Electrocatalytic nitrate reduction reaction (NitRR) is an efficient route for simultaneous wastewater treatment and ammonia production, but the conversion of NO3– to NH3 involves multiple electron and proton transfer processes and diverse by-products. Therefore, developing ammonia catalysts with superior catalytic activity and selectivity is an urgent task. The distinctive electronic structure of Cu enhances the adsorption of nitrogen-containing intermediates, but the insufficient activation capability of Cu for interfacial water restricts the generation of reactive hydrogen and inhibits the hydrogenation process. In this work, a Ce-doped CuO catalyst (Ce10/CuO) was synthesized by in situ oxidative etching and annealing. The redox of Ce3+/Ce4+ enables the optimization of the electronic structure of the catalyst, and the presence of Ce3+ as a defect indicator introduces more oxygen vacancies. The results demonstrate that Ce10/CuO provides an impressive ammonia yield of 3.88 ± 0.14 mmol·cm–2·h–1 at 0.4 V vs. reversible hydrogen electrode (RHE) with an increase of 1.04 mmol·cm–2·h–1 compared to that of pure CuO, and the Faradaic efficiencies (FE) reaches 93.2% ± 3.4%. In situ characterization confirms the doping of Ce facilitates the activation and dissociation of interfacial water, which promotes the production of active hydrogen and thus enhances the ammonia production efficiency.
Liu, N. Y.; Wu, R. Q.; Liu, Y. X.; Liu, Y. L.; Deng, P. J.; Li, Y. X.; Du, Y. C.; Cheng, Y. Y.; Zhuang, Z. C.; Kang, Z. H. et al. Oxygen vacancy engineering of Fe-doped NiMoO4 for electrocatalytic N2 fixation to NH3. Inorg. Chem. 2023, 62, 11990–12000.
Zhang, Y. Z.; Chen, X.; Wang, W. L.; Yin, L. F.; Crittenden, J. C. Electrocatalytic nitrate reduction to ammonia on defective Au1Cu (111) single-atom alloys. Appl. Catal. B 2022, 310, 121346.
Jia, R. R.; Wang, Y. T.; Wang, C. H.; Ling, Y. F.; Yu, Y. F.; Zhang, B. Boosting selective nitrate electroreduction to ammonium by constructing oxygen vacancies in TiO2. ACS Catal. 2020, 10, 3533–3540.
Yang, K. W.; Han, S. H.; Cheng, C. Q.; Guo, C. Y.; Li, T. L.; Yu, Y. F. Unveiling the reaction mechanism of nitrate reduction to ammonia over cobalt-based electrocatalysts. J. Am. Chem. Soc. 2024, 146, 12976–12983.
Zhang, R.; Zhang, Y. Q.; Xiao, B.; Zhang, S. C.; Wang, Y. B.; Cui, H. L.; Li, C.; Hou, Y.; Guo, Y.; Yang, T. et al. Phase engineering of high-entropy alloy for enhanced electrocatalytic nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202407589.
Cheng, Y. Y.; Liu, Y. X.; Chu, C.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Wu, J. C.; Zhuang, C. Q.; Kang, Z. H.; Li, H. T. Carbon armour with embedded carbon dots for building better supercapacitor electrodes. Nano Res. 2023, 16, 6815–6824.
Deng, P. J.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Meng, L. J.; Liang, K.; Gan, Y. X.; Qiao, F.; Liu, N. Y. et al. Microwave regenerable nickel, zinc Co-doped nitrogen-coordinated porous carbon catalyst for nitrogen fixation. ACS Appl. Mater. Interfaces 2023, 15, 44809–44819.
Li, Y. X.; Liu, Y. X.; Liu, X.; Liu, Y. L.; Cheng, Y. Y.; Zhang, P.; Deng, P. J.; Deng, J. J.; Kang, Z. H.; Li, H. T. Fe-doped SnO2 nanosheet for ambient electrocatalytic nitrogen reduction reaction. Nano Res. 2022, 15, 6026–6035.
Hao, D.; Liu, Y.; Gao, S. Y.; Arandiyan, H.; Bai, X. J.; Kong, Q.; Wei, W.; Shen, P. K.; Ni, B. J. Emerging artificial nitrogen cycle processes through novel electrochemical and photochemical synthesis. Mater. Today 2021, 46, 212–233.
Fang, J. Y.; Fan, J. L.; Liu, S. B.; Sun, S. P.; Lou, Y. Y. Copper-based electrocatalysts for nitrate reduction to ammonia. Materials 2023, 16, 4000.
