Fabricating catalysts with efficient water dissociation and robust stability is key to advancing the industrialization of the alkaline hydrogen evolution reaction (HER). Establishing an effective phosphide/oxide interface is a feasible way to improve the HER performance of the catalyst in an alkaline medium, but it remains challenging. Here, we adopt that manganese oxide nanoparticles decorated on nickel-cobalt phosphide nanowire array on nickel foam (MnOx@NiCoP/NF) via a surface modification strategy that shifts the d-band center downward, promoting the water dissociation and hydrogen intermediate binding. Moreover, MnOx makes the surface of NiCoP rougher, facilitating bubble release and improving the array stability. Consequently, MnOx@NiCoP/NF achieves industrial current densities of 500 and 1000 mA·cm−2 with overpotentials of 171 and 193 mV, respectively, while maintaining stable operation for over 600 h at 1000 mA·cm−2 in 1 M KOH. Additionally, an anion exchange membrane electrolyzer with the catalyst was fabricated and shows potential for practical applications.
Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.
Aslam, S.; Rani, S.; Lal, K.; Fatima, M.; Hardwick, T.; Shirinfar, B.; Ahmed, N. Electrochemical hydrogen production: Sustainable hydrogen economy. Green Chem. 2023, 25, 9543–9573.
Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.
Wang, C.; Li, W.; Wang, X. D.; Yu, N.; Sun, H. X.; Geng, B. Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Res. 2022, 15, 1824–1830.
Li, C. Q.; Kim, S. H.; Lim, H. Y.; Sun, Q. K.; Jiang, Y.; Noh, H. J.; Kim, S. J.; Baek, J.; Kwak, S. K.; Baek, J. B. Self-accommodation induced electronic metal-support interaction on ruthenium site for alkaline hydrogen evolution reaction. Adv. Mater. 2023, 35, 2301369.
Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co, Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 6552–6559.
Liang, J.; Li, J.; Dong, H. L.; Li, Z. X. Z.; He, X.; Wang, Y.; Yao, Y. C.; Ren, Y. C.; Sun, S. J.; Luo, Y. S. et al. Aqueous alternating electrolysis prolongs electrode lifespans under harsh operation conditions. Nat. Commun. 2024, 15, 6208.
Teng, X. A.; Wang, Z. B.; Wu, Y. S.; Zhang, Y.; Yuan, B.; Xu, Y. Y.; Wang, R. M.; Shan, A. X. Enhanced alkaline hydrogen evolution reaction of MoO2/Ni3S2 nanorod arrays by interface engineering. Nano Energy 2024, 122, 109299.
Zhang, R.; Ren, X.; Hao, S.; Ge, R. X.; Liu, Z. A.; Asiri, A. M.; Chen, L.; Zhang, Q. J.; Sun, X. P. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2018, 6, 1985–1990.
Zhu, Y. M.; Klingenhof, M.; Gao, C. L.; Koketsu, T.; Weiser, G.; Pi, Y. C.; Liu, S. H.; Sui, L. J.; Hou, J. R.; Li, J. Y. et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.
Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.
Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.
Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.
Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.
Huang, C. Y.; Xia, Z. H.; Wang, J.; Zhang, J.; Zhao, C. F.; Zou, X. L.; Mu, S. C.; Zhang, J. J.; Lu, X. G.; Fan, H. J. et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano Res. 2024, 17, 1066–1074.
Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.
Liu, X. B.; Yu, Q. P.; Qu, X. Y.; Wang, X. P.; Chi, J. Q.; Wang, L. Manipulating electron redistribution in Ni2P for enhanced alkaline seawater electrolysis. Adv. Mater. 2024, 36, 2307395.
Chen, D.; Bai, H. W.; Zhu, J. W.; Wu, C.; Zhao, H. Y.; Wu, D. L.; Jiao, J. X.; Ji, P. X.; Mu, S. C. Multiscale hierarchical structured NiCoP enabling ampere-level water splitting for multi-scenarios green energy-to-hydrogen systems. Adv. Energy Mater. 2023, 13, 2300499.
Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.
Xiong, H.; Du, C. F.; Ma, Z. L.; Zhi, R. C.; Hao, S. S.; Zhao, X. Y.; Liu, Z.; Xu, F.; Wang, H. Q. Rational design of multiple heterostructures with synergistic effect for efficient and stable hydrogen evolution toward industrial alkaline water splitting. Adv. Funct. Mater. 2024, 34, 2402298.
Kirubasankar, B.; Kwon, J.; Hong, S.; Won, Y. S.; Choi, S. H.; Lee, J.; Kim, J. W.; Kim, K. K.; Kim, S. M. A robust and highly active bimetallic phosphide/oxide heterostructure electrocatalyst for efficient industrial-scale hydrogen production. Nano Energy 2024, 128, 109805.
Zhu, Y. L.; Lin, Q.; Zhong, Y. J.; Tahini, H. A.; Shao, Z. P.; Wang, H. T. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392.
Dinh, C. T.; Jain, A.; De Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X. L.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2019, 4, 107–114.
Luo, Y. Z.; Wu, S. S.; Wang, P.; Ranganathan, H.; Shi, Z. C. Interface engineering of Ni2P/MoO x decorated NiFeP nanosheets for enhanced alkaline hydrogen evolution reaction at high current densities. J. Colloid Interface Sci. 2023, 648, 551–557.
