PDF (18.3 MB)
Collect
Submit Manuscript
Research Article | Open Access

Plasmon-induced local electric field improved hydrogen evolution reaction on Ag/Mo2C nanosheets

HuangJingWei Li1,§Xin Zi1,§Jun Wu2,§Xinli Wang3Li Zhu4Qiyou Wang1Jianfu Han5Junwei Fu1Hongmei Li1Kai Huang5Yu Chen1Min Liu1 ()
School of Physics, State Key Laboratory of Powder Metallurgy, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Central South University, Changsha 410083, China
School of Metallurgy and Environment, Central South University, Changsha 410083, China
Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
Nano-Institute Munich, Faculty of Physics, Ludwig-Maxilimians-Universität München, München 80539, Germany
Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China

§ HuangJingWei Li, Xin Zi, and Jun Wu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
The plasma-induced local electric field excited electrons to promote hydrogen evolution reaction (HER), as evidenced by the Kelvin probe force microscopy (KPFM) and activation energy tests revealing a strong local electric field and reduced activation energy. The corresponding results showed that Ag/Mo2C overpotential decreased by 104 mV at 10 mA·cm–2 compared to Mo2C.

Abstract

Electrocatalytic water splitting offers a promising way for hydrogen production with near-zero emissions. Carbides, such as molybdenum carbides (Mo2C), are promising materials for hydrogen evolution reaction (HER) but still suffer from poor intrinsic water activation properties. Here, we developed a plasmon-induced local electric field (PILEF) strategy to solve this barrier. Silver (Ag) nanoparticles decorated Mo2C nanosheets (Ag/Mo2C) were successfully prepared by electrostatic adsorption. The visible light excited the PILEF on Ag/Mo2C remarkably reducing the activation energy by 92.7 kJ·mol−1 from 147.3 kJ·mol−1 of Mo2C to 54.6 kJ·mol−1. As a result, the plasmonic Ag/Mo2C significantly enhances ~ 2.3-fold of the current density from 2.8 mA·cm−2 of Mo2C to 6.5 mA·cm−2 at −3 V vs. RHE and reduces the overpotential by 104 mV from 403 mV of dark state to 299 mV of light state at the current density of 10 mA·cm−2, achieving better performance than reported catalysts. This research demonstrates that PILEF enhances HER activities, offering a potential strategy for boosting the intrinsic activities of catalysts.

Electronic Supplementary Material

Download File(s)
7146_ESM.pdf (2.8 MB)

References

[1]

Shang, B.; Cui, X. Q.; Jiao, L.; Qi, K.; Wang, Y. W.; Fan, J. C.; Yue, Y. Y.; Wang, H. Y.; Bao, Q. L.; Fan, X. F. et al. Lattice-mismatch-induced ultrastable 1T-phase MoS2–Pd/Au for Plasmon-enhanced hydrogen evolution. Nano Lett. 2019, 19, 2758–2764.

[2]

Jiang, W. Y.; Wu, X. X.; Chang, J. Q.; Ma, Y. H.; Song, L. T.; Chen, Z. X.; Liang, C.; Liu, X. F.; Zhang, Y. Integrated hetero-nanoelectrodes for Plasmon-enhanced electrocatalysis of hydrogen evolution. Nano Res. 2021, 14, 1195–1201.

[3]

Zhang, Y. Z.; Du, J.; Luo, R. C.; Wang, Z. Q.; Wang, Z. L.; Han, J. H.; Liu, P.; Fujita, T.; Xue, Q. K.; Chen, M. W. 3D bicontinuous nanoporous plasmonic heterostructure for enhanced hydrogen evolution reaction under visible light. Nano Energy 2019, 58, 552–559.

[4]

Wang, X. T.; Liow, C.; Qi, D. P.; Zhu, B. W.; Leow, W. R.; Wang, H.; Xue, C.; Chen, X. D.; Li, S. Z. Programmable photo-electrochemical hydrogen evolution based on multi-segmented CdS–Au nanorod arrays. Adv. Mater. 2014, 26, 3506–3512.

[5]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen-and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[6]

Jiao, S. L.; Fu, X. W.; Wang, S. Y.; Zhao, Y. Perfecting electrocatalysts via imperfections: Towards the large-scale deployment of water electrolysis technology. Energy Environ. Sci. 2021, 14, 1722–1770.

[7]

Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157.

[8]

Li, H. J. W.; Liu, K.; Fu, J. W.; Chen, K. J.; Yang, K. X.; Lin, Y. Y.; Yang, B. P.; Wang, Q. Y.; Pan, H.; Cai, Z. J. et al. Paired Ru–O–Mo ensemble for efficient and stable alkaline hydrogen evolution reaction. Nano Energy 2021, 82, 105767.

