PDF (11.1 MB)
Collect
Submit Manuscript
Research Article | Open Access

Enhancing adhesive performance of polyvinyl alcohol with sub-nanoscale polyoxotungstate clusters under extreme conditions

Pengcheng Cui1,2,§Qiang Yu1,2,§Jiadong Chen1,2,§Kun Chen1,2,3 ()Panchao Yin1,2
South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou 510640, China
Guangdong Provincial Key Laboratory of Functional and Intelligent Hybrid Materials and Devices, South China University of Technology, Guangzhou 510641, China
Guangdong Provincial Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China

§ Pengcheng Cui, Qiang Yu, and Jiadong Chen contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
Sub-nanoscale Keggin-type polyoxotungstate clusters (POTs), especially those carrying four negative charges, substantially enhance the adhesion performance of polyvinyl alcohol (PVA). The POT-PVA nanocomposites exhibit superior adhesion to hydrophilic surfaces and withstand extreme temperatures from −196 to 100 °C, offering a promising pathway for developing eco-friendly, versatile, and durable water-based adhesives for a wide range of applications.

Abstract

Innovative advancements in the development of high-performance, eco-friendly adhesives are critical for meeting the demands of diverse applications in various industries. This study reports a significant leap in adhesive technology by enhancing the interfacial toughness and versatility of polyvinyl alcohol (PVA) through complexation with 1-nm Keggin-type polyoxotungstate clusters (POTs) carrying specific negative charges. The POT-PVA nanocomposites exhibit superior adhesion to hydrophilic surfaces, attributed to their high crosslinking densities and exceptional fracture energies surpassing 6.23 kJ·m−2. These adhesives, endowed with high flexibility and a wealth of surface hydroxyl groups, are uniquely suited for application on a wide array of substrates including glass, steel, aluminum, and beyond, demonstrating their broad applicability. Specifically, the reduction in PVA crystallinity due to the chaotropic effect of POTs, which significantly enhances polymer chain dynamics. This enhancement confers robust adhesive properties at extreme temperatures, from the cryogenic −196 °C to the high-temperature threshold of 100 °C. By capitalizing on the chaotropic effects of charged POTs, the study achieves a notable enhancement in the adhesive capabilities of the POT-PVA nanocomposites, paving the way for the development of for eco-friendly and cost-effective adhesives engineered to withstand extreme conditions.

Electronic Supplementary Material

Download File(s)
7126_ESM.pdf (2 MB)

References

[1]

Li, M.; Mao, A. R.; Guan, Q. W.; Saiz, E. Nature-inspired adhesive systems. Chem. Soc. Rev. 2024, 53, 8240–8305.

[2]

Li, Y.; Fu, R. Z.; Duan, Z. G.; Zhu, C. H.; Fan, D. D. Construction of multifunctional hydrogel based on the tannic acid-metal coating decorated MoS2 dual nanozyme for bacteria-infected wound healing. Bioact. Mater. 2022, 9, 461–474.

[3]

Gan, Q. M.; Qin, N.; Guo, H.; Zhang, F. C.; Yuan, H. M.; Luo, W.; Li, Z. Q.; Li, Y. Z.; Lu, L.; Xu, Z. H. et al. Consolidating the vulnerable interphase of Ni-rich layered cathode by multifunctional water-based binder. ACS Energy Lett. 2024, 9, 1562–1571.

[4]

Zhang, L.; Wang, S. H.; Wang, Z. M.; Liu, Z. Y.; Xu, X.; Liu, H.; Wang, D.; Tian, Z. Q. Temperature-mediated phase separation enables strong yet reversible mechanical and adhesive hydrogels. ACS Nano 2023, 17, 13948–13960.

[5]

Freedman, B. R.; Uzun, O.; Luna, N. M. M.; Rock, A.; Clifford, C.; Stoler, E.; Östlund-Sholars, G.; Johnson, C.; Mooney, D. J. Degradable and removable tough adhesive hydrogels. Adv. Mater. 2021, 33, 2008553.

[6]

Lo Presti, M.; Rizzo, G.; Farinola, G. M.; Omenetto, F. G. Bioinspired biomaterial composite for all-water-based high-performance adhesives. Adv. Sci. 2021, 8, 2004786.