Wang, A. Q.; Long, G. F.; Chen, J.; An, X. R.; Yao, T. T.; Li, C. Electrocatalysts with highly dispersed cerium in nickel matrix for hydrogen evolution in alkaline electrolyte. Adv. Energy Mater. 2024, 14, 2400647.
Song, K.; Zhang, H. H.; Lin, Z. P.; Wang, Z. P.; Zhang, L. L.; Shi, X. X.; Shen, S. J.; Chen, S. C.; Zhong, W. W. Interfacial engineering of cobalt thiophosphate with strain effect and modulated electron structure for boosting electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 2024, 34, 2312672.
Kong, S.; Li, A. L.; Long, J.; Adachi, K.; Hashizume, D.; Jiang, Q. K.; Fushimi, K.; Ooka, H.; Xiao, J. P.; Nakamura, R. Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nat. Catal. 2024, 7, 252–261.
Xiao, X.; Zhang, Z. W.; Wu, Y. C.; Xu, J. W.; Gao, X.; Xu, R.; Huang, W. X.; Ye, Y. S.; Oyakhire, S. T.; Zhang, P. et al. Ultrahigh-loading manganese-based electrodes for aqueous batteries via polymorph tuning. Adv. Mater. 2023, 35, 2211555.
Wang, K.; He, S.; Li, B. X.; Du, H. F.; Wang, T. F.; Du, Z. Z.; Xie, L. H.; Ai, W. Relaying alkaline hydrogen evolution over locally amorphous Ni/Co-based phosphides constructed by diffusion-limited phase-transition. Appl. Catal. B: Environ. 2023, 339, 123136.
Wang, P.; Luo, Y. Z.; Zhang, G. X.; Wu, M. J.; Chen, Z. S.; Sun, S. H.; Shi, Z. C. MnO x -decorated nickel-iron phosphides nanosheets: Interface modifications for robust overall water splitting at ultra-high current densities. Small 2022, 18, 2105803.
Han, X. P.; He, G. W.; He, Y.; Zhang, J. F.; Zheng, X. R.; Li, L. L.; Zhong, C.; Hu, W. B.; Deng, Y. D.; Ma, T. Y. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1702222.
Mishra, I. K.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Dahal, K.; Bao, J. M.; Chen, S.; Ren, Z. F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ. Sci. 2018, 11, 2246–2252.
Wang, Z. Y.; Liu, S. L.; Du, J. Y.; Xing, Y. C.; Hu, Y. L.; Ma, Y. J.; Lu, X. Y.; Wang, C. Iron-doped nickel phosphide hollow nanospheres synthesized by solvothermal phosphidization of layered double hydroxides for electrocatalytic oxygen evolution. Green Chem. 2024, 26, 7779–7788.
Du, C.; Yang, L.; Yang, F. L.; Cheng, G. Z.; Luo, W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 2017, 7, 4131–4137.
Zhang, Y. Z.; Zhu, Z. Z.; Guo, X.; Qi, J. Y.; Li, X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: Driving efficient water splitting. Chem. Eng. J. 2023, 452, 139230.
Yang, M.; Jiang, Y. M.; Qu, M. J.; Qin, Y. C.; Wang, Y.; Shen, W.; He, R. X.; Su, W.; Li, M. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Appl. Catal. B: Environ. 2020, 269, 118803.
Xiong, Y.; Xu, L. L.; Jin, C. D.; Sun, Q. F. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl. Catal. B: Environ. 2019, 254, 329–338.
Gu, H. Q.; Yang, X. H.; Chen, S.; Zhang, W. M.; Yang, H. Y.; Li, Z. Y. Oxygen vacancies boosted proton intercalation kinetics for aqueous aluminum-manganese batteries. Nano Lett. 2023, 23, 11842–11849.
Chen, D.; Pu, Z. H.; Wang, P. Y.; Lu, R. H.; Zeng, W. H.; Wu, D. L.; Yao, Y. T.; Zhu, J. W.; Yu, J.; Ji, P. X. et al. Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal. 2022, 12, 2623–2631.
Liu, Z.; Zeng, L. L.; Yu, J. Y.; Yang, L. J.; Zhang, J.; Zhang, X. L.; Han, F.; Zhao, L. L.; Li, X.; Liu, H. et al. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction. Nano Energy 2021, 85, 105940.
Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.
Gao, Y. Y.; Qian, S.; Wang, H. J.; Yuan, W. Z.; Fan, Y.; Cheng, N. Y.; Xue, H. G.; Jiang, T. F.; Tian, J. Q. Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2023, 320, 122014.
Fu, H. Q.; Zhou, M.; Liu, P. F.; Liu, P. R.; Yin, H. J.; Sun, K. Z.; Yang, H. G.; Al-Mamun, M.; Hu, P. J.; Wang, H. F. et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 2022, 144, 6028–6039.
Wang, X. Y.; He, Y. X.; Zhang, Q. Z.; Sun, S. J.; Li, Z. X.; Cai, Z. W.; Yang, C. X.; Yue, M.; Zhang, M.; Wang, H. F. et al. Hydrogen spillover boosted hydrogen evolution electrocatalysis over Pd@CoP in alkaline seawater. ACS Mater. Lett. 2024, 6, 3970–3976.
Li, T. S.; Zhao, X. P.; Sendeku, M. G.; Zhang, X. H.; Xu, L.; Wang, Z. L.; Wang, S. Y.; Duan, X. X.; Liu, H.; Liu, W. et al. Phosphate-decorated Ni3Fe-LDHs@CoP x nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.