AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (22.1 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access | Online First

Water-bearable nacre-inspired composite via matrix-induced rapid mineralization as potential compact bone repair material

Yu-Lu Yang1,§Zhong-Yuan Yang1,§Qing-Sheng Zeng2Zi-Han Yang3Chao Fang4Zhi Chen1Duo-Hong Zou2,3 ( )Li-Bo Mao1 ( )Shu-Hong Yu1,5 ( )
Department of Chemistry, Institute of Biomimetic Materials and Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, New Cornerstone Science Laboratory, Division of Nanomaterials and Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
Department of College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
Department of Oral Surgery, Shanghai Key Laboratory of Stomatology, School of Medicine, National Clinical Research Center of Stomatology, Ninth People’s Hospital, Shanghai Jiao Tong University, Shanghai 200011, China
Department of Orthopedics, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, China
Institute of Innovative Materials, Department of Materials Science and Engineering, Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China

§ Yu-Lu Yang and Zhong-Yuan Yang contributed equally to this work.

Show Author Information

Graphical Abstract

Fabrication of water-bearable nacre-inspired composites via matrix-induced rapid mineralization and their mechanical and biological performance were reported.

Abstract

The mechanical properties of mineral-based structural composite materials can be notably improved by bioinspired multiscale structure designs, which benefits their practical applications. Matrix-induced mineralization process has proved an efficient way to synthesize bioinspired mineral-based composites. However, although it is much faster than the growth of natural biominerals, this process still consumes considerable time to produce a composite with limited size. We herein report a combinational fabrication strategy that integrates rapid organic matrix layer-induced mineralization and layer lamination. While the strategy is featured for time saving compared with previous methods based on mineralization, the size of the final composite can be increased simply by using larger layers. Macroscopic and microscopic mechanical characterizations of the composite reveal its good mechanical performance. More importantly, by spraying a water-insoluble polymer coating on each mineralized layer, the composite exhibits enhanced tolerance to water that wet samples retain good mechanical properties. Besides, the composite inherits the biocompatibility of its raw materials. These advantages ensure the application of such composite as compact bone repair material.

Electronic Supplementary Material

Download File(s)
7143_ESM.pdf (3.5 MB)

References

[1]

Haugen, H. J.; Lyngstadaas, S. P.; Rossi, F.; Perale, G. Bone grafts: Which is the ideal biomaterial. J. Clin. Periodontol. 2019, 46, 92–102.

[2]

Xie, C.; Ye, J. C.; Liang, R. J.; Yao, X. D.; Wu, X. Y.; Koh, Y.; Wei, W.; Zhang, X. Z.; Ouyang, H. W. Advanced strategies of biomimetic tissue-engineered grafts for bone regeneration. Adv. Healthc. Mater. 2021, 10, 2100408.

[3]

Wang, W. H.; Yeung, K. W. K. Bone grafts and biomaterials substitutes for bone defect repair: A review. Bioact. Mater. 2017, 2, 224–247.

[4]

Sohn, H. S.; Oh, J. K. Review of bone graft and bone substitutes with an emphasis on fracture surgeries. Biomater. Res. 2019, 23, 1–2s40824–019–0157–y.

[5]

Barthelat, F.; Yin, Z.; Buehler, M. J. Structure and mechanics of interfaces in biological materials. Nat. Rev. Mater. 2016, 1, 16007.

[6]

Koester, K. J.; Ager, J. W.; Ritchie, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nat. Mater. 2008, 7, 672–677.

[7]

Nalla, R. K.; Kinney, J. H.; Ritchie, R. O. Mechanistic fracture criteria for the failure of human cortical bone. Nat. Mater. 2003, 2, 164–168.

[8]

Zhou, J.; Zhang, Z. Y.; Joseph, J.; Zhang, X. C.; Ferdows, B. E.; Patel, D. N.; Chen, W.; Banfi, G.; Molinaro, R.; Cosco, D. et al. Biomaterials and nanomedicine for bone regeneration: Progress and future prospects. Exploration 2021, 1, 20210011.

