Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In our study, the composition-dependent effects of atomic displacements in Au-Cu-Ni-Pd-Pt based alloys, comprising elements with large differences in atomic radii, are investigated at the atomic scale. Two alloys—the equimolar AuCuNiPdPt and AuCuNiPd—have been characterized using multi-edge extended X-ray absorption fine structure (EXAFS) spectroscopy in conjunction with reverse Monte Carlo (RMC) simulations at room temperature. The statistically-averaged component-dependent pair distribution functions (PDFs), which represent the distribution of atoms around the assumed regular face-centered cubic (fcc) lattice positions, reveal a shift of their peaks to shorter distances and a pronounced asymmetry in atomic distribution only for atoms with small radii (Cu/Ni). The analysis demonstrates that small atoms (Cu/Ni) are significantly more displaced from the expected lattice positions as compared to large atoms (Au/Pt). Furthermore, there are indications of preferential next-neighbour bonding that changes depending on the alloy composition. The most pronounced changes in the PDFs were found solely for Pd. With this study, we provide a basis for a deeper understanding of the composition-dependent atomic arrangement in chemically complex solid solutions.
Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chimie. Sci. Matériaux 2006, 31, 633–648.
Ye, Y. F.; Zhang, Y. H.; He, Q. F.; Zhuang, Y.; Wang, S.; Shi, S. Q.; Hu, A.; Fan, J.; Yang, Y. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 2018, 150, 182–194.
Sohn, S. S.; Kwiatkowski da Silva, A.; Ikeda, Y.; Körmann, F.; Lu, W. J.; Choi, W. S.; Gault, B.; Ponge, D.; Neugebauer, J.; Raabe, D. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 2019, 31, 1807142.
George, E. P.; Curtin, W. A.; Tasan, C. C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474.
Gorr, B.; Müller, F.; Azim, M.; Christ, H. J.; Müller, T.; Chen, H.; Kauffmann, A.; Heilmaier, M. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid. Met. 2017, 88, 339–349.
Cui, Y.; Shen, J. Q.; Manladan, S. M.; Geng, K. P.; Hu, S. S. Wear resistance of FeCoCrNiMnAl x high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020, 512, 145736.
Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L. G.; Zhang, L. C.; Liang, S. X.; Lu, J.; Kruzic, J. J. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions. Adv. Funct. Mater. 2021, 31, 2101586.
Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.
Jiang, B. B.; Yu, Y.; Cui, J.; Liu, X. X.; Xie, L.; Liao, J. C.; Zhang, Q. H.; Huang, Y.; Ning, S. C.; Jia, B. H. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834.
Wang, X. Y.; Yao, H. H.; Zhang, Z. W.; Li, X. F.; Chen, C.; Yin, L.; Hu, K. N.; Yan, Y. R.; Li, Z.; Yu, B. et al. Enhanced thermoelectric performance in high entropy alloys Sn0.25Pb0.25Mn0.25Ge0.25Te. ACS Appl. Mater. Interfaces 2021, 13, 18638–18647.
Yang, T. N.; Lu, C. Y.; Velisa, G.; Jin, K.; Xiu, P.; Zhang, Y. W.; Bei, H. B.; Wang, L. M. Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd. Scr. Mater. 2019, 158, 57–61.
Wang, P. W.; Li, M. F.; Malomo, B.; Yang, L. Lattice distortion and re-distortion affecting irradiation tolerance in high entropy alloys. Nanoscale 2023, 15, 16447–16457.
Pickering, E. J.; Carruthers, A. W.; Barron, P. J.; Middleburgh, S. C.; Armstrong, D. E. J.; Gandy, A. S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98.
Chen, B.; Li, S. Z.; Ding, J.; Ding, X. D.; Sun, J.; Ma, E. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys. Scr. Mater. 2023, 222, 115048.
Yang, D. D.; Chen, B.; Li, S. Z.; Ding, X. D.; Sun, J. Effect of local lattice distortion on the core structure of edge dislocation in NbMoTaW multi-principal element alloys and the subsystems. Mater. Sci. Eng.: A 2022, 855, 143869.
Fang, Q. H.; Lu, W. Z.; Chen, Y.; Feng, H.; Liaw, P. K.; Li, J. Hierarchical multiscale crystal plasticity framework for plasticity and strain hardening of multi-principal element alloys. J. Mech. Phys. Solids 2022, 169, 105067.
Nutor, R. K.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Fang, Y. Z.; Zhang, Y.; Jiang, J. Z. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv. Eng. Mater. 2020, 22, 2000466.
Simon, A. Intermetallic compounds and the use of atomic radii in their description. Angew. Chem., Int. Ed. 1983, 22, 95–113.
Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.
Varvenne, C.; Luque, A.; Curtin, W. A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016, 118, 164–176.
Freudenberger, J.; Rafaja, D.; Geissler, D.; Giebeler, L.; Ullrich, C.; Kauffmann, A.; Heilmaier, M.; Nielsch, K. Face centred cubic multi-component equiatomic solid solutions in the Au-Cu-Ni-Pd-Pt system. Metals 2017, 7, 135.
Thiel, F.; Utt, D.; Kauffmann, A.; Nielsch, K.; Albe, K.; Heilmaier, M.; Freudenberger, J. Breakdown of varvenne scaling in (AuNiPdPt)1− x Cu x high-entropy alloys. Scr. Mater. 2020, 181, 15–18.
Freudenberger, J.; Thiel, F.; Utt, D.; Albe, K.; Kauffmann, A.; Seils, S.; Heilmaier, M. Solid solution strengthening in medium- to high-entropy alloys. Mater. Sci. Eng.: A 2022, 861, 144271.
