AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (11.8 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Garlic-derived nanoparticles inhibit tumor by activating tumor-infiltrating γδT cells

Jialu Xu1,2,§Jintao Huang1,§Yue Yu2Di Hu1Yue Zhang2Huaxing Dai2Li You2Fang Xu2Jian Shen1( )Chao Wang2 ( )
Department of Interventional Radiology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-based Functional Materials and Devices, Soochow University, Suzhou 215123, China

§ Jialu Xu and Jintao Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Garlic-derived nanoparticles (GNPs) directly activated γδT cells within the tumor microenvironment, resulting in significant antitumor effects in both subcutaneous tumor models in mice and orthotopic liver cancer in rabbits, offering a simple and efficient strategy with potential for clinical translation in tumor therapy.

Abstract

γδT cells have emerged as a promising target in tumor therapy, prompting the development of novel strategies to activate these cells directly within the tumor microenvironment. In this study, we engineered uniformly sized spherical garlic-derived nanoparticles (GNPs) to stimulate tumor-infiltrating γδT cells. Through intratumoral injection of GNPs, we demonstrated their ability to directly activate γδT cells, leading to potent antitumor effects. This approach resulted in significant inhibition of various subcutaneous tumors in mice. Additionally, under computed tomography (CT) guidance, intratumoral injection of GNPs effectively suppressed the growth of orthotopic liver cancer in New Zealand white rabbits. Mechanistic studies revealed that GNPs robustly activated γδT cells, promoting an inflammatory microenvironment within tumors. Our approach of using garlic-derived nanoparticles offers the advantages of simplicity in preparation and high yield, presenting a promising avenue for tumor therapy with potential for clinical translation.

Electronic Supplementary Material

Download File(s)
7145_ESM.pdf (827.5 KB)

References

[1]

Meng, F. Q.; Lin, Z. D.; Ma, Y. M.; Che, R. B.; Zhang, C.; Wei, Y. T.; Song, X.; Liang, X.; Zhang, X. D. Engineered algae microrobots as photosynthetic living materials promote T cells’ anti-tumor immunity. Cell Rep. Phys. Sci. 2024, 5, 102023.

[2]

Foord, E.; Arruda, L. C. M.; Gaballa, A.; Klynning, C.; Uhlin, M. Characterization of ascites- and tumor-infiltrating γδ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci. Transl. Med. 2021, 13, eabb0192.

[3]

Chien, Y. H.; Konigshofer, Y. Antigen recognition by γδ T cells. Immunol. Rev. 2007, 215, 46–58.

[4]

Wiesheu, R.; Coffelt, S. B. From backstage to the spotlight: γδT cells in cancer. Cancer Cell 2024, 42, 1637–1642.

[5]

Mensurado, S.; Silva-Santos, B. J. T. Battle of the γδ T cell subsets in the gut. Trends Cancer 2022, 8, 881–883.

[6]

Reis, B. S.; Darcy, P. W.; Khan, I. Z.; Moon, C. S.; Kornberg, A. E.; Schneider, V. S.; Alvarez, Y.; Eleso, O.; Zhu, C. X.; Schernthanner, M. J. S. et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 2022, 377, 276–284.

[7]
Widlund, H. R.; Lynch, L. γδ T cells as unconventional targets of checkpoint blockade. Nat. Cancer 2024 , 5, 373–374.
[8]

Yan, J. Antitumor γδ T cells need oxygen to function. Nat. Immunol. 2021, 22, 268–269.

[9]

Hayday, A.; Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol. 2003, 3, 233–242.

[10]

Carding, S. R.; Egan, P. J. γδ T cells: Functional plasticity and heterogeneity. Nat. Rev. Immunol. 2002, 2, 336–345.

[11]
Arias-Badia, M.; Chang, R.; Fong, L. γδ T cells as critical anti-tumor immune effectors. Nat. Cancer 2024 , 5, 1145–1157.
[12]

Lin, T. D.; Rubinstein, N. D.; Fong, N. L.; Smith, M.; Craft, W.; Martin-McNulty, B.; Perry, R.; Delaney, M. A.; Roy, M. A.; Buffenstein, R. Evolution of T cells in the cancer-resistant naked mole-rat. Nat. Commun. 2024, 15, 3145.