[9]

Shan, J. Q.; Ling, T.; Davey, K.; Zheng, Y.; Qiao, S. Z. Transition-metal-doped RuIr bifunctional nanocrystals for overall water splitting in acidic environments. Adv. Mater. 2019, 31, 1900510.

[10]

Chen, W.; Wu, B. B.; Wang, Y. Y.; Zhou, W.; Li, Y. Y.; Liu, T. Y.; Xie, C.; Xu, L. T.; Du, S. Q.; Song, M. L. et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440.

[11]

Wen, Q. J.; Yang, K.; Huang, D. J.; Cheng, G.; Ai, X. M.; Liu, Y. M.; Fang, J. K.; Li, H. Q.; Yu, L.; Zhai, T. Y. Schottky heterojunction nanosheet array achieving high-current-density oxygen evolution for industrial water splitting electrolyzers. Adv. Energy Mater. 2021, 11, 2102353.

[12]

Wen, Q. L.; Duan, J. Y.; Wang, W. B.; Huang, D. J.; Liu, Y. W.; Shi, Y. L.; Fang, J. K.; Nie, A. M.; Li, H. Q.; Zhai, T. Y. Engineering a local free water enriched microenvironment for surpassing platinum hydrogen evolution activity. Angew. Chem., Int. Ed. 2022, 61, e202206077.

[13]

Liao, L.; Wang, S. N.; Xiao, J. J.; Bian, X. J.; Zhang, Y. H.; Scanlon, M. D.; Hu, X. L.; Tang, Y.; Liu, B. H.; Girault, H. H. A nanoporous molybdenum carbide nanowire as an electrocatalyst for hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 387–392.

[14]

Lin, L. L.; Zhou, W.; Gao, R.; Yao, S. Y.; Zhang, X.; Xu, W. Q.; Zheng, S. J.; Jiang, Z.; Yu, Q. L.; Li, Y. W. et al. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts. Nature 2017, 544, 80–83.

[15]

Jia, J.; Xiong, T. L.; Zhao, L. L.; Wang, F. L.; Liu, H.; Hu, R. Z.; Zhou, J.; Zhou, W. J.; Chen, S. W. Ultrathin N-doped Mo2C nanosheets with exposed active sites as efficient electrocatalyst for hydrogen evolution reactions. ACS Nano 2017, 11, 12509–12518.

[16]

Wu, J. B.; Su, J. W.; Wu, T.; Huang, L.; Li, Q.; Luo, Y. X.; Jin, H. R.; Zhou, J.; Zhai, T. Y.; Wang, D. S. et al. Scalable synthesis of 2D Mo2C and thickness-dependent hydrogen evolution on its basal plane and edges. Adv. Mater. 2023, 35, 2209954.

[17]

Zhu, C. R.; Gao, D. Q.; Ding, J.; Chao, D. L.; Wang, J. TMD-based highly efficient electrocatalysts developed by combined computational and experimental approaches. Chem. Soc. Rev. 2018, 47, 4332–4356.

[18]

Chen, Z. X.; Leng, K.; Zhao, X. X.; Malkhandi, S.; Tang, W.; Tian, B. B.; Dong, L.; Zheng, L. R.; Lin, M.; Yeo, B. S. et al. Interface confined hydrogen evolution reaction in zero valent metal nanoparticles-intercalated molybdenum disulfide. Nat. Commun. 2017, 8, 14548.

[19]

Chen, L. X.; Chen, Z. W.; Wang, Y.; Yang, C. C.; Jiang, Q. Design of dual-modified MoS2 with nanoporous Ni and graphene as efficient catalysts for the hydrogen evolution reaction. ACS Catal. 2018, 8, 8107–8114.

[20]

Xie, J. F.; Zhang, H.; Li, S.; Wang, R. X.; Sun, X.; Zhou, M.; Zhou, J. F.; Lou, X. W.; Xie, Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution. Adv. Mater. 2013, 25, 5807–5813.

[21]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[22]

Guo, S. E.; Tang, Y. Q.; Xie, Y.; Tian, C. G.; Feng, Q. M.; Zhou, W.; Jiang, B. J. P-doped tubular g-C3N4 with surface carbon defects: Universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl. Catal. B: Environ. 2017, 218, 664–671.

[23]

Jing, S. Y.; Zhang, L. S.; Luo, L.; Lu, J. J.; Yin, S. B.; Shen, P. K.; Tsiakaras, P. N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl. Catal. B: Environ. 2018, 224, 533–540.

