AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article | Open Access | Online First

Multi-component nanocrystal supraparticles: Colloidal self-assembly and application

Wenlong FuPeng-peng Wang( )
State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China
Show Author Information

Graphical Abstract

This review thoroughly discusses the influencing factors in the formation of multicomponent nanocrystal supraparticles through the emulsion strategy and highlights the resulting novel properties and their corresponding applications.

Abstract

The assembly of multiple colloidal building blocks into supraparticles provides a promising strategy for designing and fabricating functional nanomaterials. Emulsion droplets possess homogeneous colloidal microspaces that facilitate a tunable assembly process, enabling versatile and controllable supraparticles with tailored composition, size, shape and properties. In this review, we introduce the development and representative examples of nanocrystal supraparticles synthesized via the emulsion route. Key influencing factors, including size and concentration ratio effect, ligand effect, temperature effect, and surfactant effect, have been discussed in detail. Besides, the novel collective properties arising from the ordered stacking of multi-component nanocrystal supraparticles are highlighted, as well as the corresponding impressive applications. In addition, we propose the current challenges and future prospects in this exciting field. We hope this review inspires further research into multi-component nanocrystal supraparticles with diverse and innovative functionalities.

References

[1]

Cherniukh, I.; Rainò, G.; Stöferle, T.; Burian, M.; Travesset, A.; Naumenko, D.; Amenitsch, H.; Erni, R.; Mahrt, R. F.; Bodnarchuk, M. I. et al. Perovskite-type superlattices from lead halide perovskite nanocubes. Nature 2021, 593, 535–542.

[2]

Liu, Z.; Qin, X.; Chen, Q. H.; Jiang, T. C.; Chen, Q. S.; Liu, X. G. Metal-halide perovskite nanocrystal superlattice: Self-assembly and optical fingerprints. Adv. Mater. 2023, 35, 2209279.

[3]

Wu, C. L. M.; Fan, Q. S.; Yin, Y. D. Emulsion-confined self-assembly of colloidal nanoparticles into 3D superstructures. Cell Rep. Phys. Sci. 2022, 3, 101162.

[4]

Chen, Z. H.; Li, N.; Zhao, W. D.; Liu, M. T.; Bai, Z. Z.; Liu, C. C.; Liu, P. P.; Jiang, F. X.; Xu, J. K.; Jiang, Q. L. Layer-by-Layer assembled flexible MXene/TiS2 composite films for thermoelectric applications. Energy Mater. Adv. 2024, 5, 0102.

[5]

Li, X.; Chen, C.; Niu, Q.; Li, N. W.; Yu, L.; Wang, B. Self-assembly of nanoparticles at solid-liquid interface for electrochemical capacitors. Rare Met. 2022, 41, 3591–3611.

[6]

Wang, T.; Zhuang, J. Q.; Lynch, J.; Chen, O.; Wang, Z. L.; Wang, X. R.; LaMontagne, D.; Wu, H. M.; Wang, Z. W.; Cao, Y. C. Self-assembled colloidal superparticles from nanorods. Science 2012, 338, 358–363.

[7]

Wang, T.; LaMontagne, D.; Lynch, J.; Zhuang, J. Q.; Cao, Y. C. Colloidal superparticles from nanoparticle assembly. Chem. Soc. Rev. 2013, 42, 2804–2823.

[8]

He, X. H.; Jia, K.; Marks, R.; Hu, Y. G.; Liu, X. B. 3D confined self-assembling of QD within super-engineering block copolymers as biocompatible superparticles enabling stimulus responsive solid state fluorescence. Nano Res. 2021, 14, 285–294.

[9]

Shevchenko, E. V.; Talapin, D. V.; Murray, C. B.; O'Brien, S. Structural characterization of self-assembled multifunctional binary nanoparticle superlattices. J. Am. Chem. Soc. 2006, 128, 3620–3637.

[10]

Dong, A. G.; Chen, J.; Vora, P. M.; Kikkawa, J. M.; Murray, C. B. Binary nanocrystal superlattice membranes self-assembled at the liquid-air interface. Nature 2010, 466, 474–477.

[11]

Podsiadlo, P.; Krylova, G. V.; Demortière, A.; Shevchenko, E. V. Multicomponent periodic nanoparticle superlattices. J. Nanopart. Res. 2011, 13, 15–32.