[7]

Sierra-Romero, A.; Novakovic, K.; Geoghegan, M. A reversible water-based electrostatic adhesive. Angew. Chem., Int. Ed. 2024, 63, e202310750.

[8]

Han, L.; Lu, X.; Liu, K. Z.; Wang, K. F.; Fang, L. M.; Weng, L. T.; Zhang, H. P.; Tang, Y. H.; Ren, F. Z.; Zhao, C. C. et al. Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 2017, 11, 2561–2574.

[9]

Gao, Y.; Wu, K. L.; Suo, Z. G. Photodetachable adhesion. Adv. Mater. 2019, 31, 1806948.

[10]

Kesik, H. I.; Akyildiz, M. H. Effect of the heat treatment on the adhesion strength of water based wood varnishe. Wood Res. 2015, 60, 987–994.

[11]

Shao, H.; Bachus, K. N.; Stewart, R. J. A water-borne adhesive modeled after the sandcastle glue of P. Californica. Macromol. Biosci. 2009, 9, 464–471.

[12]

Li, X.; Wang, Z. L.; Li, W.; Sun, J. Q. Superstrong water-based supramolecular adhesives derived from poly(vinyl alcohol)/poly(acrylic acid) complexes. ACS Mater. Lett. 2021, 3, 875–882.

[13]

Ferreira, E. S.; Lanzoni, E. M.; Costa, C. A. R.; Deneke, C.; Bernardes, J. S.; Galembeck, F. Adhesive and reinforcing properties of soluble cellulose: A repulpable adhesive for wet and dry cellulosic substrates. ACS Appl. Mater. Interfaces 2015, 7, 18750–18758.

[14]

Kim, K.; Shin, M.; Koh, M. Y.; Ryu, J. H.; Lee, M. S.; Hong, S.; Lee, H. TAPE: A medical adhesive inspired by a ubiquitous compound in plants. Adv. Funct. Mater. 2015, 25, 2402–2410.

[15]

Wang, Y.; Jeon, E. J.; Lee, J.; Hwang, H.; Cho, S. W.; Lee, H. A phenol-amine superglue inspired by insect sclerotization process. Adv. Mater. 2020, 32, 2002118.

[16]

Podsiadlo, P.; Kaushik, A. K.; Arruda, E. M.; Waas, A. M.; Shim, B. S.; Xu, J. D.; Nandivada, H.; Pumplin, B. G.; Lahann, J.; Ramamoorthy, A. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 2007, 318, 80–83.

[17]

Zhu, Y.; Bian, R. H.; Yu, Y.; Li, J. J.; Li, C.; Lyu, Y.; Li, X. N.; Luo, J.; Li, J. Z. Aminated alkali lignin nanoparticles enabled formaldehyde-free biomass wood adhesive with high strength, toughness, and mildew resistance. Chem. Eng. J. 2024, 494, 152914.

[18]

Zhao, X. H.; Chen, X. Y.; Yuk, H.; Lin, S. T.; Liu, X. Y.; Parada, G. Soft materials by design: Unconventional polymer networks give extreme properties. Chem. Rev. 2021, 121, 4309–4372.

[19]

Zhao, Y. Y.; Li, W. W.; Jiang, X. F.; Li, F. Q.; Li, X.; Zhang, W.; Jiang, J. S.; Liu, J.; Ariga, K.; Hu, M. Coordination polymer nanoglue: Robust adhesion based on collective lamellar stacking of nanoplates. ACS Nano 2017, 11, 3662–3670.

[20]

Yu, M. F.; Lourie, O.; Dyer, M. J.; Moloni, K.; Kelly, T. F.; Ruoff, R. S. Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 2000, 287, 637–640.

[21]

Zhang, S. M.; Shi, W. X.; Yu, B.; Wang, X. Versatile inorganic subnanometer nanowire adhesive. J. Am. Chem. Soc. 2022, 144, 16389–16394.

[22]

Zhou, X.; Yang, J. S.; Yin, J. F.; Wei, L. F.; Huang, J. Y.; Li, M.; Liu, Y.; Cai, L. K.; Sun, T. L.; Yin, P. C. Dimerization of sub-nanoscale molecular clusters affords broadly tuneable viscoelasticity above the glass transition temperature. Chem. Sci. 2022, 13, 11633–11638.