[13]

Lian, M. Q.; Chng, W. H.; Liang, J.; Yeo, H. Q.; Lee, C. K.; Belaid, M.; Tollemeto, M.; Wacker, M. G.; Czarny, B.; Pastorin, G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J. Extracell. Vesicles 2022, 11, 12283.

[14]

Liu, H.; Geng, Z.; Su, J. C. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracell. Vesicles Circ. Nucleic Acids. 2022, 3, 63–86.

[15]

Wu, B. D.; Pan, W. L.; Luo, S. H.; Luo, X. R.; Zhao, Y. T.; Xiu, Q.; Zhong, M. Z.; Wang, Z. X.; Liao, T.; Li, N. C. et al. Turmeric-derived nanoparticles functionalized aerogel regulates multicellular networks to promote diabetic wound healing. Adv. Sci. 2024, 11, 2307630.

[16]

Rome, S. Biological properties of plant-derived extracellular vesicles. Food Funct. 2019, 10, 529–538.

[17]

Nguyen, T. N. G.; Pham, C. V.; Chowdhury, R.; Patel, S.; Jaysawal, S. K.; Hou, Y. C.; Xu, H.; Jia, L.; Duan, A.; Tran, P. H. L. et al. Development of blueberry-derived extracellular nanovesicles for immunomodulatory therapy. Pharmaceutics 2023, 15, 2115.

[18]

Qiao, Z. Z.; Zhang, K.; Liu, J.; Cheng, D. J.; Yu, B. R.; Zhao, N. N.; Xu, F. J. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 2022, 13, 7164.

[19]

Yang, M.; Liu, X. Y.; Luo, Q. Q.; Xu, L. L.; Chen, F. X. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnol. 2020, 18, 100.

[20]

Kameli, N.; Dragojlovic-Kerkache, A.; Savelkoul, P.; Stassen, F. R. Plant-derived extracellular vesicles: Current findings, challenges, and future applications. Membranes 2021, 11, 411.

[21]

Karamanidou, T.; Tsouknidas, A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int. J. Mol. Sci. 2022, 23, 191.

[22]

Fang, W. L.; Jing, Z. Y.; Li, Y.; Zhang, Z. R.; Lin, Z. D.; Yang, Z. X.; Tian, Y. S.; Zhang, C.; Ma, Y. M.; Hou, L. L. et al. Harnessing enucleated cancer cells as Trojan horse cell vaccines. Cell Rep. Phys. Sci. 2024, 5, 101752.

[23]

Nemati, M.; Singh, B.; Mir, R. A.; Nemati, M.; Babaei, A.; Ahmadi, M.; Rasmi, Y.; Golezani, A. G.; Rezaie, J. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun. Signal. 2022, 20, 69.

[24]

Khanum, F.; Anilakumar, K. R.; Viswanathan, K. R. Anticarcinogenic properties of garlic: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 479–488.

[25]

Londhe, V. P.; Gavasane, A. T.; Nipate, S. S.; Bandawane, D. D.; Chaudhari, P. D. A. Role of garlic ( Allium sativum) in various diseases: An overview. J. Pharm. Res. Opin. 2011, 1, 129–134.

[26]

Xu, J. L.; Yu, Y.; Zhang, Y.; Dai, H. X.; Yang, Q. Y.; Wang, B. L.; Ma, Q. L.; Chen, Y. T.; Xu, F.; Shi, X. L. et al. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Nat. Nanotechnol. 2024, 19, 1569–1578.

Nano Research
Article number: 94907145
Cite this article:
Xu J, Huang J, Yu Y, et al. Garlic-derived nanoparticles inhibit tumor by activating tumor-infiltrating γδT cells. Nano Research, 2025, 18(2): 94907145. https://doi.org/10.26599/NR.2025.94907145

177

Views

23

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 02 September 2024
Revised: 21 October 2024
Accepted: 19 November 2024
Published: 13 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return