[12]

Kang, Y. J.; Ye, X. C.; Chen, J.; Cai, Y.; Diaz, R. E.; Adzic, R. R.; Stach, E. A.; Murray, C. B. Design of Pt-Pd binary superlattices exploiting shape effects and synergistic effects for oxygen reduction reactions. J. Am. Chem. Soc. 2013, 135, 42–45.

[13]

Yang, Y. C.; Wang, B. W.; Shen, X. D.; Yao, L. Y.; Wang, L.; Chen, X.; Xie, S. H.; Li, T. T.; Hu, J. H.; Yang, D. et al. Scalable assembly of crystalline binary nanocrystal superparticles and their enhanced magnetic and electrochemical properties. J. Am. Chem. Soc. 2018, 140, 15038–15047.

[14]

Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

[15]

Chen, O.; Riedemann, L.; Etoc, F.; Herrmann, H.; Coppey, M.; Barch, M.; Farrar, C. T.; Zhao, J.; Bruns, O. T.; Wei, H. et al. Magneto-fluorescent core-shell supernanoparticles. Nat. Commun. 2014, 5, 5093.

[16]

Urban, J. J.; Talapin, D. V.; Shevchenko, E. V.; Kagan, C. R.; Murray, C. B. Synergism in binary nanocrystal superlattices leads to enhanced p-type conductivity in self-assembled PbTe/Ag2Te thin films. Nat. Mater. 2007, 6, 115–121.

[17]

Zhang, X.; Lin, M.; Lin, X. Y.; Zhang, C. T.; Wei, H. T.; Zhang, H.; Yang, B. Polypyrrole-enveloped Pd and Fe3O4 nanoparticle binary hollow and bowl-like superstructures as recyclable catalysts for industrial wastewater treatment. ACS Appl. Mater. Interfaces 2014, 6, 450–458.

[18]

Shi, R.; Cao, Y. H.; Bao, Y. J.; Zhao, Y. F.; Waterhouse, G. I. N.; Fang, Z. Y.; Wu, L. Z.; Tung, C. H.; Yin, Y. D.; Zhang, T. R. Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Adv. Mater. 2017, 29, 1700803.

[19]

Wang, P. P.; Qiao, Q.; Zhu, Y. M.; Ouyang, M. Colloidal binary supracrystals with tunable structural lattices. J. Am. Chem. Soc. 2018, 140, 9095–9098.

[20]

Sekh, T. V.; Cherniukh, I.; Kobiyama, E.; Sheehan, T. J.; Manoli, A.; Zhu, C. L.; Athanasiou, M.; Sergides, M.; Ortikova, O.; Rossell, M. D. et al. All-perovskite multicomponent nanocrystal superlattices. ACS Nano 2024, 18, 8423–8436.

[21]

Meder, F.; Thomas, S. S.; Bollhorst, T.; Dawson, K. A. Ordered surface structuring of spherical colloids with binary nanoparticle superlattices. Nano Lett. 2018, 18, 2511–2518.

[22]

Xu, W. J.; Chen, Y. Z.; Shi, L. B.; Wang, L. S.; Peng, D. L. Bi-magnetic Mn3O4@Ni core–shell binary superparticles: Self-assembly preparation and magnetic behaviors. J. Colloid Interface Sci. 2024, 673, 517–526.

[23]

O'Brien, E. S.; Trinh, M. T.; Kann, R. L.; Chen, J.; Elbaz, G. A.; Masurkar, A.; Atallah, T. L.; Paley, M. V.; Patel, N.; Paley, D. W. et al. Single-crystal-to-single-crystal intercalation of a low-bandgap superatomic crystal. Nat. Chem. 2017, 9, 1170–1174.

[24]

Han, D. D.; Zhou, Q.; Xia, Y.; Huang, D. T.; Qin, J. Q.; Wang, L. X.; Wang, X. P.; Zheng, X. F.; Wu, D. A general confinement co-assembly strategy enabling cross-dimensional supraspheres for boosting electrochemical performance. Carbon 2022, 200, 296–306.

[25]

Zhuang, J. Q.; Wu, H. M.; Yang, Y. G.; Cao, Y. C. Supercrystalline colloidal particles from artificial atoms. J. Am. Chem. Soc. 2007, 129, 14166–14167.

[26]

Bai, F.; Wang, D. S.; Huo, Z. Y.; Chen, W.; Liu, L. P.; Liang, X.; Chen, C.; Wang, X.; Peng, Q.; Li, Y. D. A versatile bottom-up assembly approach to colloidal spheres from nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 6650–6653.

