Electrocatalytic water splitting offers a promising way for hydrogen production with near-zero emissions. Carbides, such as molybdenum carbides (Mo2C), are promising materials for hydrogen evolution reaction (HER) but still suffer from poor intrinsic water activation properties. Here, we developed a plasmon-induced local electric field (PILEF) strategy to solve this barrier. Silver (Ag) nanoparticles decorated Mo2C nanosheets (Ag/Mo2C) were successfully prepared by electrostatic adsorption. The visible light excited the PILEF on Ag/Mo2C remarkably reducing the activation energy by 92.7 kJ·mol−1 from 147.3 kJ·mol−1 of Mo2C to 54.6 kJ·mol−1. As a result, the plasmonic Ag/Mo2C significantly enhances ~ 2.3-fold of the current density from 2.8 mA·cm−2 of Mo2C to 6.5 mA·cm−2 at −3 V vs. RHE and reduces the overpotential by 104 mV from 403 mV of dark state to 299 mV of light state at the current density of 10 mA·cm−2, achieving better performance than reported catalysts. This research demonstrates that PILEF enhances HER activities, offering a potential strategy for boosting the intrinsic activities of catalysts.
Shang, B.; Cui, X. Q.; Jiao, L.; Qi, K.; Wang, Y. W.; Fan, J. C.; Yue, Y. Y.; Wang, H. Y.; Bao, Q. L.; Fan, X. F. et al. Lattice-mismatch-induced ultrastable 1T-phase MoS2–Pd/Au for Plasmon-enhanced hydrogen evolution. Nano Lett. 2019, 19, 2758–2764.
Jiang, W. Y.; Wu, X. X.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Chen, Z. X.; Liang, C.; Liu, X. F.; Zhang, Y. Integrated hetero-nanoelectrodes for Plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Res. 2021, 14, 1195–1201.
Zhang, Y. Z.; Du, J.; Luo, R. C.; Wang, Z. Q.; Wang, Z. L.; Han, J. H.; Liu, P.; Fujita, T.; Xue, Q. K.; Chen, M. W. 3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy 2019, 58, 552–559.
Wang, X. T.; Liow, C.; Qi, D. P.; Zhu, B. W.; Leow, W. R.; Wang, H.; Xue, C.; Chen, X. D.; Li, S. Z. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS–Au nanorod arrays. Adv. Mater. 2014, 26, 3506–3512.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770.
Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.
Li, H. J. W.; Liu, K.; Fu, J. W.; Chen, K. J.; Yang, K. X.; Lin, Y. Y.; Yang, B. P.; Wang, Q. Y.; Pan, H.; Cai, Z. J. et al. Paired Ru–O–Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy 2021, 82, 105767.
Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.
Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.
Wen, Q. J.; Yang, K.; Huang, D. J.; Cheng, G.; Ai, X. M.; Liu, Y. M.; Fang, J. K.; Li, H. Q.; Yu, L.; Zhai, T. Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.
Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.
Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387–392.
Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.
Jia, J.; Xiong, T. L.; Zhao, L. L.; Wang, F. L.; Liu, H.; Hu, R. Z.; Zhou, J.; Zhou, W. J.; Chen, S. W. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 2017, 11, 12509–12518.
Wu, J. B.; Su, J. W.; Wu, T.; Huang, L.; Li, Q.; Luo, Y. X.; Jin, H. R.; Zhou, J.; Zhai, T. Y.; Wang, D. S. et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv. Mater. 2023, 35, 2209954.
Zhu, C. R.; Gao, D. Q.; Ding, J.; Chao, D. L.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 2018, 47, 4332–4356.
Chen, Z. X.; Leng, K.; Zhao, X. X.; Malkhandi, S.; Tang, W.; Tian, B. B.; Dong, L.; Zheng, L. R.; Lin, M.; Yeo, B. S. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 2017, 8, 14548.
Chen, L. X.; Chen, Z. W.; Wang, Y.; Yang, C. C.; Jiang, Q. Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction. ACS Catal. 2018, 8, 8107–8114.
Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.
Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.
Guo, S. E.; Tang, Y. Q.; Xie, Y.; Tian, C. G.; Feng, Q. M.; Zhou, W.; Jiang, B. J. P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B: Environ. 2017, 218, 664–671.
Jing, S. Y.; Zhang, L. S.; Luo, L.; Lu, J. J.; Yin, S. B.; Shen, P. K.; Tsiakaras, P. N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. 2018, 224, 533–540.
Liu, W.; Wang, X. T.; Wang, F.; Du, K. F.; Zhang, Z. F.; Guo, Y. Z.; Yin, H. Y.; Wang, D. H. A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nat. Commun. 2021, 12, 6776.
Zhang, Y. Z.; Guo, P.; Guo, S. H.; Xin, X.; Wang, Y. J.; Huang, W. J.; Wang, M. H.; Yang, B. W.; Jorge Sobrido, A.; Ghasemi, J. B. et al. Gradient heating epitaxial growth gives well lattice-matched Mo2C–Mo2N heterointerfaces that boost both electrocatalytic hydrogen evolution and water vapor splitting. Angew. Chem., Int. Ed. 2022, 61, e202209703.
