Large-scale synthesis of high-quality two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), is a prerequisite for their lab-to-fab transition. It is crucial to systematically explore and understand the influence of key synthetic conditions on the nucleation, uniformity, and quality of MoS2 wafers. Here, we report the epitaxial growth of high-quality and uniform monolayer MoS2 films on 2-in c-plane sapphire by chemical vapor deposition (CVD) method under optimized growth conditions (0–1 mg NaCl, adequate S/Mo ratio, and the addition of 0–1 sccm O2). We systematically explore the influence of critical synthetic conditions on the nucleation, and stitching of MoS2 domains over the wafer scale, including the dosage of the alkali metal salt NaCl additive, the evaporation temperature of MoO3, the distance between MoO3 and the substrate, and the flow rate of O2. Among them, the dosage of NaCl and the S/Mo ratio have important influences on the quality and film coverage of MoS2, while the flow rate of O2 plays a key role in controlling the nucleation density and domain size. We further discovered that a-plane sapphire could easily guide the unidirectional growth of MoS2 without the need for other specific synthetic conditions compared with c-plane and m-plane sapphire. The field-effect transistors (FETs) fabricated from the full-coverage films show an average and the highest mobilities of 28.5 and around 45 cm2·V−1·s−1, respectively.
Desai, S. B.; Madhvapathy, S. R.; Sachid, A. B.; Llinas, J. P.; Wang, Q. X.; Ahn, G. H.; Pitner, G.; Kim, M. J.; Bokor, J.; Hu, C. M. et al. MoS2 transistors with 1-nanometer gate lengths. Science 2016, 354, 99–102.
Chen, M. L.; Sun, X. D.; Liu, H.; Wang, H. W.; Zhu, Q. B.; Wang, S. S.; Du, H. F.; Dong, B. J.; Zhang, J.; Sun, Y. et al. A FinFET with one atomic layer channel. Nat. Commun. 2020, 11, 1205.
Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A. Single-layer MoS2 nanopores as nanopower generators. Nature 2016, 536, 197–200.
Zhao, J.; Chen, W.; Meng, J. L.; Yu, H.; Liao, M. Z.; Zhu, J. Q.; Yang, R.; Shi, D. X.; Zhang, G. Y. Integrated flexible and high-quality thin film transistors based on monolayer MoS2. Adv. Electron. Mater. 2016, 2, 1500379.
Tao, L.; Chen, K.; Chen, Z. F.; Chen, W. J.; Gui, X. C.; Chen, H. J.; Li, X. M.; Xu, J. B. Centimeter-scale CVD growth of highly crystalline single-layer MoS2 film with spatial homogeneity and the visualization of grain boundaries. ACS Appl. Mater. Interfaces 2017, 9, 12073–12081.
Zhou, S. X.; Jiao, L. Y. Growth of single-crystalline transition metal dichalcogenides monolayers with large-size. Chem. Res. Chin. Univ. 2020, 36, 511–517.
Chang, M. C.; Ho, P. H.; Tseng, M. F.; Lin, F. Y.; Hou, C. H.; Lin, I. K.; Wang, H.; Huang, P. P.; Chiang, C. H.; Yang, Y. C. et al. Fast growth of large-grain and continuous MoS2 films through a self-capping vapor–liquid–solid method. Nat. Commun. 2020, 11, 3682.
Wu, F.; Tian, H.; Shen, Y.; Hou, Z.; Ren, J.; Gou, G. Y.; Sun, Y. B.; Yang, Y.; Ren, T. L. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 2022, 603, 259–264.
Liu, L. T.; Kong, L. G.; Li, Q. Y.; He, C. L.; Ren, L. W.; Tao, Q. Y.; Yang, X. D.; Lin, J.; Zhao, B.; Li, Z. W. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 2021, 4, 342–347.
He, Z. G.; Guan, H. Y.; Liang, X. J.; Chen, J. T.; Xie, M. Y.; Luo, K. W.; An, R.; Ma, L.; Ma, F. K.; Yang, T. F. et al. Broadband, polarization-sensitive, and self-powered high-performance photodetection of hetero-integrated MoS2 on lithium niobate. Research 2023, 6, 0199.