[27]

Yang, Z. J.; Wei, J. J.; Bonville, P.; Pileni, M. P. Engineering the magnetic dipolar interactions in 3D binary supracrystals via mesoscale alloying. Adv. Funct. Mater. 2015, 25, 4908–4915.

[28]

Galow, T. H.; Boal, A. K.; Rotello, V. M. A "building block" approach to mixed-colloid systems through electrostatic self-organization. 3.0.CO;2-S">Adv. Mater. 2000, 12, 576–579.

[29]

Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Exchange-coupled nanocomposite magnets by nanoparticle self-assembly. Nature 2002, 420, 395–398.

[30]

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

[31]

Xie, L.; Wang, H. Y.; Chen, C. H.; Mao, S. J.; Chen, Y. Q.; Li, H. R.; Wang, Y. Cooperative assembly of asymmetric carbonaceous bivalve-like superstructures from multiple building blocks. Research 2018, 2018, 5807980.

[32]

Hao, J. J.; Yang, Y. Z.; Zhang, F. H.; Yang, Z. J.; Wei, J. J. Faceted colloidal Au/Fe3O4 binary supracrystals dictated by intrinsic lattice structures and their collective optical properties. J. Phys. Chem. C 2020, 124, 14775–14786.

[33]

Miszta, K.; de Graaf, J.; Bertoni, G.; Dorfs, D.; Brescia, R.; Marras, S.; Ceseracciu, L.; Cingolani, R.; van Roij, R.; Dijkstra, M. et al. Hierarchical self-assembly of suspended branched colloidal nanocrystals into superlattice structures. Nat. Mater. 2011, 10, 872–876.

[34]

Rupich, S. M.; Shevchenko, E. V.; Bodnarchuk, M. I.; Lee, B.; Talapin, D. V. Size-dependent multiple twinning in nanocrystal superlattices. J. Am. Chem. Soc. 2010, 132, 289–296.

[35]

Velev, O. D.; Furusawa, K.; Nagayama, K. Assembly of latex particles by using emulsion droplets as templates 1. Microstructured hollow spheres. Langmuir 1996, 12, 2374–2384.

[36]

Zhang, X.; Han, J. S.; Yao, T. J.; Wu, J.; Zhang, H.; Zhang, H.; Zhang, X. D.; Yang, B. Binary superparticles from preformed Fe3O4 and Au nanoparticles. Crystengcomm 2011, 13, 5674–5676.

[37]
Abdel-Raouf, M. E. S. Factors affecting the stability of crude oil emulsions. In Crude Oil Emulsions-Composition Stability and Characterization. Abdel-Raouf, M. E. S., Ed.; IntechOpen: Rijeka, 2012; pp 183–204.
[38]
Tadros, T. F. Emulsion Formation And Stability; Wiley-VCH: Weinheim, 2013.
[39]

Akbari, S.; Nour, A. H. Emulsion types, stability mechanisms and rheology: A review. Int. J. Innov. Res. Adv. Stud. 2018, 1, 11–17.

[40]

Evers, W. H.; de Nijs, B.; Filion, L.; Castillo, S.; Dijkstra, M.; Vanmaekelbergh, D. Entropy-driven formation of binary semiconductor-nanocrystal superlattices. Nano Lett. 2010, 10, 4235–4241.

[41]

Dong, A. G.; Ye, X. C.; Chen, J.; Murray, C. B. Two-dimensional binary and ternary nanocrystal superlattices: The case of monolayers and bilayers. Nano Lett. 2011, 11, 1804–1809.

[42]

Boles, M. A.; Talapin, D. V. Binary assembly of PbS and Au nanocrystals: Patchy PbS surface ligand coverage stabilizes the CuAu superlattice. ACS Nano 2019, 13, 5375–5384.

[43]

Zanaga, D.; Bleichrodt, F.; Altantzis, T.; Winckelmans, N.; Palenstijn, W. J.; Sijbers, J.; de Nijs, B.; van Huis, M. A.; Sánchez-Iglesias, A.; Liz-Marzán, L. M. et al. Quantitative 3D analysis of huge nanoparticle assemblies. Nanoscale 2016, 8, 292–299.

[44]

Hopkins, A. B.; Stillinger, F. H.; Torquato, S. Densest binary sphere packings. Phys. Rev. E 2012, 85, 021130.

