The advancement of digital microfluidics technology has been pivotal in academic research and engineering applications. However, the prevailing limitation is that traditional voltage sources generate an excess of Joule heat, adversely impacting droplet operation. Moreover, the power supply equipment required by digital microfluidics limits its applications. Here, we propose a self-powered microdroplet manipulation (SMDM) via triboelectric nanogenerator (TENG), which presents a capability for splitting and mixing different kinds of droplets. Fundamentally, SMDM is based on the electroosmotic flow principle, thereby enabling droplet splitting in the range of from 2 to 630 μL. Notably, for droplet splitting in the range of from 5 to 60 μL, the TENG only requires a power output ranging from 2.704 to 6.084 mW. In addition, SMDM demonstrates proficiency in droplet mixing, which achieves complete mixing of 10 μL droplets in 60 s and 30 μL droplets in a mere 53 s. Therefore, leveraging the strengths of the TENG, a self-powered microdroplet manipulated system is designed for digital microfluidics. It carries significant advantages over the traditional voltage source, including self-powered, low-Joule heat, increased safety and enhanced portability. This research provides a new solution for portable applications of digital microfluidics.
Nge, P. N.; Rogers, C. I.; Woolley, A. T. Advances in microfluidic materials, functions, integration, and applications. Chem. Rev. 2013, 113, 2550–2583.
Zhu, H. L.; Fohlerová, Z.; Pekárek, J.; Basova, E.; Neužil, P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens. Bioelectron. 2020, 153, 112041.
Wu, Q. R.; Liu, J. F.; Wang, X. H.; Feng, L. Y.; Wu, J. H.; Zhu, X. L.; Wen, W. J.; Gong, X. Q. Organ-on-a-chip: Recent breakthroughs and future prospects. Biomed. Eng. Online 2020, 19, 9.
Knoška, J.; Adriano, L.; Awel, S.; Beyerlein, K. R.; Yefanov, O.; Oberthuer, D.; Peña Murillo, G. E.; Roth, N.; Sarrou, I.; Villanueva-Perez, P. et al. Ultracompact 3D microfluidics for time-resolved structural biology. Nat. Commun. 2020, 11, 657.
Cho, S. K.; Moon, H.; Kim, C. J. Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits. J. Microelectromech. Syst. 2003, 12, 70–80.
Teh, S. Y.; Lin, R.; Hung, L. H.; Lee, A. P. Droplet microfluidics. Lab Chip 2008, 8, 198–220.
Sagar, N.; Bansal, S.; Sen, P. Open-chip droplet splitting in electrowetting. Adv. Mater. Interfaces 2022, 9, 2200240.
Hu, Q. M.; Ren, Y. K.; Liu, W. Y.; Chen, X. M.; Tao, Y.; Jiang, H. Y. Fluid flow and mixing induced by AC continuous electrowetting of liquid metal droplet. Micromachines 2017, 8, 119.
Kichatov, B.; Korshunov, A.; Sudakov, V.; Gubernov, V.; Golubkov, A.; Kiverin, A. Superfast active droplets as micromotors for locomotion of passive droplets and intensification of mixing. ACS Appl. Mater. Interfaces 2021, 13, 38877–38885.
Ahmadi, F.; Samlali, K.; Vo, P. Q. N.; Shih, S. C. C. An integrated droplet-digital microfluidic system for on-demand droplet creation, mixing, incubation, and sorting. Lab Chip 2019, 19, 524–535.
Xi, H. D.; Guo, W.; Leniart, M.; Chong, Z. Z.; Tan, S. H. AC electric field induced droplet deformation in a microfluidic T-junction. Lab Chip 2016, 16, 2982–2986.
Hartmann, J.; Schür, M. T.; Hardt, S. Manipulation and control of droplets on surfaces in a homogeneous electric field. Nat. Commun. 2022, 13, 289.
Li, B.; Vivacqua, V.; Ghadiri, M.; Sun, Z. Q.; Wang, Z. B.; Li, X. Y. Droplet deformation under pulsatile electric fields. Chem. Eng. Res. Des. 2017, 127, 180–188.
Deng, Z. L.; Sun, M. M.; Yu, C. Electrohydrodynamic behaviors of droplet under a uniform direct current electric field. Chin. Phys. B 2020, 29, 034703.
Feng, X. S.; Ren, Y. K.; Jiang, H. Y. Effect of the crossing-structure sequence on mixing performance within three-dimensional micromixers. Biomicrofluidics 2014, 8, 034106.
Frommelt, T.; Kostur, M.; Wenzel-Schäfer, M.; Talkner, P.; Hänggi, P.; Wixforth, A. Microfluidic mixing via acoustically driven chaotic advection. Phys. Rev. Lett. 2008, 100, 034502.
Ryu, K. S.; Shaikh, K.; Goluch, E.; Fan, Z. F.; Liu, C. Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 2004, 4, 608–613.