Tan, C.; Wu, H. J.; Zhao, M. M.; Jili, X. B.; Yang, L.; Gao, L. B.; Wang, Z. G. Gate-switchable BST ferroelectric MoS2 FETs for non-volatile digital memory and analog memristor. Adv. Funct. Mater. 2024, 34, 2405293.
Domke, K. F. Monitoring catalytic nanosites in action. Nat. Catal. 2024, 7, 613–614.
Lu, Y. C.; Huang, J. K.; Chao, K. Y.; Li, L. J.; Hu, V. P. H. Projected performance of Si- and 2D-material-based SRAM circuits ranging from 16 nm to 1 nm technology nodes. Nat. Nanotechnol. 2024, 19, 1066–1072.
Parker, M. 3D integration proceeds tier-by-tier. Nat. Electron. 2024, 7, 429.
Cui, M. Y.; Qian, L. L.; Lu, K.; Liu, J. J.; Chu, B. B.; Wu, X. F.; Dong, F. L.; Song, B.; He, Y. Defect-rich metastable MoS2 promotes macrophage reprogramming in breast cancer: A clinical perspective. Small 2024, 20, 2402101.
Zuo, Y. G.; Liu, C.; Ding, L. P.; Qiao, R. X.; Tian, J. P.; Liu, C.; Wang, Q. H.; Xue, G. D.; You, Y. L.; Guo, Q. L. et al. Robust growth of two-dimensional metal dichalcogenides and their alloys by active chalcogen monomer supply. Nat. Commun. 2022, 13, 1007.
Wang, Q. Q.; Tang, J.; Li, X. M.; Tian, J. P.; Liang, J.; Li, N.; Ji, D. P.; Xian, L. D.; Guo, Y. T.; Li, L. et al. Layer-by-layer epitaxy of multi-layer MoS2 wafers. Natl. Sci. Rev. 2022, 9, nwac077.
Yu, H.; Liao, M. Z.; Zhao, W. J.; Liu, G. D.; Zhou, X. J.; Wei, Z.; Xu, X. X.; Liu, K. H.; Hu, Z. H.; Deng, K. et al. Wafer-scale growth and transfer of highly-oriented monolayer MoS2 continuous films. ACS Nano 2017, 11, 12001–12007.
Yu, H.; Huang, L. F.; Zhou, L. Y.; Peng, Y. L.; Li, X. Z.; Yin, P.; Zhao, J. J.; Zhu, M. T.; Wang, S. P.; Liu, J. Y. et al. Eight in. wafer-scale epitaxial monolayer MoS2. Adv. Mater. 2024, 36, 2402855.
Kalanyan, B.; Kimes, W. A.; Beams, R.; Stranick, S. J.; Garratt, E.; Kalish, I.; Davydov, A. V.; Kanjolia, R. K.; Maslar, J. E. Rapid wafer-scale growth of polycrystalline 2H-MoS2 by pulsed metal-organic chemical vapor deposition. Chem. Mater. 2017, 29, 6279–6288.
Seol, M.; Lee, M. H.; Kim, H.; Shin, K. W.; Cho, Y.; Jeon, I.; Jeong, M.; Lee, H. I.; Park, J.; Shin, H. J. High-throughput growth of wafer-scale monolayer transition metal dichalcogenide via vertical ostwald ripening. Adv. Mater. 2020, 32, 2003542.
Kim, H.; Ovchinnikov, D.; Deiana, D.; Unuchek, D.; Kis, A. Suppressing nucleation in metal-organic chemical vapor deposition of MoS2 monolayers by alkali metal halides. Nano Lett. 2017, 17, 5056–5063.
Liu, L.; Huang, Y. Z.; Sha, J. J.; Chen, Y. F. Layer-controlled precise fabrication of ultrathin MoS2 films by atomic layer deposition. Nanotechnology 2017, 28, 195605.
Jurca, T.; Moody, M. J.; Henning, A.; Emery, J. D.; Wang, B. H.; Tan, J. M.; Lohr, T. L.; Lauhon, L. J.; Marks, T. J. Low-temperature atomic layer deposition of MoS2 films. Angew. Chem., Int. Ed. 2017, 56, 4991–4995.
