The quantum anomalous Hall (QAH) effect in two-dimensional (2D) topological materials has attracted widespread attention due to its potential for dissipationless chiral edge transport without an external magnetic field, which is highly promising for low-power electronic applications. However, identifying materials that exhibit these properties remains particularly challenging, as only a limited number of such materials are known, raising the intriguing question of whether it is possible to induce the QAH effect in materials with ordinary properties through structural modifications. In this work, we grow an unreported 2D titanium selenide (Ti3Se4) on a Cu(111) substrate using molecular beam epitaxy. Low-energy electron diffraction and scanning tunneling microscopy characterizations reveal a
Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.
Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. C. Large-Gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.
Wang, C. X.; Zhu, X. G.; Nilsson, L.; Wen, J.; Wang, G.; Shan, X. Y.; Zhang, Q.; Zhang, S. L.; Jia, J. F.; Xue, Q. K. In situ Raman spectroscopy of topological insulator Bi2Te3films with varying thickness. Nano Res. 2013, 6, 688–692.
Yu, R.; Zhang, W.; Zhang, H. J.; Zhang, S. C.; Dai, X.; Fang, Z. Quantized anomalous hall effect in magnetic topological insulators. Science 2010, 329, 61–64.
Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.
Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 2010, 82, 241306.
Wang, J.; Li, H. D.; Chang, C. Z.; He, K.; Lee, J. S.; Lu, H. Z.; Sun, Y.; Ma, X. C.; Samarth, N.; Shen, S. Q. et al. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res. 2012, 5, 739–746.
Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 2013, 340, 167–170.
Chen, Y. L.; Chu, J. H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H. H.; Qi, X. L.; Mo, S. K.; Moore, R. G.; Lu, D. H. et al. Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 2010, 329, 659–662.
Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424.
Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.
Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Quantum anomalous hall effect in Hg1– y Mn y Te quantum wells. Phys. Rev. Lett. 2008, 101, 146802.
Yue, C. M.; Xu, Y. F.; Song, Z. D.; Weng, H. M.; Lu, Y. M.; Fang, C.; Dai, X. Symmetry-enforced chiral hinge states and surface quantum anomalous hall effect in the magnetic axion insulator Bi2– x Sm x Se3. Nat. Phys. 2019, 15, 577–581.
Checkelsky, J. G.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Kozuka, Y.; Falson, J.; Kawasaki, M.; Tokura, Y. Trajectory of the anomalous hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 2014, 10, 731–736.
Chang, C. Z.; Zhao, W. W.; Kim, D. Y.; Zhang, H. J.; Assaf, B. A.; Heiman, D.; Zhang, S. C.; Liu, C. X.; Chan, M. H. W.; Moodera, J. S. High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nat. Mater. 2015, 14, 473–477.
Wang, J.; Lian, B.; Zhang, H. J.; Xu, Y.; Zhang, S. C. Quantum anomalous hall effect with higher plateaus. Phys. Rev. Lett. 2013, 111, 136801.
Xiao, D.; Jiang, J.; Shin, J. H.; Wang, W. B.; Wang, F.; Zhao, Y. F.; Liu, C. X.; Wu, W. D.; Chan, M. H. W.; Samarth, N. et al. Realization of the axion insulator state in quantum anomalous hall sandwich heterostructures. Phys. Rev. Lett. 2018, 120, 056801.
Liu, W. Q.; West, D.; He, L.; Xu, Y. B.; Liu, J.; Wang, K. J.; Wang, Y.; van der Laan, G.; Zhang, R.; Zhang, S. B. et al. Atomic-scale magnetism of Cr-doped Bi2Se3 thin film topological insulators. Acs Nano 2015, 9, 10237–10243.
Nan, J. L.; Liu, Y. Q.; Chao, D. Y.; Fang, Y. X.; Dong, S. J. Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 6544–6551.
Geisenhof, F. R.; Winterer, F.; Seiler, A. M.; Lenz, J.; Xu, T. Y.; Zhang, F.; Weitz, R. T. Quantum anomalous hall octet driven by orbital magnetism in bilayer graphene. Nature 2021, 598, 53–58.
Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 2020, 367, 900–903.
Polshyn, H.; Zhu, J.; Kumar, M. A.; Zhang, Y.; Yang, F.; Tschirhart, C. L.; Serlin, M.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 2020, 588, 66–70.
Chen, G. R.; Sharpe, A. L.; Fox, E. J.; Zhang, Y. H.; Wang, S. X.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Tunable correlated Chern insulator and ferromagnetism in a moire superlattice. Nature 2020, 579, 56–61.
Li, T. X.; Jiang, S. W.; Shen, B. W.; Zhang, Y.; Li, L. Z.; Tao, Z.; Devakul, T.; Watanabe, K.; Taniguchi, T.; Fu, L. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 2021, 600, 641–646.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.
Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.
Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2010, 22, 022201.
Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.
Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.
Gao, L.; Sun, J. T.; Lu, J. C.; Li, H.; Qian, K.; Zhang, S.; Zhang, Y. Y.; Qian, T.; Ding, H.; Lin, X. et al. Epitaxial growth of honeycomb monolayer CuSe with dirac nodal line fermions. Adv. Mater. 2018, 30, 1707055.
Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of Cu x TiSe2 in a wide range (0.04 < x < 0.8) of copper concentration. J. Chem. Phys. 2016, 144, 074702.
Song, Z. P.; Yi, J. X.; Qi, J.; Zheng, Q.; Zhu, Z. L.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z. Y.; Zhang, R. Z. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 2022, 15, 4687–4692.