Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
In response to alleviate the escalating environmental pollution and energy scarcity, the development of a cost-effective, efficient and stable bifunctional oxygen reduction reaction/oxygen evolution reaction (ORR/OER) electrochemical catalyst for new energy conversion devices holds significant value. In this context, we present a two-step hydrothermal/annealing synthesis approach of CoFe alloy nanoparticles on nitrogen-doped ultra-thin carbon nanosheets as an excellent ORR/OER bifunctional catalyst. The hydrothermal process facilitates the intercalation of CoFe layered double hydroxide (CoFe LDH) onto the nitrogen-doped ultra-thin carbon layer, followed by an in-situ transformation into carbon-coated nano-alloy particles (Co3Fe7@NCNS) during high-temperature annealing. Co3Fe7@NCNS exhibits exceptional ORR activity (onset potential (Eonset) = 0.962 V, half-wave potential (E1/2) = 0.869 V) and bifunctional electrocatalytic performance, accompanied by a low reversible overvoltage of 0.82 V. Combining X-ray absorption fine structure (XAFS) spectroscopy and density functional theory (DFT) calculations, we elucidate that the strong interactions between the synthesized Co3Fe7@NCNS alloy particles optimize the adsorption energy of oxygen intermediates, thereby playing a crucial role in enhancing catalytic activity. Furthermore, the Co3Fe7@NCNS-equipped Zn-air battery demonstrates a higher open-circuit voltage of 1.46 V and remarkable power density of 202.8 mW·cm−2. It also exhibits excellent cycling stability, with a high specific capacity of 779.2 mA·h·g−1, outperforming that of the Pt/C-RuO2 counterpart.
Bi, X. X.; Jiang, Y.; Chen, R. T.; Du, Y. C.; Zheng, Y.; Yang, R.; Wang, R. Y.; Wang, J. T.; Wang, X.; Chen, Z. W. Rechargeable zinc-air versus lithium-air battery: From fundamental promises toward technological potentials. Adv. Energy Mater. 2024, 14, 2302388.
Nazir, G.; Rehman, A.; Lee, J. H.; Kim, C. H.; Gautam, J.; Heo, K.; Hussain, S.; Ikram, M.; AlObaid, A. A.; Lee, S. Y. et al. A review of rechargeable zinc-air batteries: Recent progress and future perspectives. Nano-Micro Lett. 2024, 16, 138.
Liu, H. B.; Xie, R. X.; Niu, Z. Q.; Jia, Q. H.; Yang, L.; Wang, S. T.; Cao, D. P. Two-in-one strategy to construct bifunctional oxygen electrocatalysts for rechargeable Zn-air battery. Chin. J. Catal. 2022, 43, 2906–2912.
Meng, H. L.; Lin, S. Y.; Cao, Y.; Wang, A. J.; Zhang, L.; Feng, J. J. CoFe alloy embedded in N-doped carbon nanotubes derived from triamterene as a highly efficient and durable electrocatalyst beyond commercial Pt/C for oxygen reduction. J. Colloid Interface Sci. 2021, 604, 856–865.
Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.
Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.
An, Z.; Li, H. Q.; Zhang, X. M.; Xu, X. L.; Xia, Z. X.; Yu, S. S.; Chu, W. L.; Wang, S. L.; Sun, G. Q. Structural evolution of a PtRh nanodendrite electrocatalyst and its ultrahigh durability toward oxygen reduction reaction. ACS Catal. 2022, 12, 3302–3308.
Nie, Y.; Sun, Y. J.; Song, B. Y.; Meyer, Q.; Liu, S. Y.; Guo, H. Y.; Tao, L.; Lin, F. X.; Luo, M. C.; Zhang, Q. H. et al. Low-electronegativity Mn-contraction of PtMn nanodendrites boosts oxygen reduction durability. Angew. Chem., Int. Ed. 2024, 63, e202317987.
Chen, Z. G.; Zhao, J.; Jin, C.; Liu, J. J. Butterfly effect of electron donor from monoatomic cobalt in few-atom platinum clusters: Boosting electrocatalysis. ACS Appl. Mater. Interfaces 2022, 14, 37727–37737.
Cao, D. L.; Mu, Y. W.; Liu, L. J.; Mou, Z. X.; Chen, S.; Yan, W. J.; Zhou, H. Q.; Chan, T. S.; Chang, L. Y.; Song, L. et al. Axially modified square-pyramidal CoN4–F1 sites enabling high-performance Zn-air batteries. ACS Nano 2024, 18, 11474–11486.
Chen, P. Z.; Tong, Y.; Wu, C. Z.; Xie, Y. Surface/interfacial engineering of inorganic low-dimensional electrode materials for electrocatalysis. Acc. Chem. Res. 2018, 51, 2857–2866.