Liu, Y. L.; Zhuang, Z. C.; Liu, Y. X.; Liu, N. Y.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Yu, R. H.; Wang, D. S.; Li, H. T. Shear-strained Pd single-atom electrocatalysts for nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2024, 63, e202411396.
Zhang, H. J.; Fang, K. Q.; Yang, J.; Chen, H.; Ning, J. Q.; Wang, H. Y.; Hu, Y. Strategies and applications of electrocatalytic nitrate reduction towards ammonia. Coord. Chem. Rev. 2024, 506, 215723.
Zhuang, C. Q.; Chang, Y.; Li, W. M.; Li, S. J.; Xu, P.; Zhang, H.; Zhang, Y. H.; Zhang, C.; Gao, J. F.; Chen, G. et al. Light-induced variation of lithium coordination environment in g-C3N4 nanosheet for highly efficient oxygen reduction reactions. ACS Nano 2024, 18, 5206–5217.
Chen, G. F.; Yuan, Y. F.; Jiang, H. F.; Ren, S. Y.; Ding, L. X.; Ma, L.; Wu, T. P.; Lu, J.; Wang, H. H. Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper-molecular solid catalyst. Nat. Energy 2020, 5, 605–613.
Bi, Z.; Zhang, W. J.; Ni, M.; Song, G.; Huang, Y. Fe0/Fe2+-dependent nitrate reduction in anammox consortia questions the enzymatic mechanism of nitrate reduction by anammox bacteria. ACS Sustain. Chem. Eng. 2020, 8, 15278–15287.
Xia, J. K.; Xu, J. W.; Yu, B.; Liang, X.; Qiu, Z.; Li, H.; Feng, H. J.; Li, Y. F.; Cai, Y. J.; Wei, H. Y. et al. A metal-sulfur-carbon catalyst mimicking the two-component architecture of nitrogenase. Angew. Chem., Int. Ed. 2024, 63, e202412740.
Zhuang, Z. C.; Li, Y.; Li, Z. L.; Lv, F.; Lang, Z. Q.; Zhao, K. N.; Zhou, L.; Moskaleva, L.; Guo, S. J.; Mai, L. Q. MoB/g-C3N4 interface materials as a schottky catalyst to boost hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 496–500.
Zhuang, Z. H.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.
Wu, X.; Tong, Z.; Liu, Y. L.; Li, Y. X.; Cheng, Y. Y.; Yu, J. W.; Cao, P.; Zhuang, C. Q.; Shi, Q. Z.; Liu, N. Y. et al. Modification of the CuO electronic structure for enhanced selective electrochemical CO2 reduction to ethylene. Nano Res. 2024, 17, 7194–7202.
Hao, J. C.; Zhuang, Z. C.; Cao, K. C.; Gao, G. H.; Wang, C.; Lai, F. L.; Lu, S. L.; Ma, P. M.; Dong, W. F.; Liu, T. X. et al. Unraveling the electronegativity-dominated intermediate adsorption on high-entropy alloy electrocatalysts. Nat. Commun. 2022, 13, 2662.
Liu, Y.; Xing, Y. Y.; Xu, S. J.; Lu, Y. K.; Sun, S. C.; Jiang, D. L. Interfacing Co3Mo with CoMoO x for synergistically boosting electrocatalytic hydrogen and oxygen evolution reactions. Chem. Eng. J. 2022, 431, 133240.
Dong, W. X.; Zhou, H. B.; Mao, B. D.; Zhang, Z. Y.; Liu, Y. S.; Liu, Y. H.; Li, F. H.; Zhang, D. Q.; Zhang, D. X.; Shi, W. D. Efficient MOF-derived V-Ni3S2 nanosheet arrays for electrocatalytic overall water splitting in Alkali. Int. J. Hydrogen Energy 2021, 46, 10773–10782.
Peng, K.; Bhuvanendran, N.; Ravichandran, S.; Zhang, W. Q.; Ma, Q.; Xing, L.; Xu, Q.; Khotseng, L.; Su, H. N. Carbon supported PtPdCr ternary alloy nanoparticles with enhanced electrocatalytic activity and durability for methanol oxidation reaction. Int. J. Hydrogen Energy 2020, 45, 22752–22760.
Liu, N. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Cheng, Y. Y.; Li, H. T. Modulation of photogenerated holes for enhanced photoelectrocatalytic performance. Microstructures 2023, 3, 2023001.
