Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The performance of organic electrochemical transistors (OECTs) relies on the interaction between organic semiconductors and ions. Consequently, hydrophilic ethylene glycol (EG) side chains are incorporated into organic semiconductors to improve the channel’s capacity to absorb ions. However, the EG substituted organic semiconductors tend to swell when immersed in aqueous electrolytes and exhibit microstructural changes induced by dopant ions. In our research, we introduce an alkyl spacer to create distance between the fullerene and EG chain. This approach is designed to reduce the negative effects of swelling and balance the ion and electron conduction. We conducted an analysis of OECTs using four fullerene derivatives: no alkyl spacer, butyl, hexyl, and octyl spacers. The OECTs based on fullerene derivatives with butyl and hexyl spacers exhibit enhanced transconductance (gm = 11.8 and 19.4 mS) compared to the ones without alkyl spacers. It has also been observed that the butyl and hexyl spacers lead to a more than tenfold increase in volumetric capacitance. Further increasing the alkyl spacer (octyl group) leads to no transistor behavior. Our study uncovers the relationship between alkyl spacers and the performance of OECTs based on fullerene derivatives. This will serve as a guideline for designing n-type small molecules for OECTs. Finally, we showcased the potential of utilizing OECTs based on these fullerene derivatives in cation sensing, which is promising for developing sweat sensors.
Liu, F. Y.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-inspired electronic skin for robots. Sci. Robot. 2022, 7, eabl7344.
Gkoupidenis, P.; Zhang, Y.; Kleemann, H.; Ling, H.; Santoro, F.; Fabiano, S.; Salleo, A.; van de Burgt, Y. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 2024, 9, 134–149.
Andersen, R. A.; Aflalo, T.; Bashford, L.; Bjånes, D.; Kellis, S. Exploring cognition with brain-machine interfaces. Annu. Rev. Psychol. 2022, 73, 131–158.
Tan, S. T. M.; Gumyusenge, A.; Quill, T. J.; LeCroy, G. S.; Bonacchini, G. E.; Denti, I.; Salleo, A. Mixed ionic-electronic conduction, a multifunctional property in organic conductors. Adv. Mater. 2022, 34, 2110406.
Tropp, J.; Meli, D.; Rivnay, J. Organic mixed conductors for electrochemical transistors. Matter 2023, 6, 3132–3164.
Yao, Y.; Huang, W.; Chen, J. H.; Liu, X. X.; Bai, L. B.; Chen, W.; Cheng, Y. H.; Ping, J. F.; Marks, T. J.; Facchetti, A. Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 2023, 35, 2209906.
Liu, R. P.; Zhu, X. Y.; Duan, J. Y.; Chen, J. X.; Xie, Z.; Chen, C. Y.; Xie, X.; Zhang, Y. X.; Yue, W. Versatile neuromorphic modulation and biosensing based on n-type small-molecule organic mixed ionic-electronic conductors. Angew. Chem., Int. Ed. 2024, 63, e202315537.
Chouhdry, H. H.; Lee, D. H.; Bag, A.; Lee, N. E. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 2023, 14, 821.
Xu, X. Z.; Zhang, H. Q.; Shao, L.; Ma, R.; Guo, M.; Liu, Y. Q.; Zhao, Y. An aqueous electrolyte gated artificial synapse with synaptic plasticity selectively mediated by biomolecules. Angew. Chem., Int. Ed. 2023, 62, e202302723.
Chen, K.; Hu, H.; Song, I.; Gobeze, H. B.; Lee, W. J.; Abtahi, A.; Schanze, K. S.; Mei, J. G. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 2023, 17, 629–637.
Matrone, G. M.; Van Doremaele, E. R. W.; Surendran, A.; Laswick, Z.; Griggs, S.; Ye, G.; McCulloch, I.; Santoro, F.; Rivnay, J.; van de Burgt, Y. A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways. Nat. Commun. 2024, 15, 2868.
Harikesh, P. C.; Yang, C. Y.; Tu, D. Y.; Gerasimov, J. Y.; Dar, A. M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.
Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P. W. M.; Torricelli, F.; Gkoupidenis, P. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 2022, 5, 774–783.
Ohayon, D.; Druet, V.; Inal, S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem. Soc. Rev. 2023, 52, 1001–1023.
Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.
Maria, I. P.; Griggs, S.; Rashid, R. B.; Paulsen, B. D.; Surgailis, J.; Thorley, K.; Le, V. N.; Harrison, G. T.; Combe, C.; Hallani, R. et al. Enhancing the backbone coplanarity of n-type copolymers for higher electron mobility and stability in organic electrochemical transistors. Chem. Mater. 2022, 34, 8593–8602.
Moser, M.; Hidalgo, T. C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N. et al. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 2020, 32, 2002748.
Maria, I. P.; Paulsen, B. D.; Savva, A.; Ohayon, D.; Wu, R. H.; Hallani, R.; Basu, A.; Du, W. Y.; Anthopoulos, T. D.; Inal, S. et al. The effect of alkyl spacers on the mixed ionic-electronic conduction properties of n-type polymers. Adv. Funct. Mater. 2021, 31, 2008718.
Duan, J. Y.; Zhu, G. M.; Lan, L. Y.; Chen, J. X.; Zhu, X. Y.; Chen, C. Y.; Yu, Y. P.; Liao, H. L.; Li, Z. K.; McCulloch, I. et al. Electron-deficient polycyclic molecules via ring fusion for n-type organic electrochemical transistors. Angew. Chem., Int. Ed. 2023, 62, e202213737.
Tan, E.; Kim, J.; Stewart, K.; Pitsalidis, C.; Kwon, S.; Siemons, N.; Kim, J.; Jiang, Y. F.; Frost, J. M.; Pearce, D. et al. The role of long-alkyl-group spacers in glycolated copolymers for high-performance organic electrochemical transistors. Adv. Mater., 2022, 34, 2202574.
Griggs, S.; Marks, A.; Meli, D.; Rebetez, G.; Bardagot, O.; Paulsen, B. D.; Chen, H.; Weaver, K.; Nugraha, M. I.; Schafer, E. A. et al. The effect of residual palladium on the performance of organic electrochemical transistors. Nat. Commun. 2022, 13, 7964.
Tang, H. R.; Liang, Y. Y.; Liu, C. C.; Hu, Z. C.; Deng, Y. F.; Guo, H.; Yu, Z. D.; Song, A.; Zhao, H. Y.; Zhao, D. Y. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 2022, 611, 271–277.
Duan, J. Y.; Zhu, G. M.; Chen, J. X.; Zhang, C. Y.; Zhu, X. Y.; Liao, H. L.; Li, Z. K.; Hu, H. L.; McCulloch, I.; Nielsen, C. B. et al. Highly efficient mixed conduction in a fused oligomer n-type organic semiconductor enabled by 3D transport pathways. Adv. Mater. 2023, 35, 2300252.
Sun, H. D.; Vagin, M.; Wang, S. H.; Crispin, X.; Forchheimer, R.; Berggren, M.; Fabiano, S. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 2018, 30, 1704916.
Wang, X.; Zhang, Z.; Li, P. Y.; Xu, J. C.; Zheng, Y. T.; Sun, W. X.; Xie, M. Y.; Wang, J. R.; Pan, X. R.; Lei, X. et al. Ultrastable n-type semiconducting fiber organic electrochemical transistors for highly sensitive biosensors. Adv. Mater. 2024, 36, 2400287.
Lei, Y. Q.; Li, P. Y.; Zheng, Y. T.; Lei, T. Materials design and applications of n-type and ambipolar organic electrochemical transistors. Mater. Chem. Front. 2024, 8, 133–158.
Wu, W. C.; Feng, K.; Wang, Y. M.; Wang, J. W.; Huang, E. M.; Li, Y. C.; Jeong, S. Y.; Woo, H. Y.; Yang, K.; Guo, X. G. Selenophene substitution enabled high-performance n-type polymeric mixed ionic-electronic conductors for organic electrochemical transistors and glucose sensors. Adv. Mater. 2024, 36, 2310503.