Zhang, S.; Wang, W.; Hu, F.; Mi, Y.; Wang, S.; Liu, Y.; Ai, X.; Fang, J.; Li, H.; Zhai, T. 2D CoOOH sheet-encapsulated Ni2P into tubular arrays realizing 1000 mA·cm−2-level-current-density hydrogen evolution over 100 h in neutral water. Nano-Micro Lett. 2020, 12, 140.
Zhao, C. X.; Li, B. Q.; Liu, J. N.; Zhang, Q. Intrinsic electrocatalytic activity regulation of M–N–C single-atom catalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 4448–4463.
Sun, Y. Q.; Ouyang, Y. M.; Luo, J. Q.; Cao, H. H.; Li, X.; Ma, J. W.; Liu, J.; Wang, Y. H.; Lu, L. Biomass-derived nitrogen self-doped porous activation carbon as an effective bifunctional electrocatalysts. Chin. Chem. Lett. 2021, 32, 92–98.
Zhu, S.; Ding, L. T.; Zhang, X. H.; Wang, K.; Wang, X.; Yang, F.; Han, G. Y. Biaxially-strained phthalocyanine at polyoxometalate@carbon nanotube heterostructure boosts oxygen reduction catalysis. Angew. Chem. 2023, 135, e202309545.
Li, L. B.; Tang, X. N.; Huang, S. H.; Lu, C. B.; Lützenkirchen-Hecht, D.; Yuan, K.; Zhuang, X. D.; Chen, Y. W. Longitudinally grafting of graphene with iron phthalocyanine-based porous organic polymer to boost oxygen electroreduction. Angew. Chem., Int. Ed. 2023, 62, e202301642.
Li, J. K.; Sougrati, M. T.; Zitolo, A.; Ablett, J. M.; Oğuz, I. C.; Mineva, T.; Matanovic, I.; Atanassov, P.; Huang, Y.; Zenyuk, I. et al. Identification of durable and non-durable FeN x sites in Fe–N–C materials for proton exchange membrane fuel cells. Nat. Catal. 2021, 4, 10–19.
Li, H.; Shu, X. X.; Tong, P. R.; Zhang, J. H.; An, P. F.; Lv, Z. X.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe–Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn-air batteries. Small 2021, 17, 2102002.
Wang, J. B.; Zhang, Y. N.; Guo, X.; Liao, S. Q.; Lv, P. F.; Wei, Q. F. FeCo/N-co-doped 3D carbon nanofibers as efficient bifunctional oxygen electrocatalyst for Zn-air batteries. Nanoscale 2023, 15, 625–630.
Hu, J.; Zhang, C. X.; Sun, M. Z.; Qi, Q. L.; Luo, S. X.; Song, H. C.; Xiao, J. Y.; Huang, B. L.; Leung, M. K. H.; Zhang, Y. J. Ultrastable bimetallic Fe2Mo for efficient oxygen reduction reaction in pH-universal applications. Nano Res. 2022, 15, 4950–4957.
Pei, Z. H.; Lu, X. F.; Zhang, H. B.; Li, Y. X.; Luan, D. Y.; Lou, X. W. Highly efficient electrocatalytic oxygen evolution over atomically dispersed synergistic Ni/Co dual sites. Angew. Chem., Int. Ed. 2022, 134, e202207537.
Tian, Y. H.; Wu, Z. Z.; Li, M.; Sun, Q.; Chen, H.; Yuan, D. J.; Deng, D.; Johannessen, B.; Wang, Y.; Zhong, Y. L. et al. Atomic modulation and structure design of Fe-N4 modified hollow carbon fibers with encapsulated Ni nanoparticles for rechargeable Zn-air batteries. Adv. Funct. Mater. 2022, 32, 2209273.
Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo–nitrogen–carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.
Deng, C.; Tan, J. J.; Toe, C. Y.; Li, X.; Li, G. D.; Jiang, X. X.; Wei, S. M.; Yang, H. P.; Hu, Q.; He, C. X. Achieving efficient oxygen reduction on ultra-low metal-loaded electrocatalysts by constructing well-dispersed bimetallic sites and interconnected porous channels. J. Mater. Chem. A 2022, 10, 17217–17224.
Chang, H.; Zhao, L. L.; Zhao, S.; Liu, Z. L.; Wang, P. F.; Xie, Y.; Yi, T. F. Tuning interface mechanism of FeCo alloy embedded N,S-codoped carbon substrate for rechargeable Zn-air battery. J. Energy Chem. 2024, 93, 400–410.
Wen, J. K.; Li, X. F.; Liu, Y. J.; Yang, M.; Liu, B.; Chen, H. B.; Li, H. M. Facile crafting of ultralong N-doped carbon nanotube encapsulated with FeCo nanoparticles as bifunctional electrocatalyst for rechargeable zinc-air batteries. Microporous Mesoporous Mater. 2022, 336, 111850.