Geng, J.; Ji, S. H. Boosting electrocatalytic nitrate reduction to ammonia via Cu2O/Cu(OH)2 heterostructures promoting electron transfer. Nano Res. 2024, 17, 4898–4907.
Fan, K.; Xie, W. F.; Li, J. Z.; Sun, Y. N.; Xu, P. C.; Tang, Y.; Li, Z. H.; Shao, M. F. Active hydrogen boosts electrochemical nitrate reduction to ammonia. Nat. Commun. 2022, 13, 7958.
Zhuang, C. Q.; Li, W. M.; Chang, Y.; Li, S. J.; Zhang, Y. H.; Li, Y. L.; Gao, J. F.; Chen, G.; Kang, Z. H. Coordination environment dominated catalytic selectivity of photocatalytic hydrogen and oxygen reduction over switchable gallium and nitrogen active sites. J. Mater. Chem. A 2024, 12, 5711–5718.
Liu, Y. X.; Wu, R. Q.; Liu, Y. L.; Deng, P. J.; Li, Y. X.; Cheng, Y. Y.; Du, Y. C.; Li, Z. N.; Yan, X.; Liu, N. Y. et al. Interface engineering of CoS/MoS2 heterostructure for the electrocatalytic reduction of N2 to NH3. Inorg. Chem. Front. 2023, 10, 5700–5709.
Geng, J.; Ji, S. H.; Xu, H.; Zhao, C. J.; Zhang, S. B.; Zhang, H. M. Electrochemical reduction of nitrate to ammonia in a fluidized electrocatalysis system with oxygen vacancy-rich CuO x nanoparticles. Inorg. Chem. Front. 2021, 8, 5209–5213.
Liu, Y. L.; Zheng, Z. Y.; Jabeen, S.; Liu, N. Y.; Liu, Y. X.; Cheng, Y. Y.; Li, Y. X.; Yu, J. W.; Wu, X.; Yan, N. N. et al. Mechanochemical route to fabricate an efficient nitrate reduction electrocatalyst. Nano Res. 2024, 17, 4889–4897.
Shi, L.; Zhu, H. Y. En route to a circular nitrogen economy. Nat. Sustain. 2024, 7, 1221–1222.
Wu, Q. F.; Zhu, W. J.; Ma, D. X.; Liang, C.; Wang, Z. C.; Liang, H. F. Screening of transition metal oxides for electrocatalytic nitrate reduction to ammonia at large currents. Nano Res. 2024, 17, 3902–3910.
Wu, Z. Y.; Karamad, M.; Yong, X.; Huang, Q. Z.; Cullen, D. A.; Zhu, P.; Xia, C.; Xiao, Q. F.; Shakouri, M.; Chen, F. Y. et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nat. Commun. 2021, 12, 2870.
Wu, Q. L.; Zhu, F. F.; Wallace, G.; Yao, X. D.; Chen, J. Electrocatalysis of nitrogen pollution: Transforming nitrogen waste into high-value chemicals. Chem. Soc. Rev. 2024, 53, 557–565.
Chen, X. H.; Cheng, Y. M.; Zhang, B.; Zhou, J.; He, S. S. Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia. Nat. Commun. 2024, 15, 6278.
Zhu, W. J.; Zhang, X. Y.; Yao, F.; Huang, R. P.; Chen, Y.; Chen, C. L.; Fei, J. W.; Chen, Y. Q.; Wang, Z. C.; Liang, H. F. A hydrazine-nitrate flow battery catalyzed by a bimetallic RuCo precatalyst for wastewater purification along with simultaneous generation of ammonia and electricity. Angew. Chem., Int. Ed. 2023, 62, e202300390.
Wen, Y. K.; Wang, T. D.; Hao, J. C.; Zhuang, Z. C.; Gao, G. H.; Lai, F. L.; Lu, S. L.; Wang, X. F.; Kang, Q.; Wu, G. M. et al. A coherent Pd-Pd16B3 core–shell electrocatalyst for controlled hydrogenation in nitrogen reduction reaction. Adv. Funct. Mater. 2024, 34, 2400849.
Dai, L. J.; Li, S. J.; Dai, Y.; Zheng, Y. J.; Liu, K. H.; Li, H. X.; Jiang, B. Engineering CoO/B heterojunction electrocatalysts for boosting electrocatalytic nitrate reduction to ammonia. Chem. Eng. J. 2024, 498, 155735.