Cui, K.; Zhao, Z. L.; Ma, L.; Liu, W. B.; Li, D. Y.; Ma, X. H. Effect of time-varying magnetic field on metal droplet profiles. Indian J. Phys. 2020, 94, 969–973.
Collignon, S.; Friend, J.; Yeo, L. Planar microfluidic drop splitting and merging. Lab Chip 2015, 15, 1942–1951.
Mandal, S.; Bandopadhyay, A.; Chakraborty, S. The effect of uniform electric field on the cross-stream migration of a drop in plane Poiseuille flow. J. Fluid Mech. 2016, 809, 726–774.
Jia, Z. Q.; Chang, C. Y.; Hu, S. Y.; Li, J. H.; Ge, M. F.; Dong, W. F.; Ma, H. B. Artificial intelligence-enabled multipurpose smart detection in active-matrix electrowetting-on-dielectric digital microfluidics. Microsyst. Nanoeng. 2024, 10, 139.
Guo, K. L.; Song, Z. R.; Zhou, J. L.; Shen, B.; Yan, B. Y.; Gu, Z.; Wang, H. F. An artificial intelligence-assisted digital microfluidic system for multistate droplet control. Microsyst. Nanoeng. 2024, 10, 138.
Sun, G. J.; Yun, J. H.; Cheon, M. W. Parallel switch configuration for high voltage DC switching to secure PV power system safety. Trans. Electr. Electron. Mater. 2021, 22, 108–113.
Haes Alhelou, H.; Siano, P. Special issue on advances and technologies in high voltage power systems operation, control, protection, and security. Appl. Sci. 2020, 11, 274.
Qiao, M.; Liang, L. F.; Zu, J.; Hou, D. C.; Li, Z. J.; Zhang, B. A review of high-voltage integrated power device for AC/DC switching application. Microelectron. Eng. 2020, 232, 111416.
Yakimov, A. S.; Denisov, I. A.; Bukatin, A. S.; Lukyanenko, K. A.; Belousov, K. I.; Kukhtevich, I. V.; Esimbekova, E. N.; Evstrapov, A. A.; Belobrov, P. I. Droplet microfluidic device for chemoenzymatic sensing. Micromachines 2022, 13, 1146.
Fan, F. R.; Tian, Z. Q.; Lin Wang, Z. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.
Lin, Z. M.; Zhang, B. B.; Guo, H. Y.; Wu, Z. Y.; Zou, H. Y.; Yang, J.; Wang, Z. L. Super-robust and frequency-multiplied triboelectric nanogenerator for efficient harvesting water and wind energy. Nano Energy 2019, 64, 103908.
Li, A. Y.; Zi, Y. L.; Guo, H. Y.; Wang, Z. L.; Fernández, F. M. Triboelectric nanogenerators for sensitive nano-Coulomb molecular mass spectrometry. Nat. Nanotechnol. 2017, 12, 481–487.
Cheng, L.; Xu, Q.; Zheng, Y. B.; Jia, X. F.; Qin, Y. A self-improving triboelectric nanogenerator with improved charge density and increased charge accumulation speed. Nat. Commun. 2018, 9, 3773.
Guo, H. Y.; Chen, J.; Wang, L. F.; Wang, A. C.; Li, Y. F.; An, C. H.; He, J. H.; Hu, C. G.; Hsiao, V. K. S.; Wang, Z. L. A highly efficient triboelectric negative air ion generator. Nat. Sustain. 2020, 4, 147–153.
Yu, J. J.; Wei, X. X.; Guo, Y. C.; Zhang, Z. W.; Rui, P. S.; Zhao, Y.; Zhang, W.; Shi, S. W.; Wang, P. H. Self-powered droplet manipulation system for microfluidics based on triboelectric nanogenerator harvesting rotary energy. Lab Chip 2021, 21, 284–295.
Nie, J. H.; Ren, Z. W.; Shao, J. J.; Deng, C. R.; Xu, L.; Chen, X. Y.; Li, M. C.; Wang, Z. L. Self-powered microfluidic transport system based on triboelectric nanogenerator and electrowetting technique. ACS Nano 2018, 12, 1491–1499.
Zhou, J.; Tao, Y.; Liu, W. Y.; Sun, H. Z.; Wu, W. L.; Song, C. L.; Xue, R.; Jiang, T. Y.; Jiang, H. Y.; Ren, Y. K. Self-powered AC electrokinetic microfluidic system based on triboelectric nanogenerator. Nano Energy 2021, 89, 106451.
Sun, J. F.; Zhang, L. J.; Li, Z. J.; Tang, Q.; Chen, J.; Huang, Y. Z.; Hu, C. G.; Guo, H. Y.; Peng, Y.; Wang, Z. L. A mobile and self-powered micro-flow pump based on triboelectricity driven electroosmosis. Adv. Mater. 2021, 33, 2102765.
