AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (24.9 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Component-dependent lattice distortions and atomic scale insights in multi-component Au-Cu-Ni-Pd-Pt based alloys

Sophie Drescher1,2 ( )Alexei Kuzmin3 ( )Edmund Welter4Jens Freudenberger1,2Alevtina Smekhova5 ( )
Leibniz Institute for Solid State and Materials Research, D-01069 Dresden, Germany
TU Bergakademie Freiberg, Institute of Materials Science, D-09599 Freiberg, Germany
Institute of Solid State Physics, University of Latvia, LV-1063 Riga, Latvia
Deutsches Elektronen-Synchrotron (DESY), A Research Centre of the Helmholtz Association, D-22607 Hamburg, Germany
Helmholtz-Zentrum Berlin für Materialien und Energie (HZB), D-12489 Berlin, Germany
Show Author Information

Graphical Abstract

The composition-dependent atomic displacements in equimolar AuCuNiPdPt (high-entropy alloy, HEA) and AuCuNiPd (medium-entropy alloy, MEA) alloys comprising elements with significant atomic radii differences were investigated using element-specific extended X-ray absorption fine structure (EXAFS) spectroscopy and reverse Monte Carlo (RMC) simulations-based analysis. The results reveal that small Cu/Ni atoms exhibit greater displacements and asymmetric distributions around the face-centered cubic (fcc) lattice positions as compared to larger Au/Pt atoms, while Pd is showing the most pronounced changes in atomic arrangement depending on the alloy composition.

Abstract

In our study, the composition-dependent effects of atomic displacements in Au-Cu-Ni-Pd-Pt based alloys, comprising elements with large differences in atomic radii, are investigated at the atomic scale. Two alloys—the equimolar AuCuNiPdPt and AuCuNiPd—have been characterized using multi-edge extended X-ray absorption fine structure (EXAFS) spectroscopy in conjunction with reverse Monte Carlo (RMC) simulations at room temperature. The statistically-averaged component-dependent pair distribution functions (PDFs), which represent the distribution of atoms around the assumed regular face-centered cubic (fcc) lattice positions, reveal a shift of their peaks to shorter distances and a pronounced asymmetry in atomic distribution only for atoms with small radii (Cu/Ni). The analysis demonstrates that small atoms (Cu/Ni) are significantly more displaced from the expected lattice positions as compared to large atoms (Au/Pt). Furthermore, there are indications of preferential next-neighbour bonding that changes depending on the alloy composition. The most pronounced changes in the PDFs were found solely for Pd. With this study, we provide a basis for a deeper understanding of the composition-dependent atomic arrangement in chemically complex solid solutions.

References

[1]

Yeh, J. W. Recent progress in high-entropy alloys. Ann. Chimie. Sci. Matériaux 2006, 31, 633–648.

[2]

Ye, Y. F.; Zhang, Y. H.; He, Q. F.; Zhuang, Y.; Wang, S.; Shi, S. Q.; Hu, A.; Fan, J.; Yang, Y. Atomic-scale distorted lattice in chemically disordered equimolar complex alloys. Acta Mater. 2018, 150, 182–194.

[3]

Sohn, S. S.; Kwiatkowski da Silva, A.; Ikeda, Y.; Körmann, F.; Lu, W. J.; Choi, W. S.; Gault, B.; Ponge, D.; Neugebauer, J.; Raabe, D. Ultrastrong medium-entropy single-phase alloys designed via severe lattice distortion. Adv. Mater. 2019, 31, 1807142.

[4]

George, E. P.; Curtin, W. A.; Tasan, C. C. High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Mater. 2020, 188, 435–474.

[5]

Gorr, B.; Müller, F.; Azim, M.; Christ, H. J.; Müller, T.; Chen, H.; Kauffmann, A.; Heilmaier, M. High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid. Met. 2017, 88, 339–349.

[6]

Cui, Y.; Shen, J. Q.; Manladan, S. M.; Geng, K. P.; Hu, S. S. Wear resistance of FeCoCrNiMnAl x high-entropy alloy coatings at high temperature. Appl. Surf. Sci. 2020, 512, 145736.