Zheng, M. Y.; Wan, Y. C.; Yang, L. P.; Ao, S.; Fu, W. Y.; Zhang, Z. J.; Huang, Z. H.; Ling, T.; Kang, F. Y.; Lv, R. T. In situ construction of Cu(I)-Cu(II) pairs for efficient electrocatalytic nitrate reduction reaction to ammonia. J. Energy Chem. 2025, 100, 106–113.
Zhu, W. J.; Yao, F.; Wu, Q. F.; Jiang, Q.; Wang, J. X.; Wang, Z. C.; Liang, H. F. Weakened d-p orbital hybridization in in situ reconstructed Ru/β-Co(OH)2 heterointerfaces for accelerated ammonia electrosynthesis from nitrates. Energy Environ. Sci. 2023, 16, 2483–2493.
Wang, S. W.; Zhuang, Z. C.; Xu, J. W.; Fu, C.; Qiu, Z.; Feng, H. J.; Xiang, H.; Chen, Z. L.; Li, H.; Zhang, L. et al. Non-rigid metal-oxygen bonding empowered nitrate reduction on ruthenium catalysts. Nano Energy 2024, 130, 110088.
Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.
Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.
Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.
Yin, S. Y.; Guan, Z. X.; Zhu, Y. C.; Guo, D. Y.; Chen, X. A.; Wang, S. Highly efficient electrocatalytic nitrate reduction to ammonia: Group VIII-based catalysts. ACS Nano 2024, 18, 27833–27852.
Cheng, Y. Y.; Jabeen, S.; Lei, S. W.; Liu, N. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, X.; Tong, Z.; Yu, J. W. et al. N-doped carbon dots-modulated interfacial charge transfer and surface structure in FeNbO4 photocatalysts for enhanced CO2 conversion selectivity to CH4. Chem. Eng. J. 2024, 498, 155576.
Wang, Y. T.; Li, H. J.; Zhou, W.; Zhang, X.; Zhang, B.; Yu, Y. F. Structurally disordered RuO2 nanosheets with rich oxygen vacancies for enhanced nitrate electroreduction to ammonia. Angew. Chem., Int. Ed. 2022, 61, e202202604.
Xu, J. W.; Zhang, S. B.; Liu, H. J.; Liu, S.; Yuan, Y.; Meng, Y. H.; Wang, M. M.; Shen, C. Y.; Peng, Q.; Chen, J. H. et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia. Angew. Chem., Int. Ed. 2023, 62, e202308044.
Bai, L. C.; Franco, F.; Timoshenko, J.; Rettenmaier, C.; Scholten, F.; Jeon, H. S.; Yoon, A.; Rüscher, M.; Herzog, A.; Haase, F. T. et al. Electrocatalytic nitrate and nitrite reduction toward ammonia using Cu2O nanocubes: Active species and reaction mechanisms. J. Am. Chem. Soc. 2024, 146, 9665–9678.
Zhang, X.; Wang, Y. T.; Liu, C. B.; Yu, Y. F.; Lu, S. Y.; Zhang, B. Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chem. Eng. J. 2021, 403, 126269.
Feng, X. T.; Liu, J. Y.; Kong, Y.; Zhang, Z. X.; Zhang, Z. D.; Li, S. Z.; Tong, L. M.; Gao, X.; Zhang, J. Cu/Cu x O/graphdiyne tandem catalyst for efficient electrocatalytic nitrate reduction to ammonia. Adv. Mater. 2024, 36, 2405660.
Tong, Z.; Liu, Y. L.; Wu, X.; Cheng, Y. Y.; Yu, J. W.; Zhang, X. Y.; Liu, N. Y.; Liu, X.; Li, H. T. Carbon quantum dots/Cu2O photocatalyst for room temperature selective oxidation of benzyl alcohol. Nanomaterials 2024, 14, 212.
Cheng, Y. Y.; Liu, Y. X.; Liu, Y. L.; Li, Y. X.; Wu, R. Q.; Du, Y. C.; Askari, N.; Liu, N. Y.; Qiao, F.; Sun, C. H. et al. A core-satellite structured type II heterojunction photocatalyst with enhanced CO2 reduction under visible light. Nano Res. 2022, 15, 8880–8889.
Yan, Q. Y.; Zhao, R. D.; Yu, L. H.; Zhao, Z. Y.; Liu, L.; Xi, J. Y. Enhancing compatibility of two-step tandem catalytic nitrate reduction to ammonia over P-Cu/Co(OH)2. Adv. Mater. 2024, 36, 2408680.
