The development of efficient Cu-based heterogeneous catalysts for CO2 hydrogenation to methanol has been an appealing subject. Inspired by the concept of inverse catalysts, a series of La2O2CO3/Cu nanorod composites with varying Cu contents (denoted as LOC/Cu-x, where x stands for the mass ratio of La and Cu in the catalysts) were prepared by combining coprecipitation and calcination processes. Remarkable composition-dependence of catalytic activity and selectivity were observed when different LOC/Cu-x (x = 0.1, 0.2, 0.5, 1, 3 and 5) were used to catalyze the CO2 hydrogenation. The predominant product shifted from methane to methanol with the increasing Cu content. The highest reaction rate (13.3 mmol·gCu−1·h−1) and methanol selectivity (85.5%) were achieved when LOC/Cu-1 was tested at 200 °C. The LOC was not active for the reaction, while the Cu itself displayed poor catalytic performance. The Cu–LOC interactions significantly affected the nature of the catalysts, including mutual electron transfer, crystal structure, morphology, porosity, surface Cu valence and capability of adsorbing the reactant gases, etc., which account for the outstanding behavior of the LOC/Cu-1 catalyst. This work provides a new strategy for the design and optimization of Cu-based catalysts.
He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Efficient carbon resource processing, utilization, and recycling towards carbon neutrality. Angew. Chem. 2022, 134, e202112835.
He, M. Y.; Sun, Y. H.; Han, B. X. Green carbon science: Scientific basis for integrating carbon resource processing, utilization, and recycling. Angew. Chem., Int. Ed. 2013, 52, 9620–9633.
Zhang, S. N.; Wu, Z. X.; Liu, X. F.; Hua, K. M.; Shao, Z. L.; Wei, B. Y.; Huang, C. J.; Wang, H.; Sun, Y. H. A short review of recent advances in direct CO2 hydrogenation to alcohols. Top. Catal. 2021, 64, 371–394.
Wu, Y. F.; Lu, X. T.; Cui, P. F.; Jia, W. Y.; Zhou, J.; Wang, Y.; Zahid, H.; Wu, Y. X.; Umer Rafique, M.; Yin, X. et al. Enhancing alkyne semi-hydrogenation through engineering metal-support interactions of Pd on oxides. Nano Res. 2024, 17, 3707–3713.
Guo, Z. R.; Zhang, X.; Li, X. Y.; Cui, C.; Zhang, Z. L.; Li, H. S.; Zhang, D. X.; Li, J. Y.; Xu, X. Y.; Zhang, J. T. Enhanced charge separation by incomplete calcination modified Co-doped TiO2 nanoparticle for isothiazolinone photocatalytic degradation. Nano Res. 2024, 17, 4834–4843.
Li, H. J.; Fang, W.; Wang, L. X.; Liu, Y. F.; Liu, L. J.; Sun, T. L.; Liao, C. Q.; Zhu, Y. H.; Wang, L.; Xiao, F. S. Physical regulation of copper catalyst with a hydrophobic promoter for enhancing CO2 hydrogenation to methanol. Innovation 2023, 4, 100445.
Asare Bediako, B. B.; Qian, Q. L.; Han, B. X. Synthesis of C2+ chemicals from CO2 and H2 via C–C bond formation. Acc. Chem. Res. 2021, 54, 2467–2476.
Qian, Q. L.; Han, B. X. Transformation of CO2 and H2 to C2+ chemicals and fuels. Natl. Sci. Rev. 2023, 10, nwad160.
Cui, M.; Qian, Q. L.; Zhang, J. J.; Wang, Y.; Asare Bediako, B. B.; Liu, H. Z.; Han, B. X. Liquid fuel synthesis via CO2 hydrogenation by coupling homogeneous and heterogeneous catalysis. Chem 2021, 7, 726–737.
Qian, Q. L.; Zhang, J. J.; Cui, M.; Han, B. X. Synthesis of acetic acid via methanol Hydrocarboxylation with CO2 and H2. Nat. Commun. 2016, 7, 11481.
He, Z. H.; Qian, Q. L.; Ma, J.; Meng, Q. L.; Zhou, H. C.; Song, J. L.; Liu, Z. M.; Han, B. X. Water-enhanced synthesis of higher alcohols from CO2 hydrogenation over a Pt/Co3O4 catalyst under milder conditions. Angew. Chem., Int. Ed. 2016, 55, 737–741.
