AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
PDF (10.7 MB)
Collect
Submit Manuscript AI Chat Paper
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article | Open Access

Enhancing performance of fullerene-based organic electrochemical transistors via side-chain engineering

Wenxin Fang1,§Zijie Li2,§Chengdong Wang1,§Xiaowei Zhao1Junyu Li3Gang Ye4Fengwei Huo5Li Qiu2( )Yanxi Zhang1 ( )Wei Huang6( )
Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China
Yunnan Key Laboratory of Electromagnetic Materials and Devices, National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming 650091, China
Sinopec Shanghai Research Institute of Petrochemical Technology, Shanghai 201028, China
Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China
Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211800, China
Frontiers Science Center for Flexible Electronics, MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an 710072, China

§ Wenxin Fang, Zijie Li, and Chengdong Wang contributed equally to this work.

Show Author Information

Graphical Abstract

Organic electrochemical transistor (OECT) performance was improved by varying the length of the alkyl gasket on the side chain of the fullerene derivative, and the fullerene derivate-based OECTs with butyl and hexyl spacers showed enhanced transconductance (gm = 11.8 and 19.4 mS). Cationic sensing was also demonstrated using fullerene derivatives.

Abstract

The performance of organic electrochemical transistors (OECTs) relies on the interaction between organic semiconductors and ions. Consequently, hydrophilic ethylene glycol (EG) side chains are incorporated into organic semiconductors to improve the channel’s capacity to absorb ions. However, the EG substituted organic semiconductors tend to swell when immersed in aqueous electrolytes and exhibit microstructural changes induced by dopant ions. In our research, we introduce an alkyl spacer to create distance between the fullerene and EG chain. This approach is designed to reduce the negative effects of swelling and balance the ion and electron conduction. We conducted an analysis of OECTs using four fullerene derivatives: no alkyl spacer, butyl, hexyl, and octyl spacers. The OECTs based on fullerene derivatives with butyl and hexyl spacers exhibit enhanced transconductance (gm = 11.8 and 19.4 mS) compared to the ones without alkyl spacers. It has also been observed that the butyl and hexyl spacers lead to a more than tenfold increase in volumetric capacitance. Further increasing the alkyl spacer (octyl group) leads to no transistor behavior. Our study uncovers the relationship between alkyl spacers and the performance of OECTs based on fullerene derivatives. This will serve as a guideline for designing n-type small molecules for OECTs. Finally, we showcased the potential of utilizing OECTs based on these fullerene derivatives in cation sensing, which is promising for developing sweat sensors.

Electronic Supplementary Material

Download File(s)
7149_ESM.pdf (4.7 MB)

References

[1]

Liu, F. Y.; Deswal, S.; Christou, A.; Sandamirskaya, Y.; Kaboli, M.; Dahiya, R. Neuro-inspired electronic skin for robots. Sci. Robot. 2022, 7, eabl7344.

[2]

Gkoupidenis, P.; Zhang, Y.; Kleemann, H.; Ling, H.; Santoro, F.; Fabiano, S.; Salleo, A.; van de Burgt, Y. Organic mixed conductors for bioinspired electronics. Nat. Rev. Mater. 2024, 9, 134–149.

[3]

Andersen, R. A.; Aflalo, T.; Bashford, L.; Bjånes, D.; Kellis, S. Exploring cognition with brain-machine interfaces. Annu. Rev. Psychol. 2022, 73, 131–158.

[4]

Tan, S. T. M.; Gumyusenge, A.; Quill, T. J.; LeCroy, G. S.; Bonacchini, G. E.; Denti, I.; Salleo, A. Mixed ionic-electronic conduction, a multifunctional property in organic conductors. Adv. Mater. 2022, 34, 2110406.

[5]

Tropp, J.; Meli, D.; Rivnay, J. Organic mixed conductors for electrochemical transistors. Matter 2023, 6, 3132–3164.

[6]

Yao, Y.; Huang, W.; Chen, J. H.; Liu, X. X.; Bai, L. B.; Chen, W.; Cheng, Y. H.; Ping, J. F.; Marks, T. J.; Facchetti, A. Flexible and stretchable organic electrochemical transistors for physiological sensing devices. Adv. Mater. 2023, 35, 2209906.