Liu, H.; Chen, L.; Zhu, H.; Sun, Q. Q.; Ding, S. J.; Zhou, P.; Zhang, D. W. Atomic layer deposited 2D MoS2 atomic crystals: From material to circuit. Nano Res. 2020, 13, 1644–1650.
Wang, Q. Q.; Li, N.; Tang, J.; Zhu, J. Q.; Zhang, Q. H.; Jia, Q.; Lu, Y.; Wei, Z.; Yu, H.; Zhao, Y. C. et al. Wafer-scale highly oriented monolayer MoS2 with large domain sizes. Nano Lett. 2020, 20, 7193–7199.
Kim, K. S.; Lee, D.; Chang, C. S.; Seo, S.; Hu, Y. Q.; Cha, S.; Kim, H.; Shin, J.; Lee, J. H.; Lee, S. et al. Non-epitaxial single-crystal 2D material growth by geometric confinement. Nature 2023, 614, 88–94.
Xia, Y.; Chen, X. Y.; Wei, J. C.; Wang, S. Y.; Chen, S. Y.; Wu, S. M.; Ji, M. B.; Sun, Z. Z.; Xu, Z. H.; Bao, W. Z. et al. 12-inch growth of uniform MoS2 monolayer for integrated circuit manufacture. Nat. Mater. 2023, 22, 1324–1331.
Zhu, J. D.; Park, J. H.; Vitale, S. A.; Ge, W. J.; Jung, G. S.; Wang, J. T.; Mohamed, M.; Zhang, T. Y.; Ashok, M.; Xue, M. T. et al. Low-thermal-budget synthesis of monolayer molybdenum disulfide for silicon back-end-of-line integration on a 200 mm platform. Nat. Nanotechnol. 2023, 18, 456–463.
Yang, P. F.; Zou, X. L.; Zhang, Z. P.; Hong, M.; Shi, J. P.; Chen, S. L.; Shu, J. P.; Zhao, L. Y.; Jiang, S. L.; Zhou, X. B. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 2018, 9, 979.
Zhu, H. Y.; Nayir, N.; Choudhury, T. H.; Bansal, A.; Huet, B.; Zhang, K. Y.; Puretzky, A. A.; Bachu, S.; York, K.; Mc Knight, T. V. et al. Step engineering for nucleation and domain orientation control in WSe2 epitaxy on c-plane sapphire. Nat. Nanotechnol. 2023, 18, 1295–1302.
Chubarov, M.; Choudhury, T. H.; Hickey, D. R.; Bachu, S.; Zhang, T. Y.; Sebastian, A.; Bansal, A.; Zhu, H.; Y. Trainor, N. ; Das, S. et al. Wafer-scale epitaxial growth of unidirectional WS2 monolayers on sapphire. ACS Nano 2021, 15, 2532–2541.
Chiappe, D.; Ludwig, J.; Leonhardt, A.; El Kazzi, S.; Nalin Mehta, A.; Nuytten, T.; Celano, U.; Sutar, S.; Pourtois, G.; Caymax, M. et al. Layer-controlled epitaxy of 2D semiconductors: Bridging nanoscale phenomena to wafer-scale uniformity. Nanotechnology 2018, 29, 425602.
Zhu, J. T.; Xu, H.; Zou, G. F.; Zhang, W.; Chai, R. Q.; Choi, J.; Wu, J.; Liu, H. Y.; Shen, G. Z.; Fan, H. Y. MoS2-OH bilayer-mediated growth of inch-sized monolayer MoS2 on arbitrary substrates. J. Am. Chem. Soc. 2019, 141, 5392–5401.
Yang, P. F.; Liu, F. C.; Li, X.; Hu, J. Y.; Zhou, F.; Zhu, L. J.; Chen, Q.; Gao, P.; Zhang, Y. F. Highly reproducible epitaxial growth of wafer-scale single-crystal monolayer MoS2 on sapphire. Small Methods 2023, 7, 2300165.
Cun, H. Y.; Macha, M.; Kim, H.; Liu, K.; Zhao, Y. F.; LaGrange, T.; Kis, A.; Radenovic, A. Wafer-scale MOCVD growth of monolayer MoS2 on sapphire and SiO2. Nano Res. 2019, 12, 2646–2652.
