PDF (27.4 MB)
Collect
Submit Manuscript
Research Article | Open Access

Facilitated water dissociation by coupling bimetallic phosphide with manganese oxide to enhance alkaline hydrogen evolution

Xiaolan Tang1Na Yang1Zixiao Li2Xun He3Qiuying Dai1Hefeng Wang2Yongchao Yao3Yujie Yuan1Hong Tang1Dongdong Zheng2Shengjun Sun2Asmaa Farouk4Mohamed S. Hamdy4Xiaobin Niu1 ()Tingshuai Li1Xuping Sun2,3 ()Bo Tang2,5 ()
School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, China
College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan 250014, China
Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu 610041, China
Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413 Abha, Saudi Arabia
Laoshan Laboratory, Qingdao 266237, China
Show Author Information

Graphical Abstract

View original image Download original image
Manganese oxide nanoparticles decorated nickel-cobalt phosphide nanoarray supported on nickel foam (MnOx@NiCoP/NF) acts as a superb cathode for the hydrogen evolution reaction in alkaline medium, capable of demanding overpotentials of 171 and 193 mV to achieve current densities of 500 and 1000 mA·cm−2, respectively. It also maintains long-term stability over 600 h at 1000 mA·cm−2.

Abstract

Fabricating catalysts with efficient water dissociation and robust stability is key to advancing the industrialization of the alkaline hydrogen evolution reaction (HER). Establishing an effective phosphide/oxide interface is a feasible way to improve the HER performance of the catalyst in an alkaline medium, but it remains challenging. Here, we adopt that manganese oxide nanoparticles decorated on nickel-cobalt phosphide nanowire array on nickel foam (MnOx@NiCoP/NF) via a surface modification strategy that shifts the d-band center downward, promoting the water dissociation and hydrogen intermediate binding. Moreover, MnOx makes the surface of NiCoP rougher, facilitating bubble release and improving the array stability. Consequently, MnOx@NiCoP/NF achieves industrial current densities of 500 and 1000 mA·cm−2 with overpotentials of 171 and 193 mV, respectively, while maintaining stable operation for over 600 h at 1000 mA·cm−2 in 1 M KOH. Additionally, an anion exchange membrane electrolyzer with the catalyst was fabricated and shows potential for practical applications.

Electronic Supplementary Material

Download File(s)
7136_ESM.pdf (2.8 MB)

References

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Aslam, S.; Rani, S.; Lal, K.; Fatima, M.; Hardwick, T.; Shirinfar, B.; Ahmed, N. Electrochemical hydrogen production: Sustainable hydrogen economy. Green Chem. 2023, 25, 9543–9573.

[3]

Turner, J. A. Sustainable hydrogen production. Science 2004, 305, 972–974.

[4]

Wang, C.; Li, W.; Wang, X. D.; Yu, N.; Sun, H. X.; Geng, B. Y. Open N-doped carbon coated porous molybdenum phosphide nanorods for synergistic catalytic hydrogen evolution reaction. Nano Res. 2022, 15, 1824–1830.

[5]

Li, C. Q.; Kim, S. H.; Lim, H. Y.; Sun, Q. K.; Jiang, Y.; Noh, H. J.; Kim, S. J.; Baek, J.; Kwak, S. K.; Baek, J. B. Self-accommodation induced electronic metal-support interaction on ruthenium site for alkaline hydrogen evolution reaction. Adv. Mater. 2023, 35, 2301369.

[6]

Zhang, L. L.; Wang, Z. P.; Zhang, J. T.; Lin, Z. P.; Zhang, Q. H.; Zhong, W. W.; Wu, G. F. High activity and stability in Ni2P/(Co, Ni)OOH heterointerface with a multiple-hierarchy structure for alkaline hydrogen evolution reaction. Nano Res. 2023, 16, 6552–6559.

[7]

Liang, J.; Li, J.; Dong, H. L.; Li, Z. X. Z.; He, X.; Wang, Y.; Yao, Y. C.; Ren, Y. C.; Sun, S. J.; Luo, Y. S. et al. Aqueous alternating electrolysis prolongs electrode lifespans under harsh operation conditions. Nat. Commun. 2024, 15, 6208.

[8]

Teng, X. A.; Wang, Z. B.; Wu, Y. S.; Zhang, Y.; Yuan, B.; Xu, Y. Y.; Wang, R. M.; Shan, A. X. Enhanced alkaline hydrogen evolution reaction of MoO2/Ni3S2 nanorod arrays by interface engineering. Nano Energy 2024, 122, 109299.

