In response to alleviate the escalating environmental pollution and energy scarcity, the development of a cost-effective, efficient and stable bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) electrochemical catalyst for new energy conversion devices holds significant value. In this context, we present a two-step hydrothermal/annealing synthesis approach of CoFe alloy nanoparticles on nitrogen-doped ultra-thin carbon nanosheets as an excellent ORR/OER bifunctional catalyst. The hydrothermal process facilitates the intercalation of CoFe layered double hydroxide (CoFe LDH) onto the nitrogen-doped ultra-thin carbon layer, followed by an in-situ transformation into carbon-coated nano-alloy particles (Co3Fe7@NCNS) during high-temperature annealing. Co3Fe7@NCNS exhibits exceptional ORR activity (onset potential (Eonset) = 0.962 V, half-wave potential (E1/2) = 0.869 V) and bifunctional electrocatalytic performance, accompanied by a low reversible overvoltage of 0.82 V. Combining X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations, we elucidate that the strong interactions between the synthesized Co3Fe7@NCNS alloy particles optimize the adsorption energy of oxygen intermediates, thereby playing a crucial role in enhancing catalytic activity. Furthermore, the Co3Fe7@NCNS-equipped Zn-air battery demonstrates a higher open-circuit voltage of 1.46 V and remarkable power density of 202.8 mW·cm−2. It also exhibits excellent cycling stability, with a high specific capacity of 779.2 mA·h·g−1, outperforming that of the Pt/C-RuO2 counterpart.
Bi, X. X.; Jiang, Y.; Chen, R. T.; Du, Y. C.; Zheng, Y.; Yang, R.; Wang, R. Y.; Wang, J. T.; Wang, X.; Chen, Z. W. Rechargeable zinc-air versus lithium-air battery: From fundamental promises toward technological potentials. Adv. Energy Mater. 2024, 14, 2302388.
Nazir, G.; Rehman, A.; Lee, J. H.; Kim, C. H.; Gautam, J.; Heo, K.; Hussain, S.; Ikram, M.; AlObaid, A. A.; Lee, S. Y. et al. A review of rechargeable zinc-air batteries: Recent progress and future perspectives. Nano-Micro Lett. 2024, 16, 138.
Liu, H. B.; Xie, R. X.; Niu, Z. Q.; Jia, Q. H.; Yang, L.; Wang, S. T.; Cao, D. P. Two-in-one strategy to construct bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Chin. J. Catal. 2022, 43, 2906–2912.
Meng, H. L.; Lin, S. Y.; Cao, Y.; Wang, A. J.; Zhang, L.; Feng, J. J. CoFe alloy embedded in N-doped carbon nanotubes derived from triamterene as a highly efficient and durable electrocatalyst beyond commercial Pt/C for oxygen reduction. J. Colloid Interface Sci. 2021, 604, 856–865.
Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.
Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.
An, Z.; Li, H. Q.; Zhang, X. M.; Xu, X. L.; Xia, Z. X.; Yu, S. S.; Chu, W. L.; Wang, S. L.; Sun, G. Q. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022, 12, 3302–3308.
Nie, Y.; Sun, Y. J.; Song, B. Y.; Meyer, Q.; Liu, S. Y.; Guo, H. Y.; Tao, L.; Lin, F. X.; Luo, M. C.; Zhang, Q. H. et al. Low-electronegativity Mn-contraction of PtMn nanodendrites boosts oxygen reduction durability. Angew. Chem., Int. Ed. 2024, 63, e202317987.
Chen, Z. G.; Zhao, J.; Jin, C.; Liu, J. J. Butterfly effect of electron donor from monoatomic cobalt in few-atom platinum clusters: Boosting electrocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 37727–37737.
Cao, D. L.; Mu, Y. W.; Liu, L. J.; Mou, Z. X.; Chen, S.; Yan, W. J.; Zhou, H. Q.; Chan, T. S.; Chang, L. Y.; Song, L. et al. Axially modified square-pyramidal CoN4–F1 sites enabling high-performance Zn-air batteries. ACS Nano 2024, 18, 11474–11486.