[7]

Liu, R. P.; Zhu, X. Y.; Duan, J. Y.; Chen, J. X.; Xie, Z.; Chen, C. Y.; Xie, X.; Zhang, Y. X.; Yue, W. Versatile neuromorphic modulation and biosensing based on n-type small-molecule organic mixed ionic-electronic conductors. Angew. Chem., Int. Ed. 2024, 63, e202315537.

[8]

Chouhdry, H. H.; Lee, D. H.; Bag, A.; Lee, N. E. A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor. Nat. Commun. 2023, 14, 821.

[9]

Xu, X. Z.; Zhang, H. Q.; Shao, L.; Ma, R.; Guo, M.; Liu, Y. Q.; Zhao, Y. An aqueous electrolyte gated artificial synapse with synaptic plasticity selectively mediated by biomolecules. Angew. Chem., Int. Ed. 2023, 62, e202302723.

[10]

Chen, K.; Hu, H.; Song, I.; Gobeze, H. B.; Lee, W. J.; Abtahi, A.; Schanze, K. S.; Mei, J. G. Organic optoelectronic synapse based on photon-modulated electrochemical doping. Nat. Photon. 2023, 17, 629–637.

[11]

Matrone, G. M.; Van Doremaele, E. R. W.; Surendran, A.; Laswick, Z.; Griggs, S.; Ye, G.; McCulloch, I.; Santoro, F.; Rivnay, J.; van de Burgt, Y. A modular organic neuromorphic spiking circuit for retina-inspired sensory coding and neurotransmitter-mediated neural pathways. Nat. Commun. 2024, 15, 2868.

[12]

Harikesh, P. C.; Yang, C. Y.; Tu, D. Y.; Gerasimov, J. Y.; Dar, A. M.; Armada-Moreira, A.; Massetti, M.; Kroon, R.; Bliman, D.; Olsson, R. et al. Organic electrochemical neurons and synapses with ion mediated spiking. Nat. Commun. 2022, 13, 901.

[13]

Sarkar, T.; Lieberth, K.; Pavlou, A.; Frank, T.; Mailaender, V.; McCulloch, I.; Blom, P. W. M.; Torricelli, F.; Gkoupidenis, P. An organic artificial spiking neuron for in situ neuromorphic sensing and biointerfacing. Nat. Electron. 2022, 5, 774–783.

[14]

Ohayon, D.; Druet, V.; Inal, S. A guide for the characterization of organic electrochemical transistors and channel materials. Chem. Soc. Rev. 2023, 52, 1001–1023.

[15]

Rivnay, J.; Inal, S.; Salleo, A.; Owens, R. M.; Berggren, M.; Malliaras, G. G. Organic electrochemical transistors. Nat. Rev. Mater. 2018, 3, 17086.

[16]

Maria, I. P.; Griggs, S.; Rashid, R. B.; Paulsen, B. D.; Surgailis, J.; Thorley, K.; Le, V. N.; Harrison, G. T.; Combe, C.; Hallani, R. et al. Enhancing the backbone coplanarity of n-type copolymers for higher electron mobility and stability in organic electrochemical transistors. Chem. Mater. 2022, 34, 8593–8602.

[17]

Moser, M.; Hidalgo, T. C.; Surgailis, J.; Gladisch, J.; Ghosh, S.; Sheelamanthula, R.; Thiburce, Q.; Giovannitti, A.; Salleo, A.; Gasparini, N. et al. Side chain redistribution as a strategy to boost organic electrochemical transistor performance and stability. Adv. Mater. 2020, 32, 2002748.

[18]

Maria, I. P.; Paulsen, B. D.; Savva, A.; Ohayon, D.; Wu, R. H.; Hallani, R.; Basu, A.; Du, W. Y.; Anthopoulos, T. D.; Inal, S. et al. The effect of alkyl spacers on the mixed ionic-electronic conduction properties of n-type polymers. Adv. Funct. Mater. 2021, 31, 2008718.