[9]

Yuan, B.; Wang, L. N.; Zhao, R.; Yang, X.; Yang, X.; Zhu, X. D.; Liu, L. M.; Zhang, K.; Song, Y. M.; Zhang, X. D. A biomimetically hierarchical polyetherketoneketone scaffold for osteoporotic bone repair. Sci. Adv. 2020, 6, eabc4704.

[10]

Prasad, K.; Bazaka, O.; Chua, M.; Rochford, M.; Fedrick, L.; Spoor, J.; Symes, R.; Tieppo, M.; Collins, C.; Cao, A. et al. Metallic biomaterials: Current challenges and opportunities. Materials 2017, 10, 884.

[11]

Alvarez, K.; Nakajima, H. Metallic scaffolds for bone regeneration. Materials 2009, 2, 790–832.

[12]

Alipour, M.; Ghorbani, M.; Johari Khatoonabad, M.; Aghazadeh, M. A novel injectable hydrogel containing polyetheretherketone for bone regeneration in the craniofacial region. Sci. Rep. 2023, 13, 864.

[13]

Koons, G. L.; Diba, M.; Mikos, A. G. Materials design for bone-tissue engineering. Nat. Rev. Mater. 2020, 5, 584–603.

[14]

Wei, S.; Ma, J. X.; Xu, L.; Gu, X. S.; Ma, X. L. Biodegradable materials for bone defect repair. Mil. Med. Res. 2020, 7, 54.

[15]

Xu, H.; Ge, Y. W.; Lu, J. W.; Ke, Q. F.; Liu, Z. Q.; Zhu, Z. A.; Guo, Y. P. Icariin loaded-hollow bioglass/chitosan therapeutic scaffolds promote osteogenic differentiation and bone regeneration. Chem. Eng. J. 2018, 354, 285–294.

[16]

Diba, M.; Camargo, W. A.; Brindisi, M.; Farbod, K.; Klymov, A.; Schmidt, S.; Harrington, M. J.; Draghi, L.; Boccaccini, A. R.; Jansen, J. A. et al. Composite colloidal gels made of bisphosphonate-functionalized gelatin and bioactive glass particles for regeneration of osteoporotic bone defects. Adv. Funct. Mater. 2017, 27, 1703438.

[17]

Lai, Y. X.; Li, Y.; Cao, H. J.; Long, J.; Wang, X. L.; Li, L.; Li, C. R.; Jia, Q. Y.; Teng, B.; Tang, T. T. et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect. Biomaterials 2019, 197, 207–219.

[18]

Ren, X. Y.; Zhou, Q.; Foulad, D.; Tiffany, A. S.; Dewey, M. J.; Bischoff, D.; Miller, T. A.; Reid, R. R.; He, T. C.; Yamaguchi, D. T. et al. Osteoprotegerin reduces osteoclast resorption activity without affecting osteogenesis on nanoparticulate mineralized collagen scaffolds. Sci. Adv. 2019, 5, eaaw4991.

[19]

Barthelat, F. Architectured materials in engineering and biology: Fabrication, structure, mechanics and performance. Int. Mater. Rev. 2015, 60, 413–430.

[20]

Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 2012, 24, 5024–5044.

[21]

Peng, J. S.; Cheng, Q. F. Smart nacre-inspired nanocomposites. Chemphyschem 2018, 19, 1980–1986.

[22]

Finnemore, A.; Cunha, P.; Shean, T.; Vignolini, S.; Guldin, S.; Oyen, M.; Steiner, U. Biomimetic layer-by-layer assembly of artificial nacre. Nat. Commun. 2012, 3, 966.

[23]

Gao, H. L.; Chen, S. M.; Mao, L. B.; Song, Z. Q.; Yao, H. B.; Cölfen, H.; Luo, X. S.; Zhang, F.; Pan, Z.; Meng, Y. F. et al. Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 2017, 8, 287.