[45]

O'Toole, P. I.; Hudson, T. S. New high-density packings of similarly sized binary spheres. J. Phys. Chem. C 2011, 115, 19037–19040.

[46]

Kummerfeld, J. K.; Hudson, T. S.; Harrowell, P. The densest packing of AB binary hard-sphere homogeneous compounds across all size ratios. J. Phys. Chem. B 2008, 112, 10773–10776.

[47]

Landman, U.; Luedtke, W. D. Small is different: Energetic, structural, thermal, and mechanical properties of passivated nanocluster assemblies. Faraday Discuss. 2004, 125, 1–22.

[48]

Gelbart, W. M.; Sear, R. P.; Heath, J. R.; Chaney, S. Array formation in nano-colloids: Theory and experiment in 2D. Faraday Discuss. 1999, 112, 299–307.

[49]

Coropceanu, I.; Boles, M. A.; Talapin, D. V. Systematic mapping of binary nanocrystal superlattices: The role of topology in phase selection. J. Am. Chem. Soc. 2019, 141, 5728–5740.

[50]

Choi, J. J.; Bealing, C. R.; Bian, K. F.; Hughes, K. J.; Zhang, W. Y.; Smilgies, D. M.; Hennig, R. G.; Engstrom, J. R.; Hanrath, T. Controlling nanocrystal superlattice symmetry and shape-anisotropic interactions through variable ligand surface coverage. J. Am. Chem. Soc. 2011, 133, 3131–3138.

[51]

Bealing, C. R.; Baumgardner, W. J.; Choi, J. J.; Hanrath, T.; Hennig, R. G. Predicting nanocrystal shape through consideration of surface-ligand interactions. Acs Nano 2012, 6, 2118–2127.

[52]

Goodfellow, B. W.; Yu, Y. X.; Bosoy, C. A.; Smilgies, D. M.; Korgel, B. A. The role of ligand packing frustration in body-centered cubic (bcc) superlattices of colloidal nanocrystals. J. Phys. Chem. Lett. 2015, 6, 2406–2412.

[53]

Horst, N.; Nayak, S.; Wang, W. J.; Mallapragada, S.; Vaknin, D.; Travesset, A. Superlattice assembly by interpolymer complexation. Soft Matter 2019, 15, 9690–9699.

[54]

Li, R. P.; Bian, K. F.; Hanrath, T.; Bassett, W. A.; Wang, Z. W. Decoding the superlattice and interface structure of truncate PbS nanocrystal-assembled supercrystal and associated interaction forces. J. Am. Chem. Soc. 2014, 136, 12047–12055.

[55]

Wei, J. J.; Schaeffer, N.; Pileni, M. P. Ligand exchange governs the crystal structures in binary nanocrystal superlattices. J. Am. Chem. Soc. 2015, 137, 14773–14784.

[56]

Wang, S.; Lu, S. Y.; Tian, X. L.; Liu, W. Y.; Si, Y. L.; Yang, Y. C.; Qiu, H. W.; Zhang, H.; Li, J. H. A general approach to stabilize nanocrystal superlattices by covalently bonded ligands. ACS Nano 2023, 17, 2792–2801.

[57]

Eldridge, M. D.; Madden, P. A.; Frenkel, D. Entropy-driven formation of a superlattice in a hard-sphere binary mixture. Nature 1993, 365, 35–37.

[58]

Chen, Z. Y.; O'Brien, S. Structure direction of II-VI semiconductor quantum dot binary nanoparticle superlattices by tuning radius ratio. ACS Nano 2008, 2, 1219–1229.

[59]

Bodnarchuk, M. I.; Kovalenko, M. V.; Heiss, W.; Talapin, D. V. Energetic and entropic contributions to self-assembly of binary nanocrystal superlattices: Temperature as the structure-directing factor. J. Am. Chem. Soc. 2010, 132, 11967–11977.

[60]

Luo, D.; Qin, X. Y.; Song, Q.; Qiao, X. Z.; Zhang, Z.; Xue, Z. J.; Liu, C.; Mo, G.; Wang, T. Ordered superparticles with an enhanced photoelectric effect by sub-nanometer interparticle distance. Adv. Funct. Mater. 2017, 27, 1701982.

[61]

Han, J. S.; Zhang, X.; Zhou, Y. B.; Ning, Y.; Wu, J.; Liang, S.; Sun, H. C.; Zhang, H.; Yang, B. Fabrication of CdTe nanoparticles-based superparticles for an improved detection of Cu2+ and Ag+. J. Mater. Chem. 2012, 22, 2679–2686.