[7]

Jia, Z.; Nomoto, K.; Wang, Q.; Kong, C.; Sun, L. G.; Zhang, L. C.; Liang, S. X.; Lu, J.; Kruzic, J. J. A self-supported high-entropy metallic glass with a nanosponge architecture for efficient hydrogen evolution under alkaline and acidic conditions. Adv. Funct. Mater. 2021, 31, 2101586.

[8]

Yao, R. Q.; Zhou, Y. T.; Shi, H.; Wan, W. B.; Zhang, Q. H.; Gu, L.; Zhu, Y. F.; Wen, Z.; Lang, X. Y.; Jiang, Q. Nanoporous surface high-entropy alloys as highly efficient multisite electrocatalysts for nonacidic hydrogen evolution reaction. Adv. Funct. Mater. 2021, 31, 2009613.

[9]

Jiang, B. B.; Yu, Y.; Cui, J.; Liu, X. X.; Xie, L.; Liao, J. C.; Zhang, Q. H.; Huang, Y.; Ning, S. C.; Jia, B. H. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 2021, 371, 830–834.

[10]

Wang, X. Y.; Yao, H. H.; Zhang, Z. W.; Li, X. F.; Chen, C.; Yin, L.; Hu, K. N.; Yan, Y. R.; Li, Z.; Yu, B. et al. Enhanced thermoelectric performance in high entropy alloys Sn0.25Pb0.25Mn0.25Ge0.25Te. ACS Appl. Mater. Interfaces 2021, 13, 18638–18647.

[11]

Yang, T. N.; Lu, C. Y.; Velisa, G.; Jin, K.; Xiu, P.; Zhang, Y. W.; Bei, H. B.; Wang, L. M. Influence of irradiation temperature on void swelling in NiCoFeCrMn and NiCoFeCrPd. Scr. Mater. 2019, 158, 57–61.

[12]

Wang, P. W.; Li, M. F.; Malomo, B.; Yang, L. Lattice distortion and re-distortion affecting irradiation tolerance in high entropy alloys. Nanoscale 2023, 15, 16447–16457.

[13]

Pickering, E. J.; Carruthers, A. W.; Barron, P. J.; Middleburgh, S. C.; Armstrong, D. E. J.; Gandy, A. S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98.

[14]

Chen, B.; Li, S. Z.; Ding, J.; Ding, X. D.; Sun, J.; Ma, E. Correlating dislocation mobility with local lattice distortion in refractory multi-principal element alloys. Scr. Mater. 2023, 222, 115048.

[15]

Yang, D. D.; Chen, B.; Li, S. Z.; Ding, X. D.; Sun, J. Effect of local lattice distortion on the core structure of edge dislocation in NbMoTaW multi-principal element alloys and the subsystems. Mater. Sci. Eng.: A 2022, 855, 143869.

[16]

Fang, Q. H.; Lu, W. Z.; Chen, Y.; Feng, H.; Liaw, P. K.; Li, J. Hierarchical multiscale crystal plasticity framework for plasticity and strain hardening of multi-principal element alloys. J. Mech. Phys. Solids 2022, 169, 105067.

[17]

Nutor, R. K.; Cao, Q. P.; Wang, X. D.; Zhang, D. X.; Fang, Y. Z.; Zhang, Y.; Jiang, J. Z. Phase selection, lattice distortions, and mechanical properties in high-entropy alloys. Adv. Eng. Mater. 2020, 22, 2000466.

[18]

Simon, A. Intermetallic compounds and the use of atomic radii in their description. Angew. Chem., Int. Ed. 1983, 22, 95–113.

[19]

Miracle, D. B.; Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511.

[20]

Varvenne, C.; Luque, A.; Curtin, W. A. Theory of strengthening in fcc high entropy alloys. Acta Mater. 2016, 118, 164–176.

[21]

Freudenberger, J.; Rafaja, D.; Geissler, D.; Giebeler, L.; Ullrich, C.; Kauffmann, A.; Heilmaier, M.; Nielsch, K. Face centred cubic multi-component equiatomic solid solutions in the Au-Cu-Ni-Pd-Pt system. Metals 2017, 7, 135.

[22]

Thiel, F.; Utt, D.; Kauffmann, A.; Nielsch, K.; Albe, K.; Heilmaier, M.; Freudenberger, J. Breakdown of varvenne scaling in (AuNiPdPt)1− x Cu x high-entropy alloys. Scr. Mater. 2020, 181, 15–18.

