu, Y. X. et al. Regulating the Cu0–Cu+ ratio to enhance metal-support interaction for selective hydrogenation of furfural under mild conditions. Chem. Eng. J. 2023, 468, 143755.
Chen, X. Y.; Yang, Z. Y.; Yang, F. X.; Zhang, J.; Pizzi, A.; Essawy, H.; Du, G. B.; Zhou, X. J. Development of easy-handled, formaldehyde-free, high-bonding performance bio-sourced wood adhesives by co-reaction of furfuryl alcohol and wheat gluten protein. Chem. Eng. J. 2023, 462, 142161.
Pushkarev, V. V.; Musselwhite, N.; An, K.; Alayoglu, S.; Somorjai, G. A. High structure sensitivity of vapor-phase furfural decarbonylation/hydrogenation reaction network as a function of size and shape of Pt nanoparticles. Nano Lett. 2012, 12, 5196–5201.
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science. 2016, 351, 361–365.
Lu, N. P.; Zhang, P. F.; Zhang, Q. H.; Qiao, R. M.; He, Q.; Li, H. B.; Wang, Y. J.; Guo, J. W.; Zhang, D.; Duan, Z. et al. Electric-field control of tri-state phase transformation with a selective dual-ion switch. Nature 2017, 546, 124–128.
An, Z.; Ning, X.; He, J. Ga-promoted CO insertion and C–C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas. J. Catal. 2017, 356, 157–164.