PDF (12.6 MB)
Collect
Submit Manuscript
Show Outline
Figures (4)

Research Article | Open Access

Exploring potential for semiconductor to quantum anomalous Hall insulator transitions via substrate-induced structural modifications in Ti3Se4 monolayers

Zhipeng Song1,§Haixia Cheng2,6,§Yun Cao1Qi Zheng1Yurou Guan2Chen Liu3Jierui Huang1Li Huang1Jiaou Wang3Hui Guo1Guangchao Chen1Chengmin Shen1Shixuan Du1,4,5Hongliang Lu1,5 ()Wei Ji2 ()Xiao Lin1,5 ()Hong-Jun Gao1,4,5
University of Chinese Academy of Sciences and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Beijing Key Laboratory of Optoelectronic Functional Materials & Micro-Nano Devices, School of Physics, Renmin University of China, Beijing 100872, China
Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Material Digital R & D Center, China Iron & Steel Research Institute Group, Beijing 100081, China

§ Zhipeng Song and Haixia Cheng contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Semiconductor materials hold the potential to transform into the quantum anomalous Hall (QAH) materials by adjusting their lattice structure.

Abstract

The quantum anomalous Hall (QAH) effect in two-dimensional (2D) topological materials has attracted widespread attention due to its potential for dissipationless chiral edge transport without an external magnetic field, which is highly promising for low-power electronic applications. However, identifying materials that exhibit these properties remains particularly challenging, as only a limited number of such materials are known, raising the intriguing question of whether it is possible to induce the QAH effect in materials with ordinary properties through structural modifications. In this work, we grow an unreported 2D titanium selenide (Ti3Se4) on a Cu(111) substrate using molecular beam epitaxy. Low-energy electron diffraction and scanning tunneling microscopy characterizations reveal a 7×7 brick-like structure. First-principles calculations and X-ray photoelectron spectroscopy measurements confirm its composition to be Ti3Se4. Our calculations further demonstrate that monolayer Ti3Se4, in its grown form on Cu(111), has the potential to host the QAH effect. Interestingly, when we examine its freestanding form, the monolayer transitions from a QAH insulator candidate into a conventional semiconductor, despite only minor differences in their atomic structures. This transition enlightens us that subtle lattice adjustments can induce a transition from semiconductor to QAH properties in freestanding Ti3Se4. This discovery provides a potential route to engineering practical materials that may exhibit the QAH effect.

Electronic Supplementary Material

Download File(s)
7123_ESM.pdf (915 KB)

References

[1]

Hasan, M. Z.; Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045–3067.

[2]

Xu, Y.; Yan, B. H.; Zhang, H. J.; Wang, J.; Xu, G.; Tang, P. Z.; Duan, W. H.; Zhang, S. C. Large-Gap quantum spin hall insulators in tin films. Phys. Rev. Lett. 2013, 111, 136804.

[3]

Wang, C. X.; Zhu, X. G.; Nilsson, L.; Wen, J.; Wang, G.; Shan, X. Y.; Zhang, Q.; Zhang, S. L.; Jia, J. F.; Xue, Q. K. In situ Raman spectroscopy of topological insulator Bi2Te3films with varying thickness. Nano Res. 2013, 6, 688–692.

[4]

Yu, R.; Zhang, W.; Zhang, H. J.; Zhang, S. C.; Dai, X.; Fang, Z. Quantized anomalous hall effect in magnetic topological insulators. Science 2010, 329, 61–64.

[5]

Fu, L.; Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 2007, 76, 045302.

[6]

Ren, Z.; Taskin, A. A.; Sasaki, S.; Segawa, K.; Ando, Y. Large bulk resistivity and surface quantum oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 2010, 82, 241306.

[7]

Wang, J.; Li, H. D.; Chang, C. Z.; He, K.; Lee, J. S.; Lu, H. Z.; Sun, Y.; Ma, X. C.; Samarth, N.; Shen, S. Q. et al. Anomalous anisotropic magnetoresistance in topological insulator films. Nano Res. 2012, 5, 739–746.

[8]

Chang, C. Z.; Zhang, J. S.; Feng, X.; Shen, J.; Zhang, Z. C.; Guo, M. H.; Li, K.; Ou, Y. B.; Wei, P.; Wang, L. L. et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 2013, 340, 167–170.

[9]

Chen, Y. L.; Chu, J. H.; Analytis, J. G.; Liu, Z. K.; Igarashi, K.; Kuo, H. H.; Qi, X. L.; Mo, S. K.; Moore, R. G.; Lu, D. H. et al. Massive dirac fermion on the surface of a magnetically doped topological insulator. Science 2010, 329, 659–662.

[10]

Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424.

[11]

Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.

[12]

Liu, C. X.; Qi, X. L.; Dai, X.; Fang, Z.; Zhang, S. C. Quantum anomalous hall effect in Hg1– y Mn y Te quantum wells. Phys. Rev. Lett. 2008, 101, 146802.

[13]

Yue, C. M.; Xu, Y. F.; Song, Z. D.; Weng, H. M.; Lu, Y. M.; Fang, C.; Dai, X. Symmetry-enforced chiral hinge states and surface quantum anomalous hall effect in the magnetic axion insulator Bi2– x Sm x Se3. Nat. Phys. 2019, 15, 577–581.

