Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
γδT cells have emerged as a promising target in tumor therapy, prompting the development of novel strategies to activate these cells directly within the tumor microenvironment. In this study, we engineered uniformly sized spherical garlic-derived nanoparticles (GNPs) to stimulate tumor-infiltrating γδT cells. Through intratumoral injection of GNPs, we demonstrated their ability to directly activate γδT cells, leading to potent antitumor effects. This approach resulted in significant inhibition of various subcutaneous tumors in mice. Additionally, under computed tomography (CT) guidance, intratumoral injection of GNPs effectively suppressed the growth of orthotopic liver cancer in New Zealand white rabbits. Mechanistic studies revealed that GNPs robustly activated γδT cells, promoting an inflammatory microenvironment within tumors. Our approach of using garlic-derived nanoparticles offers the advantages of simplicity in preparation and high yield, presenting a promising avenue for tumor therapy with potential for clinical translation.
Meng, F. Q.; Lin, Z. D.; Ma, Y. M.; Che, R. B.; Zhang, C.; Wei, Y. T.; Song, X.; Liang, X.; Zhang, X. D. Engineered algae microrobots as photosynthetic living materials promote T cells’ anti-tumor immunity. Cell Rep. Phys. Sci. 2024, 5, 102023.
Foord, E.; Arruda, L. C. M.; Gaballa, A.; Klynning, C.; Uhlin, M. Characterization of ascites- and tumor-infiltrating γδ T cells reveals distinct repertoires and a beneficial role in ovarian cancer. Sci. Transl. Med. 2021, 13, eabb0192.
Chien, Y. H.; Konigshofer, Y. Antigen recognition by γδ T cells. Immunol. Rev. 2007, 215, 46–58.
Wiesheu, R.; Coffelt, S. B. From backstage to the spotlight: γδT cells in cancer. Cancer Cell 2024, 42, 1637–1642.
Mensurado, S.; Silva-Santos, B. J. T. Battle of the γδ T cell subsets in the gut. Trends Cancer 2022, 8, 881–883.
Reis, B. S.; Darcy, P. W.; Khan, I. Z.; Moon, C. S.; Kornberg, A. E.; Schneider, V. S.; Alvarez, Y.; Eleso, O.; Zhu, C. X.; Schernthanner, M. J. S. et al. TCR-Vγδ usage distinguishes protumor from antitumor intestinal γδ T cell subsets. Science 2022, 377, 276–284.
Yan, J. Antitumor γδ T cells need oxygen to function. Nat. Immunol. 2021, 22, 268–269.
Hayday, A.; Tigelaar, R. Immunoregulation in the tissues by γδ T cells. Nat. Rev. Immunol. 2003, 3, 233–242.
Carding, S. R.; Egan, P. J. γδ T cells: Functional plasticity and heterogeneity. Nat. Rev. Immunol. 2002, 2, 336–345.
Lin, T. D.; Rubinstein, N. D.; Fong, N. L.; Smith, M.; Craft, W.; Martin-McNulty, B.; Perry, R.; Delaney, M. A.; Roy, M. A.; Buffenstein, R. Evolution of T cells in the cancer-resistant naked mole-rat. Nat. Commun. 2024, 15, 3145.
Lian, M. Q.; Chng, W. H.; Liang, J.; Yeo, H. Q.; Lee, C. K.; Belaid, M.; Tollemeto, M.; Wacker, M. G.; Czarny, B.; Pastorin, G. Plant-derived extracellular vesicles: Recent advancements and current challenges on their use for biomedical applications. J. Extracell. Vesicles 2022, 11, 12283.
Liu, H.; Geng, Z.; Su, J. C. Engineered mammalian and bacterial extracellular vesicles as promising nanocarriers for targeted therapy. Extracell. Vesicles Circ. Nucleic Acids. 2022, 3, 63–86.
Wu, B. D.; Pan, W. L.; Luo, S. H.; Luo, X. R.; Zhao, Y. T.; Xiu, Q.; Zhong, M. Z.; Wang, Z. X.; Liao, T.; Li, N. C. et al. Turmeric-derived nanoparticles functionalized aerogel regulates multicellular networks to promote diabetic wound healing. Adv. Sci. 2024, 11, 2307630.
Rome, S. Biological properties of plant-derived extracellular vesicles. Food Funct. 2019, 10, 529–538.
Nguyen, T. N. G.; Pham, C. V.; Chowdhury, R.; Patel, S.; Jaysawal, S. K.; Hou, Y. C.; Xu, H.; Jia, L.; Duan, A.; Tran, P. H. L. et al. Development of blueberry-derived extracellular nanovesicles for immunomodulatory therapy. Pharmaceutics 2023, 15, 2115.
Qiao, Z. Z.; Zhang, K.; Liu, J.; Cheng, D. J.; Yu, B. R.; Zhao, N. N.; Xu, F. J. Biomimetic electrodynamic nanoparticles comprising ginger-derived extracellular vesicles for synergistic anti-infective therapy. Nat. Commun. 2022, 13, 7164.
Yang, M.; Liu, X. Y.; Luo, Q. Q.; Xu, L. L.; Chen, F. X. An efficient method to isolate lemon derived extracellular vesicles for gastric cancer therapy. J. Nanobiotechnol. 2020, 18, 100.
Kameli, N.; Dragojlovic-Kerkache, A.; Savelkoul, P.; Stassen, F. R. Plant-derived extracellular vesicles: Current findings, challenges, and future applications. Membranes 2021, 11, 411.
Karamanidou, T.; Tsouknidas, A. Plant-derived extracellular vesicles as therapeutic nanocarriers. Int. J. Mol. Sci. 2022, 23, 191.
Fang, W. L.; Jing, Z. Y.; Li, Y.; Zhang, Z. R.; Lin, Z. D.; Yang, Z. X.; Tian, Y. S.; Zhang, C.; Ma, Y. M.; Hou, L. L. et al. Harnessing enucleated cancer cells as Trojan horse cell vaccines. Cell Rep. Phys. Sci. 2024, 5, 101752.
Nemati, M.; Singh, B.; Mir, R. A.; Nemati, M.; Babaei, A.; Ahmadi, M.; Rasmi, Y.; Golezani, A. G.; Rezaie, J. Plant-derived extracellular vesicles: a novel nanomedicine approach with advantages and challenges. Cell Commun. Signal. 2022, 20, 69.
Khanum, F.; Anilakumar, K. R.; Viswanathan, K. R. Anticarcinogenic properties of garlic: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 479–488.
Londhe, V. P.; Gavasane, A. T.; Nipate, S. S.; Bandawane, D. D.; Chaudhari, P. D. A. Role of garlic ( Allium sativum) in various diseases: An overview. J. Pharm. Res. Opin. 2011, 1, 129–134.
Xu, J. L.; Yu, Y.; Zhang, Y.; Dai, H. X.; Yang, Q. Y.; Wang, B. L.; Ma, Q. L.; Chen, Y. T.; Xu, F.; Shi, X. L. et al. Oral administration of garlic-derived nanoparticles improves cancer immunotherapy by inducing intestinal IFNγ-producing γδ T cells. Nat. Nanotechnol. 2024, 19, 1569–1578.
177
Views
23
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).