[19]

Duan, J. Y.; Zhu, G. M.; Lan, L. Y.; Chen, J. X.; Zhu, X. Y.; Chen, C. Y.; Yu, Y. P.; Liao, H. L.; Li, Z. K.; McCulloch, I. et al. Electron-deficient polycyclic molecules via ring fusion for n-type organic electrochemical transistors. Angew. Chem., Int. Ed. 2023, 62, e202213737.

[20]

Tan, E.; Kim, J.; Stewart, K.; Pitsalidis, C.; Kwon, S.; Siemons, N.; Kim, J.; Jiang, Y. F.; Frost, J. M.; Pearce, D. et al. The role of long-alkyl-group spacers in glycolated copolymers for high-performance organic electrochemical transistors. Adv. Mater., 2022, 34, 2202574.

[21]

Griggs, S.; Marks, A.; Meli, D.; Rebetez, G.; Bardagot, O.; Paulsen, B. D.; Chen, H.; Weaver, K.; Nugraha, M. I.; Schafer, E. A. et al. The effect of residual palladium on the performance of organic electrochemical transistors. Nat. Commun. 2022, 13, 7964.

[22]

Tang, H. R.; Liang, Y. Y.; Liu, C. C.; Hu, Z. C.; Deng, Y. F.; Guo, H.; Yu, Z. D.; Song, A.; Zhao, H. Y.; Zhao, D. Y. et al. A solution-processed n-type conducting polymer with ultrahigh conductivity. Nature 2022, 611, 271–277.

[23]

Duan, J. Y.; Zhu, G. M.; Chen, J. X.; Zhang, C. Y.; Zhu, X. Y.; Liao, H. L.; Li, Z. K.; Hu, H. L.; McCulloch, I.; Nielsen, C. B. et al. Highly efficient mixed conduction in a fused oligomer n-type organic semiconductor enabled by 3D transport pathways. Adv. Mater. 2023, 35, 2300252.

[24]

Sun, H. D.; Vagin, M.; Wang, S. H.; Crispin, X.; Forchheimer, R.; Berggren, M.; Fabiano, S. Complementary logic circuits based on high-performance n-type organic electrochemical transistors. Adv. Mater. 2018, 30, 1704916.

[25]

Wang, X.; Zhang, Z.; Li, P. Y.; Xu, J. C.; Zheng, Y. T.; Sun, W. X.; Xie, M. Y.; Wang, J. R.; Pan, X. R.; Lei, X. et al. Ultrastable n-type semiconducting fiber organic electrochemical transistors for highly sensitive biosensors. Adv. Mater. 2024, 36, 2400287.

[26]

Lei, Y. Q.; Li, P. Y.; Zheng, Y. T.; Lei, T. Materials design and applications of n-type and ambipolar organic electrochemical transistors. Mater. Chem. Front. 2024, 8, 133–158.

[27]

Wu, W. C.; Feng, K.; Wang, Y. M.; Wang, J. W.; Huang, E. M.; Li, Y. C.; Jeong, S. Y.; Woo, H. Y.; Yang, K.; Guo, X. G. Selenophene substitution enabled high-performance n-type polymeric mixed ionic-electronic conductors for organic electrochemical transistors and glucose sensors. Adv. Mater. 2024, 36, 2310503.

[28]

Savva, A.; Hallani, R.; Cendra, C.; Surgailis, J.; Hidalgo, T. C.; Wustoni, S.; Sheelamanthula, R.; Chen, X. X.; Kirkus, M.; Giovannitti, A. et al. Balancing ionic and electronic conduction for high-performance organic electrochemical transistors. Adv. Funct. Mater. 2020, 30, 1907657.

[29]

Surgailis, J.; Flagg, L. Q.; Richter, L. J.; Druet, V.; Griggs, S.; Wu, X. C.; Moro, S.; Ohayon, D.; Kousseff, C. J.; Marks, A. et al. The role of side chains and hydration on mixed charge transport in n-type polymer films. Adv. Mater. 2024, 30, 2313121.

[30]

Chen, S. E.; Flagg, L. Q.; Onorato, J. W.; Richter, L. J.; Guo, J. J.; Luscombe, C. K.; Ginger, D. S. Impact of varying side chain structure on organic electrochemical transistor performance: A series of oligoethylene glycol-substituted polythiophenes. J. Mater. Chem. A 2022, 10, 10738–10749.