[14]

Checkelsky, J. G.; Yoshimi, R.; Tsukazaki, A.; Takahashi, K. S.; Kozuka, Y.; Falson, J.; Kawasaki, M.; Tokura, Y. Trajectory of the anomalous hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 2014, 10, 731–736.

[15]

Chang, C. Z.; Zhao, W. W.; Kim, D. Y.; Zhang, H. J.; Assaf, B. A.; Heiman, D.; Zhang, S. C.; Liu, C. X.; Chan, M. H. W.; Moodera, J. S. High-precision realization of robust quantum anomalous hall state in a hard ferromagnetic topological insulator. Nat. Mater. 2015, 14, 473–477.

[16]

Wang, J.; Lian, B.; Zhang, H. J.; Xu, Y.; Zhang, S. C. Quantum anomalous hall effect with higher plateaus. Phys. Rev. Lett. 2013, 111, 136801.

[17]

Xiao, D.; Jiang, J.; Shin, J. H.; Wang, W. B.; Wang, F.; Zhao, Y. F.; Liu, C. X.; Wu, W. D.; Chan, M. H. W.; Samarth, N. et al. Realization of the axion insulator state in quantum anomalous hall sandwich heterostructures. Phys. Rev. Lett. 2018, 120, 056801.

[18]

Liu, W. Q.; West, D.; He, L.; Xu, Y. B.; Liu, J.; Wang, K. J.; Wang, Y.; van der Laan, G.; Zhang, R.; Zhang, S. B. et al. Atomic-scale magnetism of Cr-doped Bi2Se3 thin film topological insulators. Acs Nano 2015, 9, 10237–10243.

[19]

Nan, J. L.; Liu, Y. Q.; Chao, D. Y.; Fang, Y. X.; Dong, S. J. Crystal defect engineering of Bi2Te3 nanosheets by Ce doping for efficient electrocatalytic nitrogen reduction. Nano Res. 2023, 16, 6544–6551.

[20]

Geisenhof, F. R.; Winterer, F.; Seiler, A. M.; Lenz, J.; Xu, T. Y.; Zhang, F.; Weitz, R. T. Quantum anomalous hall octet driven by orbital magnetism in bilayer graphene. Nature 2021, 598, 53–58.

[21]

Serlin, M.; Tschirhart, C. L.; Polshyn, H.; Zhang, Y.; Zhu, J.; Watanabe, K.; Taniguchi, T.; Balents, L.; Young, A. F. Intrinsic quantized anomalous hall effect in a moiré heterostructure. Science 2020, 367, 900–903.

[22]

Polshyn, H.; Zhu, J.; Kumar, M. A.; Zhang, Y.; Yang, F.; Tschirhart, C. L.; Serlin, M.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H. et al. Electrical switching of magnetic order in an orbital Chern insulator. Nature 2020, 588, 66–70.

[23]

Chen, G. R.; Sharpe, A. L.; Fox, E. J.; Zhang, Y. H.; Wang, S. X.; Jiang, L. L.; Lyu, B.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Tunable correlated Chern insulator and ferromagnetism in a moire superlattice. Nature 2020, 579, 56–61.

[24]

Li, T. X.; Jiang, S. W.; Shen, B. W.; Zhang, Y.; Li, L. Z.; Tao, Z.; Devakul, T.; Watanabe, K.; Taniguchi, T.; Fu, L. et al. Quantum anomalous hall effect from intertwined moiré bands. Nature 2021, 600, 641–646.

[25]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[26]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[27]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[28]

Kresse, G.; Furthmüller, J. Efficiency of ab- initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[29]

Klimeš, J.; Bowler, D. R.; Michaelides, A. Chemical accuracy for the van der Waals density functional. J. Phys.: Condens. Matter 2010, 22, 022201.

[30]

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

[31]

Klimeš, J.; Bowler, D. R.; Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 2011, 83, 195131.

[32]

Gao, L.; Sun, J. T.; Lu, J. C.; Li, H.; Qian, K.; Zhang, S.; Zhang, Y. Y.; Qian, T.; Ding, H.; Lin, X. et al. Epitaxial growth of honeycomb monolayer CuSe with dirac nodal line fermions. Adv. Mater. 2018, 30, 1707055.

[33]

Shkvarin, A. S.; Yarmoshenko, Y. M.; Yablonskikh, M. V.; Merentsov, A. I.; Shkvarina, E. G.; Titov, A. A.; Zhukov, Y. M.; Titov, A. N. The electronic structure formation of Cu x TiSe2 in a wide range (0.04 < x < 0.8) of copper concentration. J. Chem. Phys. 2016, 144, 074702.

[34]

Song, Z. P.; Yi, J. X.; Qi, J.; Zheng, Q.; Zhu, Z. L.; Tao, L.; Cao, Y.; Li, Y.; Gao, Z. Y.; Zhang, R. Z. et al. Line defects in monolayer TiSe2 with adsorption of Pt atoms potentially enable excellent catalytic activity. Nano Res. 2022, 15, 4687–4692.

[35]
Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D. Handbook of X-ray photoelectron spectroscopy; Physical Electronics: Eden Prairie, MN, USA, 1995 .
Nano Research
Article number: 94907123
Cite this article:
Song Z, Cheng H, Cao Y, et al. Exploring potential for semiconductor to quantum anomalous Hall insulator transitions via substrate-induced structural modifications in Ti3Se4 monolayers. Nano Research, 2025, 18(3): 94907123. https://doi.org/10.26599/NR.2025.94907123
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return