[23]

Liu, Y.; Cai, L. K.; Ma, L. T.; Li, M.; Yang, J. S.; Chen, K.; Yin, P. C. Modulating polymer dynamics via supramolecular interaction with ultrasmall nanocages for recyclable gas separation membranes with intrinsic microporosity. Nano Lett. 2021, 21, 9021–9029.

[24]

Assaf, K. I.; Nau, W. M. The chaotropic effect as an assembly motif in chemistry. Angew. Chem., Int. Ed. 2018, 57, 13968–13981.

[25]

Buchecker, T.; Schmid, P.; Grillo, I.; Prévost, S.; Drechsler, M.; Diat, O.; Pfitzner, A.; Bauduin, P. Self-assembly of short chain poly- N-isopropylacrylamid induced by superchaotropic Keggin polyoxometalates: From globules to sheets. J. Am. Chem. Soc. 2019, 141, 6890–6899.

[26]

Khlifi, S.; Marrot, J.; Haouas, M.; Shepard, W. E.; Falaise, C.; Cadot, E. Chaotropic effect as an assembly motif to construct supramolecular cyclodextrin-polyoxometalate-based frameworks. J. Am. Chem. Soc. 2022, 144, 4469–4477.

[27]

Rose, S.; Prevoteau, A.; Elzière, P.; Hourdet, D.; Marcellan, A.; Leibler, L. Nanoparticle solutions as adhesives for gels and biological tissues. Nature 2014, 505, 382–385.

[28]

Zhang, W.; Wang, R. X.; Sun, Z. M.; Zhu, X. W.; Zhao, Q.; Zhang, T. F.; Cholewinski, A.; Yang, F.; Zhao, B. X.; Pinnaratip, R. et al. Catechol-functionalized hydrogels: Biomimetic design, adhesion mechanism, and biomedical applications. Chem. Soc. Rev. 2020, 49, 433–464.

[29]

Li, S. J.; Huang, M. Y.; Cheng, W. Y.; Shah, W. A.; Dai, X. S.; Ma, N. N.; Zhao, Q. Y.; Chen, X. N. An unprecedented oxalate-functionalized Ta/W polyoxometalate enabling the self-assembly of a 2D composite for catalytic hydrogenation. Inorg. Chem. Front. 2024, 11, 7324–7332.

[30]

Darabi, M. A.; Khosrozadeh, A.; Wang, Y.; Ashammakhi, N.; Alem, H.; Erdem, A.; Chang, Q.; Xu, K. G.; Liu, Y. Q.; Luo, G. X. et al. An alkaline based method for generating crystalline, strong, and shape memory polyvinyl alcohol biomaterials. Adv. Sci. 2020, 7, 1902740.

[31]

Li, J.; Yuan, S. Q.; Zhu, J. H.; Li, S. Y.; Zhang, W. H. Numerical model and experimental validation for laser sinterable semi-crystalline polymer: Shrinkage and warping. Polymers 2020, 12, 1373.

[32]

Chen, J. D.; Dong, Z. C.; Li, M.; Li, X. P.; Chen, K.; Yin, P. C. Ultra-strong and proton conductive aqua-based adhesives from facile blending of polyvinyl alcohol and tungsten oxide clusters. Adv. Funct. Mater. 2022, 32, 2111892.

[33]

Gao, H.; Virya, A.; Lian, K. Proton conducting H5BW12O40 electrolyte for solid supercapacitors. J. Mater. Chem. A 2015, 3, 21511–21517.

[34]

Yue, S. M.; Yan, L. K.; Su, Z. M.; Li, G. H.; Chen, Y. G.; Ma, J. F.; Xu, H. B.; Zhang, H. J. Crystal and electronic structure of a protonated imidazole diphosphopentamolybdenum(VI) polyoxometalate: (C4H7N2)4[HP2Mo5O23] EH3O E4.5H2O. J. Coord. Chem. 2004, 57, 123–132.

[35]

Yang, J. W.; Bai, R. B.; Chen, B. H.; Suo, Z. G. Hydrogel adhesion: A supramolecular synergy of chemistry, topology, and mechanics. Adv. Funct. Mater. 2020, 30, 1901693.