[9]

Zhang, R.; Ren, X.; Hao, S.; Ge, R. X.; Liu, Z. A.; Asiri, A. M.; Chen, L.; Zhang, Q. J.; Sun, X. P. Selective phosphidation: An effective strategy toward CoP/CeO2 interface engineering for superior alkaline hydrogen evolution electrocatalysis. J. Mater. Chem. A 2018, 6, 1985–1990.

[10]

Zhu, Y. M.; Klingenhof, M.; Gao, C. L.; Koketsu, T.; Weiser, G.; Pi, Y. C.; Liu, S. H.; Sui, L. J.; Hou, J. R.; Li, J. Y. et al. Facilitating alkaline hydrogen evolution reaction on the hetero-interfaced Ru/RuO2 through Pt single atoms doping. Nat. Commun. 2024, 15, 1447.

[11]

Sun, J. P.; Hu, X. T.; Huang, Z. D.; Huang, T. X.; Wang, X. K.; Guo, H. L.; Dai, F. N.; Sun, D. F. Atomically thin defect-rich Ni-Se-S hybrid nanosheets as hydrogen evolution reaction electrocatalysts. Nano Res. 2020, 13, 2056–2062.

[12]

Liu, T. T.; Liu, D. N.; Qu, F. L.; Wang, D. X.; Zhang, L.; Ge, R. X.; Hao, S.; Ma, Y. J.; Du, G.; Asiri, A. M. et al. Enhanced electrocatalysis for energy-efficient hydrogen production over CoP catalyst with nonelectroactive Zn as a promoter. Adv. Energy Mater. 2017, 7, 1700020.

[13]

Zhang, H. J.; Li, X. P.; Hähnel, A.; Naumann, V.; Lin, C.; Azimi, S.; Schweizer, S. L.; Maijenburg, A. W.; Wehrspohn, R. B. Bifunctional heterostructure assembly of NiFe LDH nanosheets on NiCoP nanowires for highly efficient and stable overall water splitting. Adv. Funct. Mater. 2018, 28, 1706847.

[14]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[15]

Huang, C. Y.; Xia, Z. H.; Wang, J.; Zhang, J.; Zhao, C. F.; Zou, X. L.; Mu, S. C.; Zhang, J. J.; Lu, X. G.; Fan, H. J. et al. Highly efficient and stable electrocatalyst for hydrogen evolution by molybdenum doped Ni-Co phosphide nanoneedles at high current density. Nano Res. 2024, 17, 1066–1074.

[16]

Liu, D.; Xu, G. Y.; Yang, H.; Wang, H. T.; Xia, B. Y. Rational design of transition metal phosphide-based electrocatalysts for hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2208358.

[17]

Liu, X. B.; Yu, Q. P.; Qu, X. Y.; Wang, X. P.; Chi, J. Q.; Wang, L. Manipulating electron redistribution in Ni2P for enhanced alkaline seawater electrolysis. Adv. Mater. 2024, 36, 2307395.

[18]

Chen, D.; Bai, H. W.; Zhu, J. W.; Wu, C.; Zhao, H. Y.; Wu, D. L.; Jiao, J. X.; Ji, P. X.; Mu, S. C. Multiscale hierarchical structured NiCoP enabling ampere-level water splitting for multi-scenarios green energy-to-hydrogen systems. Adv. Energy Mater. 2023, 13, 2300499.

[19]

Ma, B.; Yang, Z. C.; Chen, Y. T.; Yuan, Z. H. Nickel cobalt phosphide with three-dimensional nanostructure as a highly efficient electrocatalyst for hydrogen evolution reaction in both acidic and alkaline electrolytes. Nano Res. 2019, 12, 375–380.

[20]

Xiong, H.; Du, C. F.; Ma, Z. L.; Zhi, R. C.; Hao, S. S.; Zhao, X. Y.; Liu, Z.; Xu, F.; Wang, H. Q. Rational design of multiple heterostructures with synergistic effect for efficient and stable hydrogen evolution toward industrial alkaline water splitting. Adv. Funct. Mater. 2024, 34, 2402298.

[21]

Kirubasankar, B.; Kwon, J.; Hong, S.; Won, Y. S.; Choi, S. H.; Lee, J.; Kim, J. W.; Kim, K. K.; Kim, S. M. A robust and highly active bimetallic phosphide/oxide heterostructure electrocatalyst for efficient industrial-scale hydrogen production. Nano Energy 2024, 128, 109805.