[62]

Dziza, K.; Santini, E.; Liggieri, L.; Jarek, E.; Krzan, M.; Fischer, T.; Ravera, F. Interfacial properties and emulsification of biocompatible liquid-liquid systems. Coatings 2020, 10, 397.

[63]

Abdulredha, M. M.; Hussain, S. A.; Abdullah, L. C.; Lee Hong, T. Water-in-oil emulsion stability and demulsification via surface-active compounds: A review. J. Pet. Sci. Eng. 2022, 209, 109848.

[64]

Kister, T.; Mravlak, M.; Schilling, T.; Kraus, T. Pressure-controlled formation of crystalline, Janus, and core-shell supraparticles. Nanoscale 2016, 8, 13377–13384.

[65]

Jones, M. R.; Seeman, N. C.; Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 2015, 347, 1260901.

[66]

Yao, G. B.; Li, J.; Li, Q.; Chen, X. L.; Liu, X. G.; Wang, F.; Qu, Z. B.; Ge, Z. L.; Narayanan, R. P.; Williams, D. et al. Programming nanoparticle valence bonds with single-stranded DNA encoders. Nat. Mater. 2020, 19, 781–788.

[67]

Tan, L. H.; Xing, H.; Lu, Y. DNA as a powerful tool for morphology control, spatial positioning, and dynamic assembly of nanoparticles. Acc. Chem. Res. 2014, 47, 1881–1890.

[68]

Xie, M.; Hu, Y.; Yin, J.; Zhao, Z. W.; Chen, J.; Chao, J. DNA nanotechnology-enabled fabrication of metal nanomorphology. Research 2022, 2022, 9840131.

[69]

Chen, C.; Zheng, L. H.; Guo, F. C.; Fang, Z. Y.; Qi, L. M. Programmable self-assembly of gold nanoarrows via regioselective adsorption. Research 2021, 2021, 9762095.

[70]

Tan, S. J.; Campolongo, M. J.; Luo, D.; Cheng, W. L. Building plasmonic nanostructures with DNA. Nat. Nanotechnol. 2011, 6, 268–276.

[71]

Chou, L. Y. T.; Zagorovsky, K.; Chan, W. C. W. DNA assembly of nanoparticle superstructures for controlled biological delivery and elimination. Nat. Nanotechnol. 2014, 9, 148–155.

[72]

Zhang, Y. G.; Lu, F.; Yager, K. G.; van der Lelie, D.; Gang, O. A general strategy for the DNA-mediated self-assembly of functional nanoparticles into heterogeneous systems. Nat. Nanotechnol. 2013, 8, 865–872.

[73]

Guo, J. L.; Tardy, B. L.; Christofferson, A. J.; Dai, Y. L.; Richardson, J. J.; Zhu, W.; Hu, M.; Ju, Y.; Cui, J. W.; Dagastine, R. R. et al. Modular assembly of superstructures from polyphenol-functionalized building blocks. Nat. Nanotechnol. 2016, 11, 1105–1111.

[74]

Singh, G.; Chan, H.; Baskin, A.; Gelman, E.; Repnin, N.; Král, P.; Klajn, R. Self-assembly of magnetite nanocubes into helical superstructures. Science 2014, 345, 1149–1153.

[75]

Li, J.; Yiliguma; Wang, Y. F.; Zheng, G. F. Carbon-coated nanoparticle superlattices for energy applications. Nanoscale 2016, 8, 14359–14368.

[76]

Dong, A. G.; Chen, J.; Ye, X. C.; Kikkawa, J. M.; Murray, C. B. Enhanced thermal stability and magnetic properties in NaCl-type FePt-MnO binary nanocrystal superlattices. J. Am. Chem. Soc. 2011, 133, 13296–13299.

[77]

Mehdizadeh Taheri, S.; Michaelis, M.; Friedrich, T.; Förster, B.; Drechsler, M.; Römer, F. M.; Bösecke, P.; Narayanan, T.; Weber, B.; Rehberg, I. et al. Self-assembly of smallest magnetic particles. Proc. Natl. Acad. Sci. USA 2015, 112, 14484–14489.