He, Z. H.; Cui, M.; Qian, Q. L.; Zhang, J. J.; Liu, H. Z.; Han, B. X. Synthesis of liquid fuel via direct hydrogenation of CO2. Proc. Natl. Acad. Sci. USA 2019, 116, 12654–12659.
He, J.; Wang, H. X.; Wang, Y.; Zhang, Y. R.; Li, Y.; Zhang, L. B.; Wang, Y. Y.; Yu, C. L.; Jia, S. H.; Qian, Q. L. et al. Synthesis of InZrO x nanosheets and its application in CO2 hydrogenation to methanol. Appl. Surf. Sci. 2024, 664, 160198.
Jiang, F.; Yang, Y.; Wang, L.; Li, Y. F.; Fang, Z. H.; Xu, Y. B.; Liu, B.; Liu, X. H. Dependence of copper particle size and interface on methanol and CO formation in CO2 hydrogenation over Cu@ZnO catalysts. Catal. Sci. Technol. 2022, 12, 551–564.
Grabow, L. C.; Mavrikakis, M. Mechanism of methanol synthesis on Cu through CO2 and CO hydrogenation. ACS Catal. 2011, 1, 365–384.
Figueiredo, R. T.; Martı́nez-Arias, A.; Granados, M. L.; Fierro, J. L. G. Spectroscopic evidence of Cu–Al interactions in Cu–Zn–Al mixed oxide catalysts used in CO hydrogenation. J. Catal. 1998, 178, 146–152.
Cui, X. J.; Chen, S.; Yang, H. H.; Liu, Y. Q.; Wang, H. F.; Zhang, H.; Xue, Y. F.; Wang, G. F.; Niu, Y. L.; Deng, T. S. et al. Improving methanol selectivity in CO2 hydrogenation by tuning the distance of Cu on catalyst. Appl. Catal. B: Environ. 2021, 298, 120590.
Liao, F. L.; Huang, Y. Q.; Ge, J. W.; Zheng, W. R.; Tedsree, K.; Collier, P.; Hong, X. L.; Tsang, S. C. Morphology-dependent interactions of ZnO with Cu nanoparticles at the materials’ interface in selective hydrogenation of CO2 to CH3OH. Angew. Chem. 2011, 123, 2210–2213.
Bansode, A.; Tidona, B.; Von Rohr, P. R.; Urakawa, A. Impact of K and Ba promoters on CO2 hydrogenation over Cu/Al2O3 catalysts at high pressure. Catal. Sci. Technol. 2013, 3, 767–778.
Zhao, H. B.; Yu, R. F.; Ma, S. C.; Xu, K. Z.; Chen, Y.; Jiang, K.; Fang, Y.; Zhu, C. X.; Liu, X. C.; Tang, Y. et al. The role of Cu1–O3 species in single-atom Cu/ZrO2 catalyst for CO2 hydrogenation. Nat. Catal. 2022, 5, 818–831.
Huang, C. L.; Wen, J. J.; Sun, Y. H.; Zhang, M. Y.; Bao, Y. F.; Zhang, Y. D.; Liang, L.; Fu, M. L.; Wu, J. L.; Ye, D. Q. et al. CO2 Hydrogenation to methanol over Cu/ZnO plate model catalyst: Effects of reducing gas induced Cu nanoparticle morphology. Chem. Eng. J. 2019, 374, 221–230.
Wu, C. Y.; Lin, L. L.; Liu, J. J.; Zhang, J. P.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S. Y.; Deng, Y. C.; Yang, F. et al. Inverse ZrO2/Cu as a highly efficient methanol synthesis catalyst from CO2 hydrogenation. Nat. Commun. 2020, 11, 5767.
Zhang, R.; Wang, X.; Wang, K.; Wang, H. L.; Liu, L.; Wu, X. T.; Geng, B. K.; Chu, X.; Song, S. Y.; Zhang, H. J. Synergism of ultrasmall Pt clusters and basic La2O2CO3 supports boosts the reverse water gas reaction efficiency. Adv. Energy Mater. 2023, 13, 2203806.
Wang, F.; Zhang, Z. N.; Wei, X. J.; Fang, Q. H.; Jiang, X. M. The shape effect of La2O2CO3 in Pd/La2O2CO3 catalyst for selective hydrogenation of cinnamaldehyde. Appl. Catal. A: Gen. 2017, 543, 196–200.