[22]

Zhu, Y. L.; Lin, Q.; Zhong, Y. J.; Tahini, H. A.; Shao, Z. P.; Wang, H. T. Metal oxide-based materials as an emerging family of hydrogen evolution electrocatalysts. Energy Environ. Sci. 2020, 13, 3361–3392.

[23]

Dinh, C. T.; Jain, A.; De Arquer, F. P. G.; De Luna, P.; Li, J.; Wang, N.; Zheng, X. L.; Cai, J.; Gregory, B. Z.; Voznyy, O. et al. Multi-site electrocatalysts for hydrogen evolution in neutral media by destabilization of water molecules. Nat. Energy 2019, 4, 107–114.

[24]

Luo, Y. Z.; Wu, S. S.; Wang, P.; Ranganathan, H.; Shi, Z. C. Interface engineering of Ni2P/MoO x decorated NiFeP nanosheets for enhanced alkaline hydrogen evolution reaction at high current densities. J. Colloid Interface Sci. 2023, 648, 551–557.

[25]

Wang, A. Q.; Long, G. F.; Chen, J.; An, X. R.; Yao, T. T.; Li, C. Electrocatalysts with highly dispersed cerium in nickel matrix for hydrogen evolution in alkaline electrolyte. Adv. Energy Mater. 2024, 14, 2400647.

[26]

Song, K.; Zhang, H. H.; Lin, Z. P.; Wang, Z. P.; Zhang, L. L.; Shi, X. X.; Shen, S. J.; Chen, S. C.; Zhong, W. W. Interfacial engineering of cobalt thiophosphate with strain effect and modulated electron structure for boosting electrocatalytic hydrogen evolution reaction. Adv. Funct. Mater. 2024, 34, 2312672.

[27]

Kong, S.; Li, A. L.; Long, J.; Adachi, K.; Hashizume, D.; Jiang, Q. K.; Fushimi, K.; Ooka, H.; Xiao, J. P.; Nakamura, R. Acid-stable manganese oxides for proton exchange membrane water electrolysis. Nat. Catal. 2024, 7, 252–261.

[28]

Xiao, X.; Zhang, Z. W.; Wu, Y. C.; Xu, J. W.; Gao, X.; Xu, R.; Huang, W. X.; Ye, Y. S.; Oyakhire, S. T.; Zhang, P. et al. Ultrahigh-loading manganese-based electrodes for aqueous batteries via polymorph tuning. Adv. Mater. 2023, 35, 2211555.

[29]

Wang, K.; He, S.; Li, B. X.; Du, H. F.; Wang, T. F.; Du, Z. Z.; Xie, L. H.; Ai, W. Relaying alkaline hydrogen evolution over locally amorphous Ni/Co-based phosphides constructed by diffusion-limited phase-transition. Appl. Catal. B: Environ. 2023, 339, 123136.

[30]

Wang, P.; Luo, Y. Z.; Zhang, G. X.; Wu, M. J.; Chen, Z. S.; Sun, S. H.; Shi, Z. C. MnO x -decorated nickel-iron phosphides nanosheets: Interface modifications for robust overall water splitting at ultra-high current densities. Small 2022, 18, 2105803.

[31]

Han, X. P.; He, G. W.; He, Y.; Zhang, J. F.; Zheng, X. R.; Li, L. L.; Zhong, C.; Hu, W. B.; Deng, Y. D.; Ma, T. Y. Engineering catalytic active sites on cobalt oxide surface for enhanced oxygen electrocatalysis. Adv. Energy Mater. 2018, 8, 1702222.

[32]

Mishra, I. K.; Zhou, H. Q.; Sun, J. Y.; Qin, F.; Dahal, K.; Bao, J. M.; Chen, S.; Ren, Z. F. Hierarchical CoP/Ni5P4/CoP microsheet arrays as a robust pH-universal electrocatalyst for efficient hydrogen generation. Energy Environ. Sci. 2018, 11, 2246–2252.

[33]

Wang, Z. Y.; Liu, S. L.; Du, J. Y.; Xing, Y. C.; Hu, Y. L.; Ma, Y. J.; Lu, X. Y.; Wang, C. Iron-doped nickel phosphide hollow nanospheres synthesized by solvothermal phosphidization of layered double hydroxides for electrocatalytic oxygen evolution. Green Chem. 2024, 26, 7779–7788.

[34]

Du, C.; Yang, L.; Yang, F. L.; Cheng, G. Z.; Luo, W. Nest-like NiCoP for highly efficient overall water splitting. ACS Catal. 2017, 7, 4131–4137.