[24]

Liu, W.; Wang, X. T.; Wang, F.; Du, K. F.; Zhang, Z. F.; Guo, Y. Z.; Yin, H. Y.; Wang, D. H. A durable and pH-universal self-standing MoC–Mo2C heterojunction electrode for efficient hydrogen evolution reaction. Nat. Commun. 2021, 12, 6776.

[25]

Zhang, Y. Z.; Guo, P.; Guo, S. H.; Xin, X.; Wang, Y. J.; Huang, W. J.; Wang, M. H.; Yang, B. W.; Jorge Sobrido, A.; Ghasemi, J. B. et al. Gradient heating epitaxial growth gives well lattice-matched Mo2C–Mo2N heterointerfaces that boost both electrocatalytic hydrogen evolution and water vapor splitting. Angew. Chem., Int. Ed. 2022, 61, e202209703.

[26]

Li, H. J. W.; Cai, C.; Wang, Q. Y.; Chen, S. Y.; Fu, J. W.; Liu, B.; Hu, Q. N.; Hu, K. M.; Li, H. M.; Hu, J. H. et al. High-performance alkaline water splitting by Ni nanoparticle-decorated Mo–Ni microrods: Enhanced ion adsorption by the local electric field. Chem. Eng. J. 2022, 435, 134860.

[27]

Gargiulo, J.; Berté, R.; Li, Y.; Maier, S. A.; Cortés, E. From optical to chemical hot spots in plasmonics. Acc. Chem. Res. 2019, 52, 2525–2535.

[28]

Shi, Y.; Wang, J.; Wang, C.; Zhai, T. T.; Bao, W. J.; Xu, J. J.; Xia, X. H.; Chen, H. Y. Hot electron of Au nanorods activates the electrocatalysis of hydrogen evolution on MoS2 nanosheets. J. Am. Chem. Soc. 2015, 137, 7365–7370.

[29]

Liu, G. G.; Li, P.; Zhao, G. X.; Wang, X.; Kong, J. T.; Liu, H. M.; Zhang, H. B.; Chang, K.; Meng, X. G.; Kako, T. et al. Promoting active species generation by Plasmon-induced hot-electron excitation for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 9128–9136.

[30]

Zhang, Z. L.; Zhang, C. Y.; Zheng, H. R.; Xu, H. X. Plasmon-driven catalysis on molecules and nanomaterials. Acc. Chem. Res. 2019, 52, 2506–2515.

[31]

Christopher, P.; Xin, H. L.; Marimuthu, A.; Linic, S. Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures. Nat. Mater. 2012, 11, 1044–1050.

[32]

Cortés, E. Activating plasmonic chemistry. Science 2018, 362, 28–29.

[33]

Zhao, J.; Xue, S.; Ji, R. R.; Li, B.; Li, J. H. Localized surface Plasmon resonance for enhanced electrocatalysis. Chem. Soc. Rev. 2021, 50, 12070–12097.

[34]

Aslam, U.; Chavez, S.; Linic, S. Controlling energy flow in multimetallic nanostructures for plasmonic catalysis. Nat. Nanotechnol. 2017, 12, 1000–1005.

[35]

Nan, L.; Giráldez-Martínez, J.; Stefancu, A.; Zhu, L.; Liu, M.; Govorov, A. O.; Besteiro, L. V.; Cortés, E. Investigating plasmonic catalysis kinetics on hot-spot engineered nanoantennae. Nano Lett. 2023, 23, 2883–2889.

[36]

Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.

[37]

Li, H. J. W.; Zhou, H. M.; Zhou, Y. J.; Hu, J. H.; Miyauchi, M.; Fu, J. W.; Liu, M. Electric-field promoted C–C coupling over Cu nanoneedles for CO2 electroreduction to C2 products. Chin. J. Catal. 2022, 43, 519–525.

[38]

Ezendam, S.; Herran, M.; Nan, L.; Gruber, C.; Kang, Y.; Gröbmeyer, F.; Lin, R.; Gargiulo, J.; Sousa-Castillo, A.; Cortés, E. Hybrid plasmonic nanomaterials for hydrogen generation and carbon dioxide reduction. ACS Energy Lett. 2022, 7, 778–815.

[39]

Wang, S. S.; Jiao, L.; Qian, Y. Y.; Hu, W. C.; Xu, G. Y.; Wang, C.; Jiang, H. L. Boosting electrocatalytic hydrogen evolution over metal-organic frameworks by Plasmon-induced hot-electron injection. Angew. Chem., Int. Ed. 2019, 58, 10713–10717.