Chen, P. Z.; Tong, Y.; Wu, C. Z.; Xie, Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc. Chem. Res. 2018, 51, 2857–2866.
Zhang, S.; Wang, W.; Hu, F.; Mi, Y.; Wang, S.; Liu, Y.; Ai, X.; Fang, J.; Li, H.; Zhai, T. 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA·cm−2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020, 12, 140.
Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.
Sun, Y. Q.; Ouyang, Y. M.; Luo, J. Q.; Cao, H. H.; Li, X.; Ma, J. W.; Liu, J.; Wang, Y. H.; Lu, L. Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts. Chin. Chem. Lett. 2021, 32, 92–98.
Zhu, S.; Ding, L. T.; Zhang, X. H.; Wang, K.; Wang, X.; Yang, F.; Han, G. Y. Biaxially-strained phthalocyanine at polyoxometalate@carbon nanotube heterostructure boosts oxygen reduction catalysis. Angew. Chem. 2023, 135, e202309545.
Li, L. B.; Tang, X. N.; Huang, S. H.; Lu, C. B.; Lützenkirchen-Hecht, D.; Yuan, K.; Zhuang, X. D.; Chen, Y. W. Longitudinally grafting of graphene with iron phthalocyanine-based porous organic polymer to boost oxygen electroreduction. Angew. Chem., Int. Ed. 2023, 62, e202301642.
Li, J. K.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I. et al. Identification of durable and non-durable FeN x sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 2021, 4, 10–19.
Li, H.; Shu, X. X.; Tong, P. R.; Zhang, J. H.; An, P. F.; Lv, Z. X.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe–Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn-air batteries. Small 2021, 17, 2102002.
Wang, J. B.; Zhang, Y. N.; Guo, X.; Liao, S. Q.; Lv, P. F.; Wei, Q. F. FeCo/N-co-doped 3D carbon nanofibers as efficient bifunctional oxygen electrocatalyst for Zn-air batteries. Nanoscale 2023, 15, 625–630.
Hu, J.; Zhang, C. X.; Sun, M. Z.; Qi, Q. L.; Luo, S. X.; Song, H. C.; Xiao, J. Y.; Huang, B. L.; Leung, M. K. H.; Zhang, Y. J. Ultrastable bimetallic Fe2Mo for efficient oxygen reduction reaction in pH-universal applications. Nano Res. 2022, 15, 4950–4957.
Pei, Z. H.; Lu, X. F.; Zhang, H. B.; Li, Y. X.; Luan, D. Y.; Lou, X. W. Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem., Int. Ed. 2022, 134, e202207537.
Tian, Y. H.; Wu, Z. Z.; Li, M.; Sun, Q.; Chen, H.; Yuan, D. J.; Deng, D.; Johannessen, B.; Wang, Y.; Zhong, Y. L. et al. Atomic modulation and structure design of Fe-N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn-air batteries. Adv. Funct. Mater. 2022, 32, 2209273.
Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.
Deng, C.; Tan, J. J.; Toe, C. Y.; Li, X.; Li, G. D.; Jiang, X. X.; Wei, S. M.; Yang, H. P.; Hu, Q.; He, C. X. Achieving efficient oxygen reduction on ultra-low metal-loaded electrocatalysts by constructing well-dispersed bimetallic sites and interconnected porous channels. J. Mater. Chem. A 2022, 10, 17217–17224.
Chang, H.; Zhao, L. L.; Zhao, S.; Liu, Z. L.; Wang, P. F.; Xie, Y.; Yi, T. F. Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery. J. Energy Chem. 2024, 93, 400–410.
Wen, J. K.; Li, X. F.; Liu, Y. J.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M. Facile crafting of ultralong N-doped carbon nanotube encapsulated with FeCo nanoparticles as bifunctional electrocatalyst for rechargeable zinc-air batteries. Microporous Mesoporous Mater. 2022, 336, 111850.