Savva, A.; Hallani, R.; Cendra, C.; Surgailis, J.; Hidalgo, T. C.; Wustoni, S.; Sheelamanthula, R.; Chen, X. X.; Kirkus, M.; Giovannitti, A. et al. Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 2020, 30, 1907657.
Surgailis, J.; Flagg, L. Q.; Richter, L. J.; Druet, V.; Griggs, S.; Wu, X. C.; Moro, S.; Ohayon, D.; Kousseff, C. J.; Marks, A. et al. The role of side chains and hydration on mixed charge transport in n-type polymer films. Adv. Mater. 2024, 30, 2313121.
Chen, S. E.; Flagg, L. Q.; Onorato, J. W.; Richter, L. J.; Guo, J. J.; Luscombe, C. K.; Ginger, D. S. Impact of varying side chain structure on organic electrochemical transistor performance: A series of oligoethylene glycol-substituted polythiophenes. J. Mater. Chem. A 2022, 10, 10738–10749.
Yu, S. M.; Kousseff, C. J.; Nielsen, C. B. n-Type semiconductors for organic electrochemical transistor applications. Synth. Met. 2023, 293, 117295.
Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.
Anthopoulos, T. D.; Kooistra, F. B.; Wondergem, H. J.; Kronholm, D.; Hummelen, J. C.; de Leeuw, D. M. Air-stable n-channel organic transistors based on a soluble C84 fullerene derivative. Adv. Mater. 2006, 18, 1679–1684.
Bischak, C. G.; Flagg, L. Q.; Yan, K. R.; Li, C. Z.; Ginger, D. S. Fullerene active layers for n-type organic electrochemical transistors. ACS Appl. Mater. Interfaces 2019, 11, 28138–28144.
Stein, E.; Nahor, O.; Stolov, M.; Freger, V.; Petruta, I. M.; McCulloch, I.; Frey, G. L. Ambipolar blend-based organic electrochemical transistors and inverters. Nat. Commun. 2022, 13, 5548.
Kousseff, C. J.; Halaksa, R.; Parr, Z. S.; Nielsen, C. B. Mixed ionic and electronic conduction in small-molecule semiconductors. Chem. Rev. 2022, 122, 4397–4419.
Liu, J.; Shi, Y. Q.; Dong, J. J.; Nugraha, M. I.; Qiu, X. K.; Su, M. Y.; Chiechi, R. C.; Baran, D.; Portale, G.; Guo, X. G. et al. Overcoming coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett. 2019, 4, 1556–1564.
Giridharagopal, R.; Flagg, L. Q.; Harrison, J. S.; Ziffer, M. E.; Onorato, J.; Luscombe, C. K.; Ginger, D. S. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 2017, 16, 737–742.
Han, S.; Yamamoto, S.; Polyravas, A. G.; Malliaras, G. G. Microfabricated ion-selective transistors with fast and super-nernstian response. Adv. Mater. 2020, 32, 2004790.
Li, T.; Cheryl Koh, J. Y.; Moudgil, A.; Cao, H.; Wu, X. H.; Chen, S.; Hou, K. Q.; Surendran, A.; Stephen, M.; Tang, C. et al. Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion detection and electrophysiological monitoring. ACS Nano 2022, 16, 12049–12060.
Sessolo, M.; Rivnay, J.; Bandiello, E.; Malliaras, G. G.; Bolink, H. J. Ion-selective organic electrochemical transistors. Adv. Mater. 2014, 26, 4803–4807.
Liu, H.; Song, J. J.; Zhao, Z. Y.; Zhao, S. Q.; Tian, Z. Y.; Yan, F. Organic electrochemical transistors for biomarker detections. Adv. Sci. 2024, 11, 2305347.
496
Views
81
Downloads
0
Crossref
0
Web of Science
0
Scopus
0
CSCD
Altmetrics
This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).