Dai, Y. H.; Xu, M.; Wang, Q. J.; Huang, R.; Jin, Y. Y.; Bian, B.; Tumurbaatar, C.; Ishtsog, B.; Bold, T.; Yang, Y. H. Enhanced activity and stability of Ni/La2O2CO3 catalyst for CO2 methanation by metal–carbonate interaction. Appl. Catal. B: Environ. 2020, 277, 119271.
Li, X. Y.; Li, D.; Tian, H.; Zeng, L.; Zhao, Z. J.; Gong, J. L. Dry reforming of methane over Ni/La2O3 nanorod catalysts with stabilized Ni nanoparticles. Appl. Catal. B: Environ. 2017, 202, 683–694.
Lv, J. N.; Wang, D. C.; Wang, M. Y.; Li, Y.; Jin, L. J.; Hu, H. Q. Integrated coal pyrolysis with dry reforming of low carbon alkane over Ni/La2O3 to improve tar yield. Fuel 2020, 266, 117092.
Xu, L. J.; Liu, W. M.; Zhang, X.; Tao, L. L.; Xia, L. H.; Xu, X. L.; Song, J. W.; Zhou, W. F.; Fang, X. Z.; Wang, X. Ni/La2O3 catalysts for dry reforming of methane: Insights into the factors improving the catalytic performance. ChemCatChem 2019, 11, 2887–2899.
Muroyama, H.; Tsuda, Y.; Asakoshi, T.; Masitah, H.; Okanishi, T.; Matsui, T.; Eguchi, K. Carbon dioxide methanation over Ni catalysts supported on various metal oxides. J. Catal. 2016, 343, 178–184.
Pakhare, D.; Schwartz, V.; Abdelsayed, V.; Haynes, D.; Shekhawat, D.; Poston, J.; Spivey, J. Kinetic and mechanistic study of dry (CO2) reforming of methane over Rh-substituted La2Zr2O7 pyrochlores. J. Catal. 2014, 316, 78–92.
Irusta, S.; Cornaglia, L. M.; Lombardo, E. A. Effects of rhodium and platinum on the reactivity of lanthanum phases. Mater. Chem. Phys. 2004, 86, 440–447.
Park, C. Y.; Nguyen-Phu, H.; Shin, E. W. Glycerol carbonation with CO2 and La2O2CO3/ZnO catalysts prepared by two different methods: Preferred reaction route depending on crystalline structure. Mol. Catal. 2017, 435, 99–109.
Hussain, S. K.; Nagaraju, G.; Pavitra, E.; Raju, G. S. R.; Yu, J. S. La(OH)3: Eu3+ and La2O3: Eu3+ nanorod bundles: Growth mechanism and luminescence properties. CrystEngComm 2015, 17, 9431–9442.
Shieh, Y. T.; Liu, K. H. The effect of carbonyl group on sorption of CO2 in glassy polymers. J. Supercrit. Fluids 2003, 25, 261–268.
Mu, Q. Y.; Wang, Y. D. Synthesis, characterization, shape-preserved transformation, and optical properties of La(OH)3, La2O2CO3, and La2O3 nanorods. J. Alloys Compd. 2011, 509, 396–401.
Tian, R.; Yang, S.; Han, Z. Y.; Sun, Y.; Wang, Y. X.; Wu, C.; Zhang, Q.; Liu, J. Y.; Lu, X. L.; Zhang, Z. W. Efficient removal of phosphate through adsorption by acidified diatomite loaded with La2O2CO3. New J. Chem. 2023, 47, 15201–15208.
Levan, T.; Che, M.; Tatibouet, J. M.; Kermarec, M. Infrared study of the formation and stability of La2O2CO3 during the oxidative coupling of methane on La2O3. J. Catal. 1993, 142, 18–26.
Dong, S. X.; Wang, Y. L.; Zhao, Y. W.; Zhou, X. H.; Zheng, H. L. La3+/La(OH)3 loaded magnetic cationic hydrogel composites for phosphate removal: Effect of lanthanum species and mechanistic study. Water Res. 2017, 126, 433–441.
Zhu, Y.; Li, B. L.; Zhao, C. Cu nanoparticles supported on core–shell MgO-La2O3 catalyzed hydrogenolysis of furfuryl alcohol to pentanediol. J. Catal. 2022, 410, 42–53.