Li, Z. Y.; Yang, H. Q.; Sun, H.; Liang, S.; Lu, G. L.; Liu, Z. N.; Kou, S. Q. Highly nitrogen-doped carbon nanotube nanoarrays as self-supported bifunctional electrocatalysts for rechargeable and flexible zinc-air batteries. ACS Sustain. Chem. Eng. 2021, 9, 4498–4508.
Huang, W. F.; Hai, B.; Su, G. E.; Mao, H. L.; Li, J. F. P-doped Fe–N–C catalysts as advanced bifunctional electrocatalyst for ORR, OER and Zn-air batteries. Mater. Lett. 2024, 360, 135976.
Xia, J. Y.; Li, C.; Gong, Y. Y.; Niu, L. Y.; Chen, M. G.; Xu, S. Q. Designing of highly-efficient oxygen evolution reaction electrocatalyst FeCo-hydroxyl phosphates: Theory and experiment. Chem. Eng. J. 2022, 446, 137151.
Cai, S. C.; Meng, Z. H.; Li, G. J.; An, Y.; Cheng, Y. P.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery. Nano Res. 2023, 16, 5887–5893.
Hao, X. Q.; Jiang, Z. Q.; Zhang, B. A.; Tian, X. N.; Song, C. S.; Wang, L. K.; Maiyalagan, T.; Hao, X. G.; Jiang, Z. J. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc-air batteries. Adv. Sci. 2021, 8, 2004572.
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.
Liu, X. P.; Liu, Y. P.; Zhang, C. C.; Chen, Y.; Luo, G. Y.; Wang, Z. T.; Wang, D. L.; Gao, S. Y. N, S co-doped hollow carbon nanocages confined Fe, Co bimetallic sites for bifunctional oxygen electrocatalysis. Chem. Eng. J. 2023, 473, 145135.
Lin, L. G.; Xue, P.; Cui, X. M.; Liu, J. H.; Liu, J. J.; Tang, M.; Wang, Z. B. Controllable construction of FeCo nanoparticles embedded 3D porous N-doped carbon nanonetworks as high efficiency bifunctional electrocatalysts for Zn-air batteries. J. Alloys Compd. 2022, 909, 164625.
Sun, L.; Dang, Y.; Wu, A. P.; Tian, C. G.; Wang, D. X.; Yan, H. J.; Gao, Y. C.; Fu, H. G. Synchronous regulation of morphology and electronic structure of FeNi–P nanosheet arrays by Zn implantation for robust overall water splitting. Nano Res. 2023, 16, 5733–5742.
Fuertes, A. B.; Ferrero, G. A.; Sevilla, M. One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. J. Mater. Chem. A 2014, 2, 14439–14448.
Luo, J. Q.; Sun, Y. Q.; Liu, P. L.; Zhong, S. M.; Li, Y. G.; Zhang, R. L.; Zhang, P.; Chi, Y. L.; Xu, H.; Wei, Y. C. et al. Nitrogen-containing-defect-site-assisted H2O adsorption and dissociation on crystalline Ru nanoclusters by quasi-hydrogen bonds boosts alkaline hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2024, 12, 5319–5331.
Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.
Li, Z. T.; Wei, L. Q.; Jiang, W. J.; Hu, Z. P.; Luo, H.; Zhao, W. N.; Xu, T.; Wu, W. T.; Wu, M. B.; Hu, J. S. Chemical state of surrounding iron species affects the activity of Fe–N x for electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 2019, 251, 240–246.
Li, X.; Ma, J. W.; Luo, J. Q.; Cheng, S. T.; Gong, H. Z.; Liu, J.; Xu, C. M.; Zhao, Z.; Sun, Y. Q.; Song, W. Y. et al. Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction. Electrochim. Acta 2021, 393, 139051.
Luo, J. Q.; Liu, C. Y.; Zhang, R. L.; Sun, Y. Q.; Xu, H.; Hu, Q. Y.; Zhang, M. X.; Li, J.; Li, Z. X.; Song, W. Y. et al. Efficient contact between H2O and N-coordinate Ru nanoparticles in three-dimensionally ordered macro/mesoporous carbon boosting alkaline HER†. Chin. J. Chem. 2024, 42, 164–170.