Shi, Y. Y.; Groven, B.; Serron, J.; Wu, X. Y.; Nalin Mehta, A.; Minj, A.; Sergeant, S.; Han, H.; Asselberghs, I.; Lin, D. et al. Engineering wafer-scale epitaxial two-dimensional materials through sapphire template screening for advanced high-performance nanoelectronics. ACS Nano 2021, 15, 9482–9494.
Li, L.; Wang, Q. Q.; Wu, F. F.; Xu, Q. L.; Tian, J. P.; Huang, Z. H.; Wang, Q. H.; Zhao, X.; Zhang, Q. H.; Fan, Q. K. et al. Epitaxy of wafer-scale single-crystal MoS2 monolayer via buffer layer control. Nat. Commun. 2024, 15, 1825.
Liu, L.; Li, T. T.; Ma, L.; Li, W. S.; Gao, S.; Sun, W. J.; Dong, R. K.; Zou, X. L.; Fan, D. X.; Shao, L. W. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 2022, 605, 69–75.
Fu, J. H.; Min, J. C.; Chang, C. K.; Tseng, C. C.; Wang, Q. X.; Sugisaki, H.; Li, C. Y.; Chang, Y. M.; Alnami, I.; Syong, W. R. et al. Oriented lateral growth of two-dimensional materials on c-plane sapphire. Nat. Nanotechnol. 2023, 18, 1289–1294.
Lin, Y. C.; Jariwala, B.; Bersch, B. M.; Xu, K.; Nie, Y. F.; Wang, B. M.; Eichfeld, S. M.; Zhang, X. T.; Choudhury, T. H.; Pan, Y. et al. Realizing large-scale, electronic-grade two-dimensional semiconductors. ACS Nano 2018, 12, 965–975.
Li, T. T.; Guo, W.; Ma, L.; Li, W. S.; Yu, Z. H.; Han, Z.; Gao, S.; Liu, L.; Fan, D. X.; Wang, Z. X. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 2021, 16, 1201–1207.
Wang, J. H.; Xu, X. Z.; Cheng, T.; Gu, L. H.; Qiao, R. X.; Liang, Z. H.; Ding, D. D.; Hong, H.; Zheng, P. M.; Zhang, Z. B. et al. Dual-coupling-guided epitaxial growth of wafer-scale single-crystal WS2 monolayer on vicinal a-plane sapphire. Nat. Nanotechnol. 2022, 17, 33–38.
Zhou, Z. J.; Hou, F. C.; Huang, X. L.; Wang, G.; Fu, Z. H.; Liu, W. L.; Yuan, G. W.; Xi, X. X.; Xu, J.; Lin, J. H. et al. Stack growth of wafer-scale van der Waals superconductor heterostructures. Nature 2023, 621, 499–505.
Lee, C.; Yan, H. G.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.
Wong, K. C.; Lu, X.; Cotter, J.; Eadie, D. T.; Wong, P. C.; Mitchell, K. A. R. Surface and friction characterization of MoS2 and WS2 third body thin films under simulated wheel/rail rolling-sliding contact. Wear 2008, 264, 526–534.
Yang, Y.; Liang, Q. R.; Zhu, C. L.; Zheng, G. Z.; Zhang, J.; Zheng, S. J.; Lin, Y. C.; Zheng, D. Z.; Zhou, J. D. Chemical vapor deposition synthesis of V-doped MoS2. Rare Met. 2023, 42, 3985–3992.
Jeong, W.; Kim, T.; Kim, Y.; Jeong, M. S.; Kim, E. K. Improved characteristics of MoS2 transistors with selective doping using 1,2-dichloroethane. Semicond. Sci. Technol. 2023, 38, 075013.
Zhou, J. D.; Lin, J. H.; Huang, X. W.; Zhou, Y.; Chen, Y.; Xia, J.; Wang, H.; Xie, Y.; Yu, H. M.; Lei, J. C. et al. A library of atomically thin metal chalcogenides. Nature 2018, 556, 355–359.
Xiong, J.; Wu, Q.; Cai, X. W.; Zhu, Y. M.; Lin, G. Y.; Li, C. Comparative study of sodium and potassium compounds as promoters for growth of monolayer MoS2 with high crystal quality on SiO2/Si substrate. J. Phys. D: Appl. Phys. 2024, 57, 405105.