[40]

Xu, J.; Gu, P.; Birch, D. J. S.; Chen, Y. Plasmon-promoted electrochemical oxygen evolution catalysis from gold decorated MnO2 nanosheets under green light. Adv. Funct. Mater. 2018, 28, 1801573.

[41]

Liu, C. X.; Gao, C. C.; Yao, K. L.; Masouleh, S. S. M.; Berté, R.; Ren, H. R.; de S. Menezes, L. ; Cortés, E.; Bicket, I. C. et al. Self-constructed multiple plasmonic hotspots on an individual fractal to amplify broadband hot electron generation. ACS Nano 2021, 15, 10553–10564.

[42]

Zhang, Y. F.; Wang, Q. M.; Wang, K. K.; Liu, Y.; Zou, L. W.; Zhou, Y.; Liu, M.; Qiu, X. Q.; Li, W. Z.; Li, J. Plasmonic Ag-decorated Cu2O nanowires for boosting photoelectrochemical CO2 reduction to multi-carbon products. Chem. Commun. 2022, 58, 9421–9424.

[43]

Kuo, T. R.; Lee, Y. C.; Chou, H. L.; Swathi, M. G.; Wei, C. Y.; Wen, C. Y.; Chang, Y. H.; Pan, X. Y.; Wang, D. Y. Plasmon-enhanced hydrogen evolution on specific facet of silver nanocrystals. Chem. Mater. 2019, 31, 3722–3728.

[44]

Creel, E. B.; Corson, E. R.; Eichhorn, J.; Kostecki, R.; Urban, J. J.; McCloskey, B. D. Directing selectivity of electrochemical carbon dioxide reduction using plasmonics. ACS Energy Lett. 2019, 4, 1098–1105.

[45]

Chen, X.; Zheng, Z. F.; Ke, X. B.; Jaatinen, E.; Xie, T. F.; Wang, D. J.; Guo, C.; Zhao, J. C.; Zhu, H. Y. Supported silver nanoparticles as photocatalysts under ultraviolet and visible light irradiation. Green Chem. 2010, 12, 414–419.

[46]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[47]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[48]

Ernzerhof, M.; Scuseria, G. E. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 1999, 110, 5029–5036.

[49]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[50]

Xu, H. Y.; Zhu, J. Z.; Zou, C. H.; Zhang, F. P.; Ming, D. M.; Guan, D. Q.; Ma, L. Theoretical design of core–shell 3D-metal nanoclusters for efficient hydrogen-evolving reaction. Energy Fuels 2023, 37, 16781–16789.

[51]

Guan, D. Q.; Zhong, J.; Xu, H. Y.; Huang, Y. C.; Hu, Z. W.; Chen, B.; Zhang, Y.; Ni, M.; Xu, X. M.; Zhou, W. et al. A universal chemical-induced tensile strain tuning strategy to boost oxygen-evolving electrocatalysis on perovskite oxides. Appl. Phys. Rev. 2022, 9, 011422.

[52]

Li, W. D.; Xu, H. Y.; Zhang, H. Y.; Wei, F. C.; Huang, L. Y.; Ke, S. Z.; Fu, J. W.; Jing, C. B.; Cheng, J. G.; Liu, S. H. Tuning electron delocalization of hydrogen-bonded organic framework cathode for high-performance zinc-organic batteries. Nat. Commun. 2023, 14, 5235.

[53]

Zhang, C.; Zhou, Y.; Wang, W. J.; Yang, Y.; Zhou, C. Y.; Wang, L. L.; Lei, L.; He, D. H.; Luo, H. Z.; Huang, D. L. Formation of Mo2C/hollow tubular g-C3N4 hybrids with favorable charge transfer channels for excellent visible-light-photocatalytic performance. Appl. Surf. Sci. 2020, 527, 146757.

[54]

Zhou, Y.; Zhang, C.; Huang, D. L.; Wang, W. J.; Zhai, Y. B.; Liang, Q. H.; Yang, Y.; Tian, S. H.; Luo, H. Z.; Qin, D. Y. Structure defined 2D Mo2C/2D g–C3N4 Van der Waals heterojunction: Oriented charge flow in-plane and separation within the interface to collectively promote photocatalytic degradation of pharmaceutical and personal care products. Appl. Catal. B: Environm. 2022, 301, 120749.

[55]

Steinigeweg, D.; Schlücker, S. Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol-water mixtures. Chem. Commun. 2012, 48, 8682–8684.

Nano Research
Article number: 94907146
Cite this article:
Li H, Zi X, Wu J, et al. Plasmon-induced local electric field improved hydrogen evolution reaction on Ag/Mo2C nanosheets. Nano Research, 2025, 18(1): 94907146. https://doi.org/10.26599/NR.2025.94907146
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return