[31]

Yu, S. M.; Kousseff, C. J.; Nielsen, C. B. n-Type semiconductors for organic electrochemical transistor applications. Synth. Met. 2023, 293, 117295.

[32]

Takeya, J.; Yamagishi, M.; Tominari, Y.; Hirahara, R.; Nakazawa, Y.; Nishikawa, T.; Kawase, T.; Shimoda, T.; Ogawa, S. Very high-mobility organic single-crystal transistors with in-crystal conduction channels. Appl. Phys. Lett. 2007, 90, 102120.

[33]

Anthopoulos, T. D.; Kooistra, F. B.; Wondergem, H. J.; Kronholm, D.; Hummelen, J. C.; de Leeuw, D. M. Air-stable n-channel organic transistors based on a soluble C84 fullerene derivative. Adv. Mater. 2006, 18, 1679–1684.

[34]

Bischak, C. G.; Flagg, L. Q.; Yan, K. R.; Li, C. Z.; Ginger, D. S. Fullerene active layers for n-type organic electrochemical transistors. ACS Appl. Mater. Interfaces 2019, 11, 28138–28144.

[35]

Stein, E.; Nahor, O.; Stolov, M.; Freger, V.; Petruta, I. M.; McCulloch, I.; Frey, G. L. Ambipolar blend-based organic electrochemical transistors and inverters. Nat. Commun. 2022, 13, 5548.

[36]

Kousseff, C. J.; Halaksa, R.; Parr, Z. S.; Nielsen, C. B. Mixed ionic and electronic conduction in small-molecule semiconductors. Chem. Rev. 2022, 122, 4397–4419.

[37]

Liu, J.; Shi, Y. Q.; Dong, J. J.; Nugraha, M. I.; Qiu, X. K.; Su, M. Y.; Chiechi, R. C.; Baran, D.; Portale, G.; Guo, X. G. et al. Overcoming coulomb interaction improves free-charge generation and thermoelectric properties for n-doped conjugated polymers. ACS Energy Lett. 2019, 4, 1556–1564.

[38]

Giridharagopal, R.; Flagg, L. Q.; Harrison, J. S.; Ziffer, M. E.; Onorato, J.; Luscombe, C. K.; Ginger, D. S. Electrochemical strain microscopy probes morphology-induced variations in ion uptake and performance in organic electrochemical transistors. Nat. Mater. 2017, 16, 737–742.

[39]

Han, S.; Yamamoto, S.; Polyravas, A. G.; Malliaras, G. G. Microfabricated ion-selective transistors with fast and super-nernstian response. Adv. Mater. 2020, 32, 2004790.

[40]

Li, T.; Cheryl Koh, J. Y.; Moudgil, A.; Cao, H.; Wu, X. H.; Chen, S.; Hou, K. Q.; Surendran, A.; Stephen, M.; Tang, C. et al. Biocompatible ionic liquids in high-performing organic electrochemical transistors for ion detection and electrophysiological monitoring. ACS Nano 2022, 16, 12049–12060.

[41]

Sessolo, M.; Rivnay, J.; Bandiello, E.; Malliaras, G. G.; Bolink, H. J. Ion-selective organic electrochemical transistors. Adv. Mater. 2014, 26, 4803–4807.

[42]

Liu, H.; Song, J. J.; Zhao, Z. Y.; Zhao, S. Q.; Tian, Z. Y.; Yan, F. Organic electrochemical transistors for biomarker detections. Adv. Sci. 2024, 11, 2305347.

Nano Research
Article number: 94907149
Cite this article:
Fang W, Li Z, Wang C, et al. Enhancing performance of fullerene-based organic electrochemical transistors via side-chain engineering. Nano Research, 2025, 18(2): 94907149. https://doi.org/10.26599/NR.2025.94907149
Topics:

496

Views

81

Downloads

0

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 September 2024
Revised: 01 November 2024
Accepted: 25 November 2024
Published: 07 January 2025
© The Author(s) 2025. Published by Tsinghua University Press.

This is an open access article under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0, https://creativecommons.org/licenses/by/4.0/).

Return