[24]

Munch, E.; Launey, M. E.; Alsem, D. H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Tough, bio-inspired hybrid materials. Science 2008, 322, 1516–1520.

[25]

Cheng, Q. F.; Jiang, L. Mimicking nacre by ice templating. Angew. Chem., Int. Ed. 2017, 56, 934–935.

[26]

Du, G. L.; Mao, A. R.; Yu, J. H.; Hou, J. J.; Zhao, N. F.; Han, J. K.; Zhao, Q.; Gao, W. W.; Xie, T.; Bai, H. Nacre-mimetic composite with intrinsic self-healing and shape-programming capability. Nat. Commun. 2019, 10, 800.

[27]

Erb, R. M.; Libanori, R.; Rothfuchs, N.; Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 2012, 335, 199–204.

[28]

Mao, L. B.; Meng, Y. F.; Meng, X. S.; Yang, B.; Yang, Y. L.; Lu, Y. J.; Yang, Z. Y.; Shang, L. M.; Yu, S. H. Matrix-directed mineralization for bulk structural materials. J. Am. Chem. Soc. 2022, 144, 18175–18194.

[29]

Mao, L. B.; Gao, H. L.; Yao, H. B.; Liu, L.; Cölfen, H.; Liu, G.; Chen, S. M.; Li, S. K.; Yan, Y. X.; Liu, Y. Y. et al. Synthetic nacre by predesigned matrix-directed mineralization. Science 2016, 354, 107–110.

[30]

Jiang, Y.; Gong, H. F.; Volkmer, D.; Gower, L.; Cölfen, H. Preparation of hierarchical mesocrystalline DL-lysine·HCl-poly(acrylic acid) hybrid thin films. Adv. Mater. 2011, 23, 3548–3552.

[31]

Jiang, Y.; Gong, H. F.; Grzywa, M.; Volkmer, D.; Gower, L.; Cölfen, H. Microdomain transformations in mosaic mesocrystal thin films. Adv. Funct. Mater. 2013, 23, 1547–1555.

[32]

Li, M.; Wang, M. N.; Zhao, N. F.; Bai, H. Scalable fabrication of high-performance bulk nacre-mimetic materials on a nanogrooved surface. ACS Nano 2022, 16, 14737–14744.

[33]

Li, M.; Zhao, N. F.; Wang, M. N.; Dai, X. G.; Bai, H. Conch-shell-inspired tough ceramic. Adv. Funct. Mater. 2022, 32, 2205309.

[34]

Peng, J. S.; Cheng, Y. R.; Tomsia, A. P.; Jiang, L.; Cheng, Q. F. Thermochromic artificial nacre based on montmorillonite. ACS Appl. Mater. Interfaces 2017, 9, 24993–24998.

[35]

Wang, J. F.; Cheng, Q. F.; Lin, L.; Jiang, L. Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 2014, 8, 2739–2745.

[36]

Chen, S.; Shi, X. T.; Chinnathambi, S.; Hanagata, N. Large-scale fabrication of free-standing, micropatterned silica nanotubes via a hybrid hydrogel-templated route. Adv. Healthc. Mater. 2013, 2, 1091–1095.

[37]

He, Y.; Tian, M.; Li, X. L.; Hou, J. W.; Chen, S.; Yang, G.; Liu, X.; Zhou, S. B. A hierarchical-structured mineralized nanofiber scaffold with osteoimmunomodulatory and osteoinductive functions for enhanced alveolar bone regeneration. Adv. Healthc. Mater. 2022, 11, 2102236.

[38]

Weichhold, J.; Pfeiffle, M.; Kade, J. C.; Hurle, K.; Gbureck, U. Aqueous calcium phosphate cement inks for 3D printing. Adv. Eng. Mater. 2023, 25, 2300789.