Hu, Q.; Qin, Y. J.; Wang, X. D.; Wang, Z. Y.; Huang, X. W.; Zheng, H. J.; Gao, K. R.; Yang, H. P.; Zhang, P. X.; Shao, M. H. et al. Reaction intermediate-mediated electrocatalyst synthesis favors specified facet and defect exposure for efficient nitrate-ammonia conversion. Energy Environ. Sci. 2021, 14, 4989–4997.
Chen, F. Y.; Elgazzar, A.; Pecaut, S.; Qiu, C.; Feng, Y. G.; Ashokkumar, S.; Yu, Z.; Sellers, C.; Hao, S. Y.; Zhu, P. et al. Electrochemical nitrate reduction to ammonia with cation shuttling in a solid electrolyte reactor. Nat. Catal. 2024, 7, 1032–1043.
Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 Moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.
Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.
Peng, O. W.; Hu, Q. K.; Zhou, X.; Zhang, R. R.; Du, Y. H.; Li, M. Z.; Ma, L.; Xi, S. B.; Fu, W.; Xu, Z. X. et al. Swinging hydrogen evolution to nitrate reduction activity in molybdenum carbide by ruthenium doping. ACS Catal. 2022, 12, 15045–15055.
Wang, Y. H.; Xu, A. N.; Wang, Z. Y.; Huang, L. S.; Li, J.; Li, F. W.; Wicks, J.; Luo, M. C.; Nam, D. H.; Tan, C. S. et al. Enhanced nitrate-to-ammonia activity on copper-nickel alloys via tuning of intermediate adsorption. J. Am. Chem. Soc. 2020, 142, 5702–5708.
Fang, J. Y.; Zheng, Q. Z.; Lou, Y. Y.; Zhao, K. M.; Hu, S. N.; Li, G.; Akdim, O.; Huang, X. Y.; Sun, S. G. Ampere-level current density ammonia electrochemical synthesis using CuCo nanosheets simulating nitrite reductase bifunctional nature. Nat. Commun. 2022, 13, 7899.
Zhang, S.; Wu, J. H.; Zheng, M. T.; Jin, X.; Shen, Z. H.; Li, Z. H.; Wang, Y. J.; Wang, Q.; Wang, X. B.; Wei, H. et al. Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia. Nat. Commun. 2023, 14, 3634.
Zhang, Y. Y.; Hai, G. T.; Huang, Z. S.; Liu, Z. M.; Huang, X. B.; Wang, G. Ce-doping rather than CeO2 modification and their synergistic effect: Promotion from Ce species in the electrocatalytic oxidation of 5-hydroxymethylfurfural over NiFe-LDH. Adv. Energy Mater. 2024, 14, 2401449.
Jang, W.; Oh, D.; Lee, J.; Kim, J.; Matthews, J. E.; Kim, H.; Lee, S. W.; Lee, S.; Xu, Y.; Yu, J. M. et al. Homogeneously mixed Cu-Co bimetallic catalyst derived from hydroxy double salt for industrial-level high-rate nitrate-to-ammonia electrosynthesis. J. Am. Chem. Soc. 2024, 146, 27417–27428.
Guo, X. T.; Yu, J. D.; Ren, S. J.; Gao, R. T.; Wu, L. M.; Wang, L. Controlled defective engineering on CuIr catalyst promotes nitrate selective reduction to ammonia. ACS Nano 2024, 18, 24252–24261.
Hao, J. C.; Wang, T. D.; Yu, R. H.; Cai, J.; Gao, G. H.; Zhuang, Z. C.; Kang, Q.; Lu, S. L.; Liu, Z. H.; Wu, J. S. et al. Integrating few-atom layer metal on high-entropy alloys to catalyze nitrate reduction in tandem. Nat. Commun. 2024, 15, 9020.
Liu, H. W.; Yang, C. J.; Dong, C. L.; Wang, J. S.; Zhang, X.; Lyalin, A.; Taketsugu, T.; Chen, Z. Q.; Guan, D. Q.; Xu, X. M. et al. Electrocatalytic ammonia oxidation to nitrite and nitrate with NiOOH-Ni. Adv. Energy Mater. 2024, 14, 2401675.
Shi, L.; Li, Y. M.; He, S. X.; Liu, Y. N.; Tang, X. Y.; Ao, L.; Lv, X. S.; Fu, W. Y.; Jiang, G. M. Efficient electrocatalytic nitrate reduction on molecular catalyst with electron-deficient single-atom Cu δ + sites. Chem. Eng. J. 2024, 495, 153427.