[78]

Shevchenko, E. V.; Ringler, M.; Schwemer, A.; Talapin, D. V.; Klar, T. A.; Rogach, A. L.; Feldmann, J.; Alivisatos, A. P. Self-assembled binary superlattices of CdSe and Au nanocrystals and their fluorescence properties. J. Am. Chem. Soc. 2008, 130, 3274–3275.

[79]

Cohen-Hoshen, E.; Bryant, G. W.; Pinkas, I.; Sperling, J.; Bar-Joseph, I. Exciton-plasmon interactions in quantum dot-gold nanoparticle structures. Nano Lett. 2012, 12, 4260–4264.

[80]

Sun, D. Z.; Tian, Y.; Zhang, Y. G.; Xu, Z. H.; Sfeir, M. Y.; Cotlet, M.; Gang, O. Light-harvesting nanoparticle core–shell clusters with controllable optical output. ACS Nano 2015, 9, 5657–5665.

[81]

Marino, E.; Vo, T.; Gonzalez, C.; Rosen, D. J.; Neuhaus, S. J.; Sciortino, A.; Bharti, H.; Keller, A. W.; Kagan, C. R.; Cannas, M. et al. Porous magneto-fluorescent superparticles by rapid emulsion densification. Chem. Mater. 2024, 36, 3683–3696.

[82]

Liu, W.; Li, Q.; Wu, J. B.; Wang, W. Z.; Jiang, R.; Zhou, C. L.; Wang, S. B.; Zhang, X. M.; Sun, T. Y.; Xu, Z. M. et al. Self-assembly of Au nanocrystals into large-area 3-D ordered flexible superlattice nanostructures arrays for ultrasensitive trace multi-hazard detection. J. Hazard. Mater. 2023, 443, 130124.

[83]

Wang, P.; Zhang, R. M.; Wang, K.; Liu, Y. J.; Zhang, L. S.; Wang, X. J.; Li, H. F.; He, Y.; Liu, Z. M. Simultaneously constructing asymmetrically coordinated cobalt single atoms and cobalt nanoclusters via a fresh potassium hydroxide clipping strategy toward efficient alkaline oxygen reduction reaction. Energy Mater. Adv. 2023, 4, 0042.

[84]

Gao, Y.; Wang, E. F.; Zheng, Y. Z.; Zhou, J.; Sun, Z. M. Hexagonal MBenes-supported single atom as electrocatalysts for the nitrogen reduction reaction. Energy Mater. Adv. 2023, 4, 0039.

[85]

Kang, Y. J.; Ye, X. C.; Chen, J.; Qi, L.; Diaz, R. E.; Doan-Nguyen, V.; Xing, G. Z.; Kagan, C. R.; Li, J.; Gorte, R. J. et al. Engineering catalytic contacts and thermal stability: Gold/iron oxide binary nanocrystal superlattices for CO oxidation. J. Am. Chem. Soc. 2013, 135, 1499–1505.

[86]

Ma, K.; Yehezkeli, O.; Domaille, D. W.; Funke, H. H.; Cha, J. N. Enhanced hydrogen production from DNA-assembled Z-Scheme TiO2-CdS photocatalyst systems. Angew. Chem., Int. Ed. 2015, 54, 11490–11494.

[87]

Lu, X. X.; Li, M. Z.; Peng, Y.; Xi, X. Y.; Li, M.; Chen, Q. J.; Dong, A. G. Direct probing of the oxygen evolution reaction at single NiFe2O4 nanocrystal superparticles with tunable structures. J. Am. Chem. Soc. 2021, 143, 16925–16929.

[88]

Chen, C.; Nan, C. Y.; Wang, D. S.; Su, Q.; Duan, H. H.; Liu, X. W.; Zhang, L. S.; Chu, D. R.; Song, W. G.; Peng, Q. et al. Mesoporous multicomponent nanocomposite colloidal spheres: Ideal high-temperature stable model catalysts. Angew. Chem., Int. Ed. 2011, 50, 3725–3729.

[89]

Lee, S. H.; Yu, S. H.; Lee, J. E.; Jin, A. H.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. Y.; Kim, Y. W. et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.

[90]

Guo, G. N.; Ji, L.; Shen, X. D.; Wang, B. W.; Li, H. W.; Hu, J. H.; Yang, D.; Dong, A. G. Self-assembly of transition-metal-oxide nanoparticle supraparticles with designed architectures and their enhanced lithium storage properties. J. Mater. Chem. A 2016, 4, 16128–16135.