[39]

Guvendiren, M.; Molde, J.; Soares, R. M. D.; Kohn, J. Designing biomaterials for 3D printing. ACS Biomater. Sci. Eng. 2016, 2, 1679–1693.

[40]

Bauer, J.; Crook, C.; Baldacchini, T. A sinterless, low-temperature route to 3D print nanoscale optical-grade glass. Science 2023, 380, 960–966.

[41]

Toombs, J. T.; Luitz, M.; Cook, C. C.; Jenne, S.; Li, C. C.; Rapp, B. E.; Kotz-Helmer, F.; Taylor, H. K. Volumetric additive manufacturing of silica glass with microscale computed axial lithography. Science 2022, 376, 308–312.

[42]

Cheng, Q. F.; Huang, C. J.; Tomsia, A. P. Freeze casting for assembling bioinspired structural materials. Adv. Mater. 2017, 29, 1703155.

[43]

Bai, H.; Walsh, F.; Gludovatz, B.; Delattre, B.; Huang, C. L.; Chen, Y.; Tomsia, A. P.; Ritchie, R. O. Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 2015, 28, 50–56.

[44]

Deville, S.; Saiz, E.; Tomsia, A. P. Freeze casting of hydroxyapatite scaffolds for bone tissue engineering. Biomaterials 2006, 27, 5480–5489.

[45]

Zhang, X. T.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Hybrid materials from ultrahigh-inorganic-content mineral plastic hydrogels: Arbitrarily shapeable, strong, and tough. Adv. Funct. Mater. 2020, 30, 1910425.

[46]

Lei, Z. Y.; Wang, Q. K.; Sun, S. T.; Zhu, W. C.; Wu, P. Y. A bioinspired mineral hydrogel as a self-healable, mechanically adaptable ionic skin for highly sensitive pressure sensing. Adv. Mater. 2017, 29, 1700321.

[47]

Sinha Ray, S. Polylactide-based bionanocomposites: A promising class of hybrid materials. Acc. Chem. Res. 2012, 45, 1710–1720.

[48]

Meng, Y. F.; Zhu, Y. B.; Zhou, L. C.; Meng, X. S.; Yang, Y. L.; Zhao, R.; Xia, J.; Yang, B.; Lu, Y. J.; Wu, H. A. et al. Artificial nacre with high toughness amplification factor: Residual stress-engineering sparks enhanced extrinsic toughening mechanisms. Adv. Mater. 2022, 34, 2108267.

[49]

Meng, Y. F.; Yu, C. X.; Zhou, L. C.; Shang, L. M.; Yang, B.; Wang, Q. Y.; Meng, X. S.; Mao, L. B.; Yu, S. H. Nanograded artificial nacre with efficient energy dissipation. The Innovation 2023, 4, 100505.

[50]

Antonakos, A.; Liarokapis, E.; Leventouri, T. Micro-Raman and FTIR studies of synthetic and natural apatites. Biomaterials 2007, 28, 3043–3054.

[51]

Xu, J. W.; Butler, I. S.; Gilson, D. F. R. FT-Raman and high-pressure infrared spectroscopic studies of dicalcium phosphate dihydrate (CaHPO4·2H2O) and anhydrous dicalcium phosphate (CaHPO4). Spectrochim. Acta A: Mol. Biomol. Spectrosc. 1999, 55, 2801–2809.

[52]

Karampas, I. A.; Kontoyannis, C. G. Characterization of calcium phosphates mixtures. Vib. Spectrosc. 2013, 64, 126–133.

[53]

Udhayakumar, G.; Muthukumarasamy, N.; Velauthapillai, D.; Santhosh, S. B. Highly crystalline zinc incorporated hydroxyapatite nanorods’ synthesis, characterization, thermal, biocompatibility, and antibacterial study. Appl. Phys. A 2017, 123, 655.