Chen, L.; Zang, L. Y.; Chen, L. H.; Wu, J. C.; Jiang, C. M.; Song, J. H. Study on the catalyst effect of NaCl on MoS2 growth in a chemical vapor deposition process. CrystEngComm 2021, 23, 5337–5344.
Weinberg, M. C.; Poisl, W. H.; Granasy, L. Crystal growth and classical nucleation theory. C. R. Chim. 2002, 5, 765–771.
Dove, P. M.; Han, N. Z.; De Yoreo, J. J. Mechanisms of classical crystal growth theory explain quartz and silicate dissolution behavior. Proc. Natl. Acad. Sci. USA 2005, 102, 15357–15362.
Wang, S. S.; Rong, Y. M.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J. H. Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chem. Mater. 2014, 26, 6371–6379.
Chen, F.; Su, W. T.; Zhao, S. C.; Lv, Y. F.; Ding, S.; Fu, L. Morphological evolution of atomically thin MoS2 flakes synthesized by a chemical vapor deposition strategy. CrystEngComm 2020, 22, 4174–4179.
Li, X. Y.; Zhang, S. P.; Chen, S.; Zhang, X. L.; Gao, J. F.; Zhang, Y. W.; Zhao, J. J.; Shen, X.; Yu, R. C.; Yang, Y. et al. Mo concentration controls the morphological transitions from dendritic to semicompact, and to compact growth of monolayer crystalline MoS2 on various substrates. ACS Appl. Mater. Interfaces 2019, 11, 42751–42759.
Cao, Y. J.; Luo, X. F.; Han, S. M.; Yuan, C. L.; Yang, Y.; Li, Q. L.; Yu, T.; Ye, S. L. Influences of carrier gas flow rate on the morphologies of MoS2 flakes. Chem. Phys. Lett. 2015, 631–632, 30–33.
Park, T.; Bae, C.; Lee, H.; Leem, M.; Kim, H.; Ahn, W.; Kim, J.; Lee, E.; Shin, H.; Kim, H. Non-equilibrium fractal growth of MoS2 for electrocatalytic hydrogen evolution. CrystEngComm 2019, 21, 478–486.
van der Zande, A. M.; Huang, P. Y.; Chenet, D. A.; Berkelbach, T. C.; You, Y. M.; Lee, G. H.; Heinz, T. F.; Reichman, D. R.; Muller, D. A.; Hone, J. C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561.
Zhang, J.; Yu, H.; Chen, W.; Tian, X. Z.; Liu, D. H.; Cheng, M.; Xie, G. B.; Yang, W.; Yang, R.; Bai, X. D. et al. Scalable growth of high-quality polycrystalline MoS2 monolayers on SiO2 with tunable grain sizes. ACS Nano 2014, 8, 6024–6030.
Wei, Z.; Tang, J.; Li, X. Y.; Chi, Z.; Wang, Y.; Wang, Q. Q.; Han, B.; Li, N.; Huang, B. Y.; Li, J. W. et al. Wafer-scale oxygen-doped MoS2 monolayer. Small Methods 2021, 5, 2100091.
Chen, W.; Zhao, J.; Zhang, J.; Gu, L.; Yang, Z. Z.; Li, X. M.; Yu, H.; Zhu, X. T.; Yang, R.; Shi, D. X. et al. Oxygen-assisted chemical vapor deposition growth of large single-crystal and high-quality monolayer MoS2. J. Am. Chem. Soc. 2015, 137, 15632–15635.
Tian, J. P.; Wang, Q. Q.; Huang, X. D.; Tang, J.; Chu, Y. B.; Wang, S. P.; Shen, C.; Zhao, Y. C.; Li, N.; Liu, J. Y. et al. Scaling of MoS2 transistors and inverters to sub-10 nm channel length with high performance. Nano Lett. 2023, 23, 2764–2770.
Jiang, J. F.; Xu, L.; Du, L. J.; Li, L.; Zhang, G. Y.; Qiu, C. G.; Peng, L. M. Yttrium-doping-induced metallization of molybdenum disulfide for ohmic contacts in two-dimensional transistors. Nat. Electron. 2024, 7, 545–556.