Li, Z. Y.; Yang, H. Q.; Sun, H.; Liang, S.; Lu, G. L.; Liu, Z. N.; Kou, S. Q. Highly nitrogen-doped carbon nanotube nanoarrays as self-supported bifunctional electrocatalysts for rechargeable and flexible zinc-air batteries. ACS Sustain. Chem. Eng. 2021, 9, 4498–4508.
Huang, W. F.; Hai, B.; Su, G. E.; Mao, H. L.; Li, J. F. P-doped Fe–N–C catalysts as advanced bifunctional electrocatalyst for ORR, OER and Zn-air batteries. Mater. Lett. 2024, 360, 135976.
Xia, J. Y.; Li, C.; Gong, Y. Y.; Niu, L. Y.; Chen, M. G.; Xu, S. Q. Designing of highly-efficient oxygen evolution reaction electrocatalyst FeCo-hydroxyl phosphates: Theory and experiment. Chem. Eng. J. 2022, 446, 137151.
Cai, S. C.; Meng, Z. H.; Li, G. J.; An, Y.; Cheng, Y. P.; Kan, E. J.; Ouyang, B.; Zhang, H. N.; Tang, H. L. Nitrogen doped porous carbon-based bifunctional oxygen electrocatalyst with controllable phosphorus content for zinc-air battery. Nano Res. 2023, 16, 5887–5893.
Hao, X. Q.; Jiang, Z. Q.; Zhang, B. A.; Tian, X. N.; Song, C. S.; Wang, L. K.; Maiyalagan, T.; Hao, X. G.; Jiang, Z. J. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc-air batteries. Adv. Sci. 2021, 8, 2004572.
Guo, D. H.; Shibuya, R.; Akiba, C.; Saji, S.; Kondo, T.; Nakamura, J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Science 2016, 351, 361–365.
Liu, X. P.; Liu, Y. P.; Zhang, C. C.; Chen, Y.; Luo, G. Y.; Wang, Z. T.; Wang, D. L.; Gao, S. Y. N, S co-doped hollow carbon nanocages confined Fe, Co bimetallic sites for bifunctional oxygen electrocatalysis. Chem. Eng. J. 2023, 473, 145135.
Lin, L. G.; Xue, P.; Cui, X. M.; Liu, J. H.; Liu, J. J.; Tang, M.; Wang, Z. B. Controllable construction of FeCo nanoparticles embedded 3D porous N-doped carbon nanonetworks as high efficiency bifunctional electrocatalysts for Zn-air batteries. J. Alloys Compd. 2022, 909, 164625.
Sun, L.; Dang, Y.; Wu, A. P.; Tian, C. G.; Wang, D. X.; Yan, H. J.; Gao, Y. C.; Fu, H. G. Synchronous regulation of morphology and electronic structure of FeNi–P nanosheet arrays by Zn implantation for robust overall water splitting. Nano Res. 2023, 16, 5733–5742.
Fuertes, A. B.; Ferrero, G. A.; Sevilla, M. One-pot synthesis of microporous carbons highly enriched in nitrogen and their electrochemical performance. J. Mater. Chem. A 2014, 2, 14439–14448.
Luo, J. Q.; Sun, Y. Q.; Liu, P. L.; Zhong, S. M.; Li, Y. G.; Zhang, R. L.; Zhang, P.; Chi, Y. L.; Xu, H.; Wei, Y. C. et al. Nitrogen-containing-defect-site-assisted H2O adsorption and dissociation on crystalline Ru nanoclusters by quasi-hydrogen bonds boosts alkaline hydrogen evolution reaction. ACS Sustain. Chem. Eng. 2024, 12, 5319–5331.
Deng, D. H.; Yu, L.; Chen, X. Q.; Wang, G. X.; Jin, L.; Pan, X. L.; Deng, J.; Sun, G. Q.; Bao, X. H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 371–375.
Li, Z. T.; Wei, L. Q.; Jiang, W. J.; Hu, Z. P.; Luo, H.; Zhao, W. N.; Xu, T.; Wu, W. T.; Wu, M. B.; Hu, J. S. Chemical state of surrounding iron species affects the activity of Fe–N x for electrocatalytic oxygen reduction. Appl. Catal. B: Environ. 2019, 251, 240–246.
Li, X.; Ma, J. W.; Luo, J. Q.; Cheng, S. T.; Gong, H. Z.; Liu, J.; Xu, C. M.; Zhao, Z.; Sun, Y. Q.; Song, W. Y. et al. Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction. Electrochim. Acta 2021, 393, 139051.
Luo, J. Q.; Liu, C. Y.; Zhang, R. L.; Sun, Y. Q.; Xu, H.; Hu, Q. Y.; Zhang, M. X.; Li, J.; Li, Z. X.; Song, W. Y. et al. Efficient contact between H2O and N-coordinate Ru nanoparticles in three-dimensionally ordered macro/mesoporous carbon boosting alkaline HER†. Chin. J. Chem. 2024, 42, 164–170.