Liang, Z. Q.; Zhuang, T. T.; Seifitokaldani, A.; Li, J.; Huang, C. W.; Tan, C. S.; Li, Y.; De Luna, P.; Dinh, C. T.; Hu, Y. et al. Copper-on-nitride enhances the stable electrosynthesis of multi-carbon products from CO2. Nat. Commun. 2018, 9, 3828.
Zhao, H. H.; Zhang, W. Z.; Song, H. L.; Zhao, J.; Yang, J.; Yan, L.; Qiao, B. T.; Chou, L. J. Highly coke-resistant Ni-La2O2CO3 catalyst with low Ni loading for dry reforming of methane with carbon dioxide. Catal. Today 2022, 402, 189–201.
Chen, G.; Han, B. Q.; Deng, S. J.; Wang, Y.; Wang, Y. D. Lanthanum dioxide carbonate La2O2CO3 nanorods as a sensing material for chemoresistive CO2 gas sensor. Electrochim. Acta 2014, 127, 355–361.
Rui, N.; Wang, Z. Y.; Sun, K. H.; Ye, J. Y.; Ge, Q. F.; Liu, C. J. CO2 hydrogenation to methanol over Pd/In2O3: Effects of Pd and oxygen vacancy. Appl. Catal. B: Environ. 2017, 218, 488–497.
Hu, B.; Yin, Y. Z.; Zhong, Z. X.; Wu, D. D.; Liu, G. L.; Hong, X. L. Cu@ZIF-8 derived inverse ZnO/Cu catalyst with sub-5 nm ZnO for efficient CO2 hydrogenation to methanol. Catal. Sci. Technol. 2019, 9, 2673–2681.
Giordanino, F.; Vennestrøm, P. N. R.; Lundegaard, L. F.; Stappen, F. N.; Mossin, S.; Beato, P.; Bordiga, S.; Lamberti, C. Characterization of Cu-exchanged SSZ-13: A comparative FTIR, UV–Vis, and EPR study with Cu-ZSM-5 and Cu-β with similar Si/Al and Cu/Al ratios. Dalton Trans. 2013, 42, 12741–12761.
Zhang, Y. N.; Peng, Y.; Li, J. H.; Groden, K.; McEwen, J. S.; Walter, E. D.; Chen, Y.; Wang, Y.; Gao, F. Probing active-site relocation in Cu/SSZ-13 SCR catalysts during hydrothermal aging by in situ EPR spectroscopy, kinetics studies, and DFT calculations. ACS Catal. 2020, 10, 9410–9419.
Guo, X. M.; Mao, D. S.; Lu, G. Z.; Wang, S.; Wu, G. S. The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J. Mol. Catal. A: Chem. 2011, 345, 60–68.
Li, Y. J.; Liu, H. M.; Ma, L.; Liu, J. X.; He, D. H. Transforming glycerol and CO2 into glycerol carbonate over La2O2CO3-ZnO catalyst—A case study of the photo-thermal synergism. Catal. Sci. Technol. 2021, 11, 1007–1013.
Zhong, J. W.; Yang, X. F.; Wu, Z. L.; Liang, B. L.; Huang, Y. Q.; Zhang, T. State of the art and perspectives in heterogeneous catalysis of CO2 hydrogenation to methanol. Chem. Soc. Rev. 2020, 49, 1385–1413.
Yang, C. S.; Pei, C. L.; Luo, R.; Liu, S. H.; Wang, Y. N.; Wang, Z. Y.; Zhao, Z. J.; Gong, J. L. Strong electronic oxide-support interaction over In2O3/ZrO2 for highly selective CO2 hydrogenation to methanol. J. Am. Chem. Soc. 2020, 142, 19523–19531.
Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu (100) electrodes. Angew. Chem., Int. Ed. 2017, 56, 3621–3624.
Deng, S. M.; Wang, R. H.; Feng, X. Z.; Zheng, R. J.; Gong, S. K.; Chen, X. H.; Shangguan, Y. Z.; Deng, L. L.; Tang, H.; Dai, H. et al. Dual Lewis acid-base sites regulate silver-copper bimetallic oxide nanowires for highly selective photoreduction of carbon dioxide to methane. Angew. Chem. 2023, 135, e202309625.