Li, X. Y.; Tat, T.; Chen, J. Triboelectric nanogenerators for self-powered drug delivery. Trends Chem. 2021, 3, 765–778.
Li, X. H.; Yeh, M. H.; Lin, Z. H.; Guo, H. Y.; Yang, P. K.; Wang, J.; Wang, S. H.; Yu, R. M.; Zhang, T. J.; Wang, Z. L. Self-powered triboelectric nanosensor for microfluidics and cavity-confined solution chemistry. ACS Nano 2015, 9, 11056–11063.
Xu, J.; Yin, J. Y.; Fang, Y. S.; Xiao, X.; Zou, Y. J.; Wang, S. L.; Chen, J. Deep learning assisted ternary electrification layered triboelectric membrane sensor for self-powered home security. Nano Energy 2023, 113, 108524.
Zhang, Z. X.; Guo, X. G.; Lee, C. Advances in olfactory augmented virtual reality towards future metaverse applications. Nat. Commun. 2024, 15, 6465.
Zhang, Z. X.; Wang, L. W.; Lee, C. Recent advances in artificial intelligence sensors. Adv. Sens. Res. 2023, 2, 2200072.
Zhang, Z. X.; Wen, F.; Sun, Z. D.; Guo, X. G.; He, T. Y. Y.; Lee, C. Artificial intelligence-enabled sensing technologies in the 5G/Internet of Things era: From virtual reality/augmented reality to the digital twin. Adv. Intell. Syst. 2022, 4, 2100228.
Kwak, W.; Yin, J. Y.; Wang, S. L.; Chen, J. Advances in triboelectric nanogenerators for self-powered wearable respiratory monitoring. FlexMat 2024, 1, 5–22.
Yang, Y. Q.; Guo, X. G.; Zhu, M. L.; Sun, Z. D.; Zhang, Z. X.; He, T. Y. Y.; Lee, C. Triboelectric nanogenerator enabled wearable sensors and electronics for sustainable internet of things integrated green earth. Adv. Energy Mater. 2023, 13, 2203040.
Lei, R.; Shi, Y. X.; Ding, Y. F.; Nie, J. H.; Li, S. Y.; Wang, F.; Zhai, H.; Chen, X. Y.; Wang, Z. L. Sustainable high-voltage source based on triboelectric nanogenerator with a charge accumulation strategy. Energy Environ. Sci. 2020, 13, 2178–2190.
Zeng, S. J.; Liu, X.; Xie, H.; Lin, B. C. Basic technologies for droplet microfluidics. Top. Curr. Chem. 2011, 304, 69–90.
Wu, B. D.; Zhou, J. Q.; Guo, Y. Y.; Zhu, R.; Wang, D.; An, C. W.; Wang, J. Y. Preparation of HMX/TATB spherical composite explosive by droplet microfluidic technology. Def. Technol. 2023, 21, 62–72.
Peretzki, A. J.; Belder, D. On-chip integration of normal phase high-performance liquid chromatography and droplet microfluidics introducing ethylene glycol as polar continuous phase for the compartmentalization of n-heptane eluents. J. Chromatogr. A 2020, 1612, 460653.
Zhou, J.; Tao, Y.; Xue, R.; Ren, Y. K. A self-powered dielectrophoretic microparticle manipulation platform based on a triboelectric nanogenerator. Adv. Mater. 2023, 35, 2207093.
Chen, Z. K.; Kheiri, S.; Young, E. W. K.; Kumacheva, E. Trends in droplet microfluidics: From droplet generation to biomedical applications. Langmuir 2022, 38, 6233–6248.
Zhu, J. L.; Wang, Z.; Li, R. N.; Liu, S. Experimental research on the disruptive evaporation and the motion characteristics of secondary droplets for emulsified biodiesel with a suspended droplet configuration. ACS Omega 2021, 6, 17848–17860.
Donau, C.; Boekhoven, J. The chemistry of chemically fueled droplets. Trends Chem. 2023, 5, 45–60.
Meredith, C. H.; Castonguay, A. C.; Chiu, Y. J.; Brooks, A. M.; Moerman, P. G.; Torab, P.; Wong, P. K.; Sen, A.; Velegol, D.; Zarzar, L. D. Chemical design of self-propelled Janus droplets. Matter 2022, 5, 616–633.
Cunningham, M. H.; Frost, D. L. Fragmentation of a molten metal droplet in an ambient water flow. Front. Phys. 2023, 11, 1171267.
Chen, L. D. Effects of ambient temperature and humidity on droplet lifetime—A perspective of exhalation sneeze droplets with COVID-19 virus transmission. Int. J. Hyg. Environ. Health 2020, 229, 113568.
Wu, Z. Y.; Wang, J. Q.; Bian, C.; Tong, J. H.; Xia, S. H. A MEMS-based multi-parameter integrated chip and its portable system for water quality detection. Micromachines 2020, 11, 63.