Drescher, S.; Seils, S.; Boll, T.; Kauffmann, A.; Heilmaier, M.; Freudenberger, J. Solid solution strengthening in single-phase Au-Cu-Ni-Pd-Pt-based high-entropy alloys. J. Alloys Compd. 2024, 1002, 175273.
Ice, G.; Sparks, C.; Robertson, J. L.; Epperson, J. E.; Jiang, X. G. Static atomic displacements in crystalline solid solution alloys. MRS Online Proc. Libr. 1996, 437, 181–186.
Kim, G.; Diao, H. Y.; Lee, C.; Samaei, A. T.; Phan, T.; de Jong, M.; An, K.; Ma, D.; Liaw, P. K.; Chen, W. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 2019, 181, 124–138.
Nöhring, W. G.; Curtin, W. A. Design using randomness: A new dimension for metallurgy. Scr. Mater. 2020, 187, 210–215.
Aidhy, D. S. Chemical randomness, lattice distortion and the wide distributions in the atomic level properties in high entropy alloys. Comput. Mater. Sci. 2024, 237, 112912.
Okamoto, N. L.; Yuge, K.; Tanaka, K.; Inui, H.; George, E. P. Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 2016, 6, 125008.
Thiel, F.; Geissler, D.; Nielsch, K.; Kauffmann, A.; Seils, S.; Heilmaier, M.; Utt, D.; Albe, K.; Motylenko, M.; Rafaja, D. et al. Origins of strength and plasticity in the precious metal based high-entropy alloy AuCuNiPdPt. Acta Mater. 2020, 185, 400–411.
Renaud, G.; Motta, N.; Lançon, F.; Belakhovsky, M. Topological short-range disorder in Au1− x Ni x solid solutions: An extended X-ray-absorption fine-structure spectroscopy and computer-simulation study. Phys. Rev. B 1988, 38, 5944–5964.
Wu, T. B.; Cohen, J. B. Clustering in a Au-Ni alloy above the miscibility gap. Acta Metall. 1983, 31, 1929–1935.
Lu, K. Q.; Wu, Z. H.; Dong, J.; Chen, X. P.; Fang, Z. Z. The atomic near neighboring structure of Cu1− x Au x solid solution studied with EXAFS. Jpn. J. Appl. Phys. 1993, 32, 631–633.
Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Luo, C.; Chen, K.; Radu, F.; Weschke, E.; Reinholz, U.; Buzanich, A. G.; Yusenko, K. V. Al-driven peculiarities of local coordination and magnetic properties in single-phase Al x -CrFeCoNi high-entropy alloys. Nano Res. 2022, 15, 4845–4858.
Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Abrudan, R.; Reinholz, U.; Buzanich, A. G.; Schneider, M.; Laplanche, G.; Yusenko, K. V. Inner relaxations in equiatomic single-phase high-entropy cantor alloy. J. Alloys Compd. 2022, 920, 165999.
Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Luo, C.; Taylor, J.; Thakur, S.; Radu, F.; Weschke, E.; Buzanich, A. G.; Xiao, B. et al. Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale. Nano Res. 2023, 16, 5626–5639.
Smekhova, A.; Gaertner, D.; Kuzmin, A.; Buzanich, A. G.; Schuck, G.; Zizak, I.; Wilde, G.; Yusenko, K. V.; Divinski, S. Anomalies in the short-range local environment and atomic diffusion in single crystalline equiatomic CrMnFeCoNi high-entropy alloy. Nano Res. 2024, 17, 5336–5348.
Schell, N.; King, A.; Beckmann, F.; Fischer, T.; Müller, M.; Schreyer, A. The high energy materials science beamline (HEMS) at PETRA III. Mater. Sci. Forum 2013, 772, 57–61.
Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71.
Welter, E.; Chernikov, R.; Herrmann, M.; Nemausat, R. A beamline for bulk sample X-ray absorption spectroscopy at the high brilliance storage ring PETRA III. AIP Conf. Proc. 2019, 2054, 040002.
Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 2014, 1, 571–589.
Timoshenko, J.; Kuzmin, A.; Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys.: Condens. Matter. 2014, 26, 055401.
Timoshenko, J.; Kuzmin, A.; Purans, J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput. Phys. Commun. 2012, 183, 1237–1245.
Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 2009, 180, 920–925.
Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.
Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.
Dalba, G.; Fornasini, P. EXAFS Debye-Waller factor and thermal vibrations of crystals. J. Synchrotron Radiat. 1997, 4, 243–255.
Takeuchi, A.; Yubuta, K.; Wada, T. Critically percolated states in high-entropy alloys with exact equi-atomicity. Mater. Trans. 2019, 60, 330–337.
Oh, H. S.; Odbadrakh, K.; Ikeda, Y.; Mu, S.; Körmann, F.; Sun, C. J.; Ahn, H. S.; Yoon, K. N.; Ma, D. C.; Tasan, C. C. et al. Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects. Acta Mater. 2021, 216, 117135.
Nag, S.; Curtin, W. A. Effect of solute–solute interactions on strengthening of random alloys from dilute to high entropy alloys. Acta Mater. 2020, 200, 659–673.
Drescher, S.; Seils, S.; Pohl, D.; Rellinghaus, B.; Kauffmann, A.; Heilmaier, M.; Freudenberger, J. Softening by spinodal decomposition in Au-Cu-Ni-Pd-Pt high-entropy alloys. Mater. Sci. Eng.: A 2023, 887, 145772.
Nag, S.; Curtin, W. A. Solute-strengthening in metal alloys with short-range order. Acta Mater. 2024, 263, 119472.
360
Views
73
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).