[91]

Ding, Q. W.; Luo, Q.; Lin, L.; Fu, X. P.; Wang, L. S.; Yue, G. H.; Lin, J.; Xie, Q. S.; Peng, D. L. Facile synthesis of PdCu nanocluster-assembled granular films as highly efficient electrocatalysts for formic acid oxidation. Rare Met. 2022, 41, 2595–2605.

[92]

Meng, X. Y.; Qiu, L.; Xi, G. C.; Wang, X. T.; Guo, L. Smart design of high-performance surface-enhanced Raman scattering substrates. SmartMat 2021, 2, 466–487.

[93]

Zheng, G. C.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Plasmonic metal-organic frameworks. SmartMat 2021, 2, 446–465.

[94]

Cargnello, M.; Diroll, B. T.; Gaulding, E. A.; Murray, C. B. Enhanced energy transfer in quasi-quaternary nanocrystal superlattices. Adv. Mater. 2014, 26, 2419–2423.

[95]

Shevchenko, E. V.; Talapin, D. V.; O'Brien, S.; Murray, C. B. Polymorphism in AB13 nanoparticle superlattices: An example of semiconductor-metal metamaterials. J. Am. Chem. Soc. 2005, 127, 8741–8747.

[96]

Bodnarchuk, M. I.; Erni, R.; Krumeich, F.; Kovalenko, M. V. Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters. Nano Lett. 2013, 13, 1699–1705.

[97]

Paik, T.; Diroll, B. T.; Kagan, C. R.; Murray, C. B. Binary and ternary superlattices self-assembled from colloidal nanodisks and nanorods. J. Am. Chem. Soc. 2015, 137, 6662–6669.

[98]

Ye, X. C.; Millan, J. A.; Engel, M.; Chen, J.; Diroll, B. T.; Glotzer, S. C.; Murray, C. B. Shape alloys of nanorods and nanospheres from self-assembly. Nano Lett. 2013, 13, 4980–4988.

[99]

Li, X. Y.; Liu, X. W.; Liu, X. G. Self-assembly of colloidal inorganic nanocrystals: Nanoscale forces, emergent properties and applications. Chem. Soc. Rev. 2021, 50, 2074–2101.

[100]

Wang, L.; Wang, J. Y. Self-assembly of colloids based on microfluidics. Nanoscale 2019, 11, 16708–16722.

[101]

Han, G. Q.; Liu, S. M.; Yang, Q.; Zeng, F. Y.; Li, W.; Mao, X.; Xu, J. P.; Zhu, J. T. Polymer-grafted nanoparticle superlattice monolayers over 100 cm2 through a modified Langmuir-Blodgett method. Polymer 2022, 259, 125308.

[102]

Liu, L.; He, Y. L.; Yin, S. X.; Chang, X. Q.; Zhang, J. Y.; Peng, L.; Li, J. L.; Ma, Y. Z.; Wei, Q. L.; Lan, K. et al. Bimodal ordered porous hierarchies from cooperative soft-hard template pairs. Matter 2023, 6, 3099–3111.

[103]

Wang, B. W.; Wang, X. X.; Zou, J. X.; Yan, Y. C.; Xie, S. H.; Hu, G. Z.; Li, Y. G.; Dong, A. G. Simple-cubic carbon frameworks with atomically dispersed iron dopants toward high-efficiency oxygen reduction. Nano Lett. 2017, 17, 2003–2009.

[104]

Jiao, Y. C.; Han, D. D.; Ding, Y.; Zhang, X. F.; Guo, G. N.; Hu, J. H.; Yang, D.; Dong, A. G. Fabrication of three-dimensionally interconnected nanoparticle superlattices and their lithium-ion storage properties. Nat. Commun. 2015, 6, 6420.

[105]

Wang, B. W.; Zou, J. X.; Shen, X. C.; Yang, Y. C.; Hu, G. Z.; Li, W.; Peng, Z. M.; Banham, D.; Dong, A. G.; Zhao, D. Y. Nanocrystal supracrystal-derived atomically dispersed Mn–Fe catalysts with enhanced oxygen reduction activity. Nano Energy 2019, 63, 103851.

Nano Research
Cite this article:
Fu W, Wang P-p. Multi-component nanocrystal supraparticles: Colloidal self-assembly and application. Nano Research, 2024, https://doi.org/10.26599/NR.2025.94907120
Topics:

165

Views

40

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 29 September 2024
Revised: 05 November 2024
Accepted: 07 November 2024
Published: 26 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return