[35]

Zhang, Y. Z.; Zhu, Z. Z.; Guo, X.; Qi, J. Y.; Li, X. Plasma-assisted seconds-level-impregnated preparation of bifunctional N-doped NiCoP with O vacancies enhancement: Driving efficient water splitting. Chem. Eng. J. 2023, 452, 139230.

[36]

Yang, M.; Jiang, Y. M.; Qu, M. J.; Qin, Y. C.; Wang, Y.; Shen, W.; He, R. X.; Su, W.; Li, M. Strong electronic couple engineering of transition metal phosphides-oxides heterostructures as multifunctional electrocatalyst for hydrogen production. Appl. Catal. B: Environ. 2020, 269, 118803.

[37]

Xiong, Y.; Xu, L. L.; Jin, C. D.; Sun, Q. F. Interface-engineered atomically thin Ni3S2/MnO2 heterogeneous nanoarrays for efficient overall water splitting in alkaline media. Appl. Catal. B: Environ. 2019, 254, 329–338.

[38]

Gu, H. Q.; Yang, X. H.; Chen, S.; Zhang, W. M.; Yang, H. Y.; Li, Z. Y. Oxygen vacancies boosted proton intercalation kinetics for aqueous aluminum-manganese batteries. Nano Lett. 2023, 23, 11842–11849.

[39]

Chen, D.; Pu, Z. H.; Wang, P. Y.; Lu, R. H.; Zeng, W. H.; Wu, D. L.; Yao, Y. T.; Zhu, J. W.; Yu, J.; Ji, P. X. et al. Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal. 2022, 12, 2623–2631.

[40]

Liu, Z.; Zeng, L. L.; Yu, J. Y.; Yang, L. J.; Zhang, J.; Zhang, X. L.; Han, F.; Zhao, L. L.; Li, X.; Liu, H. et al. Charge redistribution of Ru nanoclusters on Co3O4 porous nanowire via the oxygen regulation for enhanced hydrogen evolution reaction. Nano Energy 2021, 85, 105940.

[41]

Zhou, S. Z.; Jang, H.; Qin, Q.; Hou, L. Q.; Kim, M. G.; Liu, S. G.; Liu, X. E.; Cho, J. Boosting hydrogen evolution reaction by phase engineering and phosphorus doping on Ru/P-TiO2. Angew. Chem., Int. Ed. 2022, 61, e202212196.

[42]

Gao, Y. Y.; Qian, S.; Wang, H. J.; Yuan, W. Z.; Fan, Y.; Cheng, N. Y.; Xue, H. G.; Jiang, T. F.; Tian, J. Q. Boron-doping on the surface mediated low-valence Co centers in cobalt phosphide for improved electrocatalytic hydrogen evolution. Appl. Catal. B: Environ. 2023, 320, 122014.

[43]

Fu, H. Q.; Zhou, M.; Liu, P. F.; Liu, P. R.; Yin, H. J.; Sun, K. Z.; Yang, H. G.; Al-Mamun, M.; Hu, P. J.; Wang, H. F. et al. Hydrogen spillover-bridged Volmer/Tafel processes enabling ampere-level current density alkaline hydrogen evolution reaction under low overpotential. J. Am. Chem. Soc. 2022, 144, 6028–6039.

[44]

Wang, X. Y.; He, Y. X.; Zhang, Q. Z.; Sun, S. J.; Li, Z. X.; Cai, Z. W.; Yang, C. X.; Yue, M.; Zhang, M.; Wang, H. F. et al. Hydrogen spillover boosted hydrogen evolution electrocatalysis over Pd@CoP in alkaline seawater. ACS Mater. Lett. 2024, 6, 3970–3976.

[45]

Li, T. S.; Zhao, X. P.; Sendeku, M. G.; Zhang, X. H.; Xu, L.; Wang, Z. L.; Wang, S. Y.; Duan, X. X.; Liu, H.; Liu, W. et al. Phosphate-decorated Ni3Fe-LDHs@CoP x nanoarray for near-neutral seawater splitting. Chem. Eng. J. 2023, 460, 141413.

Nano Research
Article number: 94907136
Cite this article:
Tang X, Yang N, Li Z, et al. Facilitated water dissociation by coupling bimetallic phosphide with manganese oxide to enhance alkaline hydrogen evolution. Nano Research, 2025, 18(2): 94907136. https://doi.org/10.26599/NR.2025.94907136
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return