Wang, Y. X.; Zhang, Y.; Xing, P. Y.; Li, X. Q.; Du, Q. Y.; Fan, X. Q.; Cai, Z. B.; Yin, R.; Yao, Y. G.; Gan, W. T. Self-encapsulation of high-entropy alloy nanoparticles inside carbonized wood for highly durable electrocatalysis. Adv. Mater. 2024, 36, 2402391.
Zheng, Y. J.; Wang, P.; Huang, W. H.; Chen, C. L.; Jia, Y. Y.; Dai, S.; Li, T.; Zhao, Y.; Qiu, Y. C.; Waterhouse, G. I. N. et al. Toward more efficient carbon-based electrocatalysts for hydrogen peroxide synthesis: Roles of cobalt and carbon defects in two-electron ORR catalysis. Nano Lett. 2023, 23, 1100–1108.
Wang, M.; Liu, B. L.; Zhang, H. Y.; Lu, Z. J.; Xie, J.; Cao, Y. L. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy. J. Colloid Interface Sci. 2024, 661, 681–689.
Xu, X. Q.; Xie, J. H.; Liu, B.; Wang, R. Y.; Liu, M. Y.; Zhang, J.; Liu, J.; Cai, Z.; Zou, J. L. PBA-derived FeCo alloy with core–shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2022, 316, 121687.
Chen, J. X.; Zhu, J.; Li, S. J.; Li, Z. L.; Wu, C. Z.; Wang, D.; Luo, Z. H.; Li, Y. B.; Luo, K. In situ construction of FeCo alloy nanoparticles embedded in nitrogen-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-air batteries. Dalt. Trans. 2022, 51, 14498–14507.
Park, J. H.; Ro, J. C.; Suh, S. J. FeCo nanoparticles with different compositions as electrocatalysts for oxygen evolution reaction in alkaline solution. Appl. Surf. Sci. 2022, 589, 153041.
Zhao, S. N.; Li, J. K.; Wang, R.; Cai, J. M.; Zang, S. Q. Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanoparticles for enhanced oxygen reduction. Adv. Mater. 2022, 34, 2107291.
Gomaa, H.; An, C. H.; Jiao, P. G.; Wu, W. L.; Alzahrani, H. A. H.; Shenashen, M. A.; Deng, Q. B.; Hu, N. Controllable synthesis of a hybrid mesoporous sheets-like Fe0.5NiS2@P,N-doped carbon electrocatalyst for alkaline oxygen evolution reaction. J. Colloid Interface Sci. 2024, 667, 166–174.
Wang, S. J.; Wang, H. Y.; Huang, C. Q.; Ye, P. C.; Luo, X. T.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl. Catal. B: Environ. 2021, 298, 120512.
Xie, D. Y.; Yu, D. S.; Hao, Y. N.; Han, S. L.; Li, G. H.; Wu, X. L.; Hu, F.; Li, L. L.; Chen, H. Y.; Liao, Y. F. et al. Dual-active sites engineering of N-doped hollow carbon nanocubes confining bimetal alloys as bifunctional oxygen electrocatalysts for flexible metal-air batteries. Small 2021, 17, e2007239.
Sun, Y. Q.; Luo, J. Q.; Zhang, M. X.; Li, J.; Yu, J. K.; Lu, S. Y.; Song, W. Y.; Wei, Y. C.; Li, Z. X.; Liu, J. Electron delocalization of Au nanoclusters triggered by Fe single atoms boosts alkaline overall water splitting. ACS Appl. Mater. Interfaces 2023, 15, 10696–10708.
Zhang, D.; Wang, Z. Y.; Liu, F. Z.; Yi, P. Y.; Peng, L. F.; Chen, Y.; Wei, L.; Li, H. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: From single- to dual-Sabatier optima. J. Am. Chem. Soc. 2024, 146, 3210–3219.