Li, H. J. W.; Cai, C.; Wang, Q. Y.; Chen, S. Y.; Fu, J. W.; Liu, B.; Hu, Q. N.; Hu, K. M.; Li, H. M.; Hu, J. H. et al. High-performance alkaline water splitting by Ni nanoparticle-decorated Mo–Ni microrods: Enhanced ion adsorption by the local electric field. Chem. Eng. J. 2022, 435, 134860.
Gargiulo, J.; Berté, R.; Li, Y.; Maier, S. A.; Cortés, E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 2019, 52, 2525–2535.
Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.
Liu, G. G.; Li, P.; Zhao, G. X.; Wang, X.; Kong, J. T.; Liu, H. M.; Zhang, H. B.; Chang, K.; Meng, X. G.; Kako, T. et al. Promoting active species generation by Plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 9128–9136.
Zhang, Z. L.; Zhang, C. Y.; Zheng, H. R.; Xu, H. X. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506–2515.
Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044–1050.
Cortés, E. Activating plasmonic chemistry. Science 2018, 362, 28–29.
Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface Plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.
Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017, 12, 1000–1005.
Nan, L.; Giráldez-Martínez, J.; Stefancu, A.; Zhu, L.; Liu, M.; Govorov, A. O.; Besteiro, L. V.; Cortés, E. Investigating plasmonic catalysis kinetics on hot-spot engineered nanoantennae. Nano Lett. 2023, 23, 2883–2889.
Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.
Li, H. J. W.; Zhou, H. M.; Zhou, Y. J.; Hu, J. H.; Miyauchi, M.; Fu, J. W.; Liu, M. Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chin. J. Catal. 2022, 43, 519–525.
Ezendam, S.; Herran, M.; Nan, L.; Gruber, C.; Kang, Y.; Gröbmeyer, F.; Lin, R.; Gargiulo, J.; Sousa-Castillo, A.; Cortés, E. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 2022, 7, 778–815.
Wang, S. S.; Jiao, L.; Qian, Y. Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Boosting electrocatalytic hydrogen evolution over metal-organic frameworks by Plasmon-induced hot-electron injection. Angew. Chem., Int. Ed. 2019, 58, 10713–10717.
Xu, J.; Gu, P.; Birch, D. J. S.; Chen, Y. Plasmon-promoted electrochemical oxygen evolution catalysis from gold decorated MnO2 nanosheets under green light. Adv. Funct. Mater. 2018, 28, 1801573.
Liu, C. X.; Gao, C. C.; Yao, K. L.; Masouleh, S. S. M.; Berté, R.; Ren, H. R.; de S. Menezes, L. ; Cortés, E.; Bicket, I. C. et al. Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation. ACS Nano 2021, 15, 10553–10564.
Zhang, Y. F.; Wang, Q. M.; Wang, K. K.; Liu, Y.; Zou, L. W.; Zhou, Y.; Liu, M.; Qiu, X. Q.; Li, W. Z.; Li, J. Plasmonic Ag-decorated Cu2O nanowires for boosting photoelectrochemical CO2 reduction to multi-carbon products. Chem. Commun. 2022, 58, 9421–9424.
Kuo, T. R.; Lee, Y. C.; Chou, H. L.; Swathi, M. G.; Wei, C. Y.; Wen, C. Y.; Chang, Y. H.; Pan, X. Y.; Wang, D. Y. Plasmon-enhanced hydrogen evolution on specific facet of silver nanocrystals. Chem. Mater. 2019, 31, 3722–3728.
Creel, E. B.; Corson, E. R.; Eichhorn, J.; Kostecki, R.; Urban, J. J.; McCloskey, B. D. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 2019, 4, 1098–1105.
Chen, X.; Zheng, Z. F.; Ke, X. B.; Jaatinen, E.; Xie, T. F.; Wang, D. J.; Guo, C.; Zhao, J. C.; Zhu, H. Y. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem. 2010, 12, 414–419.
Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.
Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.
Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.
Xu, H. Y.; Zhu, J. Z.; Zou, C. H.; Zhang, F. P.; Ming, D. M.; Guan, D. Q.; Ma, L. Theoretical design of core–shell 3D-metal nanoclusters for efficient hydrogen-evolving reaction. Energy Fuels 2023, 37, 16781–16789.
Guan, D. Q.; Zhong, J.; Xu, H. Y.; Huang, Y. C.; Hu, Z. W.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X. M.; Zhou, W. et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422.
Li, W. D.; Xu, H. Y.; Zhang, H. Y.; Wei, F. C.; Huang, L. Y.; Ke, S. Z.; Fu, J. W.; Jing, C. B.; Cheng, J. G.; Liu, S. H. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 2023, 14, 5235.
Zhang, C.; Zhou, Y.; Wang, W. J.; Yang, Y.; Zhou, C. Y.; Wang, L. L.; Lei, L.; He, D. H.; Luo, H. Z.; Huang, D. L. Formation of Mo2C/hollow tubular g-C3N4 hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Surf. Sci. 2020, 527, 146757.
Zhou, Y.; Zhang, C.; Huang, D. L.; Wang, W. J.; Zhai, Y. B.; Liang, Q. H.; Yang, Y.; Tian, S. H.; Luo, H. Z.; Qin, D. Y. Structure defined 2D Mo2C/2D g–C3N4 Van der Waals heterojunction: Oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic degradation of pharmaceutical and personal care products. Appl. Catal. B: Environm. 2022, 301, 120749.
Steinigeweg, D.; Schlücker, S. Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures. Chem. Commun. 2012, 48, 8682–8684.