[54]

Mohan, L.; Durgalakshmi, D.; Geetha, M.; Sankara Narayanan, T. S. N.; Asokamani, R. Electrophoretic deposition of nanocomposite (HAp+TiO2) on titanium alloy for biomedical applications. Ceram. Int. 2012, 38, 3435–3443.

[55]

Rapacz-Kmita, A.; Ślósarczyk, A.; Paszkiewicz, Z.; Paluszkiewicz, C. Phase stability of hydroxyapatite-zirconia (HAp-ZrO2) composites for bone replacement. J. Mol. Struct. 2004, 704, 333–340.

[56]

Wei, W.; Yang, L.; Zhong, W. H.; Cui, J.; Wei, Z. G. Mechanism of enhanced humic acid removal from aqueous solution using poorly crystalline hydroxyapatite nanoparticles. Dig. J. Nanomater. Biostruct. 2015, 10, 663–680.

[57]

Singla, P.; Mehta, R.; Berek, D.; Upadhyay, S. N. Microwave assisted synthesis of poly(lactic acid) and its characterization using size exclusion chromatography. J. Macromol. Sci. A 2012, 49, 963–970.

[58]

Luo, Q.; Wang, Y.; Han, Q. Q.; Ji, L. S.; Zhang, H. M.; Fei, Z. H.; Wang, Y. Q. Comparison of the physicochemical, rheological, and morphologic properties of chitosan from four insects. Carbohydr. Polym. 2019, 209, 266–275.

[59]

Kaya, M.; Baran, T.; Erdoğan, S.; Menteş, A.; Aşan Özüsağlam, M.; Çakmak, Y. S. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle ( Leptinotarsa decemlineata). Mater. Sci. Eng.: C 2014, 45, 72–81.

[60]

Kaya, M.; Erdogan, S.; Mol, A.; Baran, T. Comparison of chitin structures isolated from seven Orthoptera species. Int. J. Biol. Macromol. 2015, 72, 797–805.

[61]

Rosa, A. L.; Farias, L. R.; Dias, V. P.; Pacheco, O. B.; Morisso, F. D. P.; Rodrigues Junior, L. F.; Sagrillo, M. R.; Rossato, A.; Santos, L. A. L.; Volkmer, T. M. Effect of synthesis temperature on crystallinity, morphology and cell viability of nanostructured hydroxyapatite via wet chemical precipitation method: Effect of temperature on hydroxyapatite properties. Int. J. Adv. Med. Biotechnol. 2022, 5, 29–35.

[62]

Mellon, S. J.; Tanner, K. E. Bone and its adaptation to mechanical loading: A review. Int. Mater. Rev. 2012, 57, 235–255.

[63]

Peng, Y. C.; Zhuang, Y. L.; Liu, Y.; Le, H. X.; Li, D.; Zhang, M. R.; Liu, K.; Zhang, Y. B.; Zuo, J. L.; Ding, J. X. Bioinspired gradient scaffolds for osteochondral tissue engineering. Exploration 2023, 3, 20210043.

[64]

Meng, Y. F.; Yang, B.; Mao, L. B.; Yu, S. H. Multifunctional artificial nacre via biomimetic matrix-directed mineralization. JUSTC 2022, 52, 1.

[65]

Ju, Y. M.; Huang, F.; Ding, X.; Mao, L. B.; Yu, S. H. Phase transformation-induced Mg isotope fractionation in Mg-mediated CaCO3 mineralization. Nano Res. 2023, 16, 3597–3602.

Nano Research
Cite this article:
Yang Y-L, Yang Z-Y, Zeng Q-S, et al. Water-bearable nacre-inspired composite via matrix-induced rapid mineralization as potential compact bone repair material. Nano Research, 2024, https://doi.org/10.26599/NR.2025.94907143
Topics:

215

Views

50

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 11 October 2024
Revised: 08 November 2024
Accepted: 18 November 2024
Published: 26 December 2024
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return