[23]

Freudenberger, J.; Thiel, F.; Utt, D.; Albe, K.; Kauffmann, A.; Seils, S.; Heilmaier, M. Solid solution strengthening in medium- to high-entropy alloys. Mater. Sci. Eng.: A 2022, 861, 144271.

[24]

Drescher, S.; Seils, S.; Boll, T.; Kauffmann, A.; Heilmaier, M.; Freudenberger, J. Solid solution strengthening in single-phase Au-Cu-Ni-Pd-Pt-based high-entropy alloys. J. Alloys Compd. 2024, 1002, 175273.

[25]

Ice, G.; Sparks, C.; Robertson, J. L.; Epperson, J. E.; Jiang, X. G. Static atomic displacements in crystalline solid solution alloys. MRS Online Proc. Libr. 1996, 437, 181–186.

[26]

Kim, G.; Diao, H. Y.; Lee, C.; Samaei, A. T.; Phan, T.; de Jong, M.; An, K.; Ma, D.; Liaw, P. K.; Chen, W. First-principles and machine learning predictions of elasticity in severely lattice-distorted high-entropy alloys with experimental validation. Acta Mater. 2019, 181, 124–138.

[27]

Nöhring, W. G.; Curtin, W. A. Design using randomness: A new dimension for metallurgy. Scr. Mater. 2020, 187, 210–215.

[28]

Aidhy, D. S. Chemical randomness, lattice distortion and the wide distributions in the atomic level properties in high entropy alloys. Comput. Mater. Sci. 2024, 237, 112912.

[29]

Okamoto, N. L.; Yuge, K.; Tanaka, K.; Inui, H.; George, E. P. Atomic displacement in the CrMnFeCoNi high-entropy alloy—A scaling factor to predict solid solution strengthening. AIP Adv. 2016, 6, 125008.

[30]

Thiel, F.; Geissler, D.; Nielsch, K.; Kauffmann, A.; Seils, S.; Heilmaier, M.; Utt, D.; Albe, K.; Motylenko, M.; Rafaja, D. et al. Origins of strength and plasticity in the precious metal based high-entropy alloy AuCuNiPdPt. Acta Mater. 2020, 185, 400–411.

[31]

Renaud, G.; Motta, N.; Lançon, F.; Belakhovsky, M. Topological short-range disorder in Au1− x Ni x solid solutions: An extended X-ray-absorption fine-structure spectroscopy and computer-simulation study. Phys. Rev. B 1988, 38, 5944–5964.

[32]

Wu, T. B.; Cohen, J. B. Clustering in a Au-Ni alloy above the miscibility gap. Acta Metall. 1983, 31, 1929–1935.

[33]

Lu, K. Q.; Wu, Z. H.; Dong, J.; Chen, X. P.; Fang, Z. Z. The atomic near neighboring structure of Cu1− x Au x solid solution studied with EXAFS. Jpn. J. Appl. Phys. 1993, 32, 631–633.

[34]

Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Luo, C.; Chen, K.; Radu, F.; Weschke, E.; Reinholz, U.; Buzanich, A. G.; Yusenko, K. V. Al-driven peculiarities of local coordination and magnetic properties in single-phase Al x -CrFeCoNi high-entropy alloys. Nano Res. 2022, 15, 4845–4858.

[35]

Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Abrudan, R.; Reinholz, U.; Buzanich, A. G.; Schneider, M.; Laplanche, G.; Yusenko, K. V. Inner relaxations in equiatomic single-phase high-entropy cantor alloy. J. Alloys Compd. 2022, 920, 165999.

[36]

Smekhova, A.; Kuzmin, A.; Siemensmeyer, K.; Luo, C.; Taylor, J.; Thakur, S.; Radu, F.; Weschke, E.; Buzanich, A. G.; Xiao, B. et al. Local structure and magnetic properties of a nanocrystalline Mn-rich Cantor alloy thin film down to the atomic scale. Nano Res. 2023, 16, 5626–5639.

[37]

Smekhova, A.; Gaertner, D.; Kuzmin, A.; Buzanich, A. G.; Schuck, G.; Zizak, I.; Wilde, G.; Yusenko, K. V.; Divinski, S. Anomalies in the short-range local environment and atomic diffusion in single crystalline equiatomic CrMnFeCoNi high-entropy alloy. Nano Res. 2024, 17, 5336–5348.