Wang, Y. X.; Zhang, Y.; Xing, P. Y.; Li, X. Q.; Du, Q. Y.; Fan, X. Q.; Cai, Z. B.; Yin, R.; Yao, Y. G.; Gan, W. T. Self-encapsulation of high-entropy alloy nanoparticles inside carbonized wood for highly durable electrocatalysis. Adv. Mater. 2024, 36, 2402391.
Zheng, Y. J.; Wang, P.; Huang, W. H.; Chen, C. L.; Jia, Y. Y.; Dai, S.; Li, T.; Zhao, Y.; Qiu, Y. C.; Waterhouse, G. I. N. et al. Toward more efficient carbon-based electrocatalysts for hydrogen peroxide synthesis: Roles of cobalt and carbon defects in two-electron ORR catalysis. Nano Lett. 2023, 23, 1100–1108.
Wang, M.; Liu, B. L.; Zhang, H. Y.; Lu, Z. J.; Xie, J.; Cao, Y. L. High quality bifunctional cathode for rechargeable zinc-air batteries using N-doped carbon nanotubes constrained CoFe alloy. J. Colloid Interface Sci. 2024, 661, 681–689.
Xu, X. Q.; Xie, J. H.; Liu, B.; Wang, R. Y.; Liu, M. Y.; Zhang, J.; Liu, J.; Cai, Z.; Zou, J. L. PBA-derived FeCo alloy with core–shell structure embedded in 2D N-doped ultrathin carbon sheets as a bifunctional catalyst for rechargeable Zn-air batteries. Appl. Catal. B: Environ. 2022, 316, 121687.
Chen, J. X.; Zhu, J.; Li, S. J.; Li, Z. L.; Wu, C. Z.; Wang, D.; Luo, Z. H.; Li, Y. B.; Luo, K. In situ construction of FeCo alloy nanoparticles embedded in nitrogen-doped bamboo-like carbon nanotubes as a bifunctional electrocatalyst for Zn-air batteries. Dalt. Trans. 2022, 51, 14498–14507.
Park, J. H.; Ro, J. C.; Suh, S. J. FeCo nanoparticles with different compositions as electrocatalysts for oxygen evolution reaction in alkaline solution. Appl. Surf. Sci. 2022, 589, 153041.
Zhao, S. N.; Li, J. K.; Wang, R.; Cai, J. M.; Zang, S. Q. Electronically and geometrically modified single-atom Fe sites by adjacent Fe nanoparticles for enhanced oxygen reduction. Adv. Mater. 2022, 34, 2107291.
Gomaa, H.; An, C. H.; Jiao, P. G.; Wu, W. L.; Alzahrani, H. A. H.; Shenashen, M. A.; Deng, Q. B.; Hu, N. Controllable synthesis of a hybrid mesoporous sheets-like Fe0.5NiS2@P,N-doped carbon electrocatalyst for alkaline oxygen evolution reaction. J. Colloid Interface Sci. 2024, 667, 166–174.
Wang, S. J.; Wang, H. Y.; Huang, C. Q.; Ye, P. C.; Luo, X. T.; Ning, J. Q.; Zhong, Y. J.; Hu, Y. Trifunctional electrocatalyst of N-doped graphitic carbon nanosheets encapsulated with CoFe alloy nanocrystals: The key roles of bimetal components and high-content graphitic-N. Appl. Catal. B: Environ. 2021, 298, 120512.
Xie, D. Y.; Yu, D. S.; Hao, Y. N.; Han, S. L.; Li, G. H.; Wu, X. L.; Hu, F.; Li, L. L.; Chen, H. Y.; Liao, Y. F. et al. Dual-active sites engineering of N-doped hollow carbon nanocubes confining bimetal alloys as bifunctional oxygen electrocatalysts for flexible metal-air batteries. Small 2021, 17, e2007239.
Sun, Y. Q.; Luo, J. Q.; Zhang, M. X.; Li, J.; Yu, J. K.; Lu, S. Y.; Song, W. Y.; Wei, Y. C.; Li, Z. X.; Liu, J. Electron delocalization of Au nanoclusters triggered by Fe single atoms boosts alkaline overall water splitting. ACS Appl. Mater. Interfaces 2023, 15, 10696–10708.
Zhang, D.; Wang, Z. Y.; Liu, F. Z.; Yi, P. Y.; Peng, L. F.; Chen, Y.; Wei, L.; Li, H. Unraveling the pH-dependent oxygen reduction performance on single-atom catalysts: From single- to dual-Sabatier optima. J. Am. Chem. Soc. 2024, 146, 3210–3219.
431
Views
93
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).