[36]

Wu, S. W.; Hua, M. T.; Alsaid, Y.; Du, Y. J.; Ma, Y. F.; Zhao, Y. S.; Lo, C. Y.; Wang, C. R.; Wu, D.; Yao, B. W. et al. Poly(vinyl alcohol) hydrogels with broad-range tunable mechanical properties via the Hofmeister effect. Adv. Mater. 2021, 33, 2007829.

[37]

Bhattacharya, A.; Ray, P. Studies on surface tension of poly(vinyl alcohol): Effect of concentration, temperature, and addition of chaotropic agents. J. Appl. Polym. Sci. 2004, 93, 122–130.

[38]

Zou, H. Q.; Meng, X. T.; Zhao, X.; Qiu, J. S. Hofmeister effect-enhanced hydration chemistry of hydrogel for high-efficiency solar-driven interfacial desalination. Adv. Mater. 2023, 35, 2207262.

[39]

Holland, B. J.; Hay, J. N. The thermal degradation of poly(vinyl alcohol). Polymer 2001, 42, 6775–6783.

[40]

Peng, Z.; Kong, L. X. A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym. Degrad. Stab. 2007, 92, 1061–1071.

[41]

Krimm, S.; Liang, C. Y.; Sutherland, G. B. B. M. Infrared spectra of high polymers. V. Polyvinyl alcohol. J. Polym. Sci. 1956, 22, 227–247.

[42]

Zhang, Y.; Zhu, P. C.; Edgren, D. Crosslinking reaction of poly(vinyl alcohol) with glyoxal. J. Polym. Res. 2010, 17, 725–730.

[43]

Zhao, H. L.; Chang, J. M.; Du, L. Effect of hydrogen bonding on the spectroscopic properties of molecular complexes with aromatic rings as acceptors. Comput. Theor. Chem. 2016, 1084, 126–132.

[44]

Shi, Y. K.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Aqueous spinning of robust, self-healable, and crack-resistant hydrogel microfibers enabled by hydrogen bond nanoconfinement. Nat. Commun. 2023, 14, 1370.

[45]

Bagno, A.; Bonchio, M.; Autschbach, J. Computational modeling of polyoxotungstates by relativistic DFT calculations of 183W NMR chemical shifts. Chem.—Eur. J. 2006, 12, 8460–8471.

[46]

Solé-Daura, A.; Poblet, J. M.; Carbó, J. J. Structure-activity relationships for the affinity of chaotropic polyoxometalate anions towards proteins. Chem.—Eur. J. 2020, 26, 5799–5809.

[47]

Baldwin, R. L. How Hofmeister ion interactions affect protein stability. Biophys. J. 1996, 71, 2056–2063.

[48]

Mazzini, V.; Craig, V. S. J. What is the fundamental ion-specific series for anions and cations. Ion specificity in standard partial molar volumes of electrolytes and electrostriction in water and non-aqueous solvents. Chem. Sci. 2017, 8, 7052–7065.

[49]

Zhang, Y. J.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 2005, 127, 14505–14510.

[50]

Zhang, Y. J.; Cremer, P. S. Interactions between macromolecules and ions: The Hofmeister series. Curr. Opin. Chem. Biol. 2006, 10, 658–663.

[51]

Hohenschutz, M.; Grillo, I.; Diat, O.; Bauduin, P. How Nano-ions act like ionic surfactants. Angew. Chem., Int. Ed. 2020, 59, 8084–8088.

[52]

López, X.; Nieto-Draghi, C.; Bo, C.; Avalos, J. B.; Poblet, J. M. Polyoxometalates in solution: Molecular dynamics simulations on the α-PW12O403- Keggin anion in aqueous media. J. Phys. Chem. A 2005, 109, 1216–1222.

Nano Research
Article number: 94907126
Cite this article:
Cui P, Yu Q, Chen J, et al. Enhancing adhesive performance of polyvinyl alcohol with sub-nanoscale polyoxotungstate clusters under extreme conditions. Nano Research, 2025, 18(2): 94907126. https://doi.org/10.26599/NR.2025.94907126
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return