[38]

Schell, N.; King, A.; Beckmann, F.; Fischer, T.; Müller, M.; Schreyer, A. The high energy materials science beamline (HEMS) at PETRA III. Mater. Sci. Forum 2013, 772, 57–61.

[39]

Rietveld, H. M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71.

[40]
Lutterotti, L.; Matthies, S.; Wenk, H. R. MAUD (Material Analysis Using Diffraction): A user friendly JAVA program for Rietveld texture analysis and more. In Proceeding of the Twelfth International Conference on Textures of Materials (ICOTOM-12); National Research Press: Montreal, 1999, pp 1599.
[41]

Welter, E.; Chernikov, R.; Herrmann, M.; Nemausat, R. A beamline for bulk sample X-ray absorption spectroscopy at the high brilliance storage ring PETRA III. AIP Conf. Proc. 2019, 2054, 040002.

[42]

Kuzmin, A.; Chaboy, J. EXAFS and XANES analysis of oxides at the nanoscale. IUCrJ 2014, 1, 571–589.

[43]
Kalinko, A. XAESA [Online]. 2023. https://gitlab.desy.de/aleksandr.kalinko/xaesa (accessed Sep 30, 2023).
[44]

Timoshenko, J.; Kuzmin, A.; Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys.: Condens. Matter. 2014, 26, 055401.

[45]

Timoshenko, J.; Kuzmin, A.; Purans, J. Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra. Comput. Phys. Commun. 2012, 183, 1237–1245.

[46]

Timoshenko, J.; Kuzmin, A. Wavelet data analysis of EXAFS spectra. Comput. Phys. Commun. 2009, 180, 920–925.

[47]

Ankudinov, A. L.; Ravel, B.; Rehr, J. J.; Conradson, S. D. Real-space multiple-scattering calculation and interpretation of X-ray-absorption near-edge structure. Phys. Rev. B 1998, 58, 7565–7576.

[48]

Rehr, J. J.; Albers, R. C. Theoretical approaches to X-ray absorption fine structure. Rev. Mod. Phys. 2000, 72, 621–654.

[49]

Dalba, G.; Fornasini, P. EXAFS Debye-Waller factor and thermal vibrations of crystals. J. Synchrotron Radiat. 1997, 4, 243–255.

[50]
Wolfram Research. ElementData [Online]. Wolfram Language function. https://reference.wolfram.com/language/ref/ElementData.html (accessed Feb 1, 2024).
[51]

Takeuchi, A.; Yubuta, K.; Wada, T. Critically percolated states in high-entropy alloys with exact equi-atomicity. Mater. Trans. 2019, 60, 330–337.

[52]
The Landolt-Börnstein database [Online]. 2023. http://materials.springer.com (accessed Feb 1, 2024).
[53]

Oh, H. S.; Odbadrakh, K.; Ikeda, Y.; Mu, S.; Körmann, F.; Sun, C. J.; Ahn, H. S.; Yoon, K. N.; Ma, D. C.; Tasan, C. C. et al. Element-resolved local lattice distortion in complex concentrated alloys: An observable signature of electronic effects. Acta Mater. 2021, 216, 117135.

[54]

Nag, S.; Curtin, W. A. Effect of solute–solute interactions on strengthening of random alloys from dilute to high entropy alloys. Acta Mater. 2020, 200, 659–673.

[55]

Drescher, S.; Seils, S.; Pohl, D.; Rellinghaus, B.; Kauffmann, A.; Heilmaier, M.; Freudenberger, J. Softening by spinodal decomposition in Au-Cu-Ni-Pd-Pt high-entropy alloys. Mater. Sci. Eng.: A 2023, 887, 145772.

[56]

Nag, S.; Curtin, W. A. Solute-strengthening in metal alloys with short-range order. Acta Mater. 2024, 263, 119472.

Nano Research
Article number: 94907122
Cite this article:
Drescher S, Kuzmin A, Welter E, et al. Component-dependent lattice distortions and atomic scale insights in multi-component Au-Cu-Ni-Pd-Pt based alloys. Nano Research, 2025, 18(2): 94907122. https://doi.org/10.26599/NR.2025.94907122

360

Views

73

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 21 August 2024
Revised: 18 October 2024
Accepted: 07 November 2024
Published: 02 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return