Aqueous zinc-ion batteries (AZIBs) are regarded as one of the most promising rivals in the upcoming high-energy secondary battery market because of their safety and non-toxicity. However, the zinc dendrites growth and hydrogen evolution corrosion of the Zn anode have seriously restricted the application of AZIBs. Herein, to overcome these constraints, a three-dimensional (3D) porous PFA-COOH-CNT artificial solid electrolyte interface (SEI) film with high hydrophobic and zincophilic properties was constructed on Zn anode surface by in-situ polymerization of furfuryl alcohol (FA) and carboxyl carbon nanotubes (COOH-CNT). A series of in-situ, ex-situ characterizations as well as the density functional theory (DFT) calculations reveal that the formed PFA-COOH-CNT SEI film with an abundant oxygen-containing group can provide abundant zincophilic sites and induce homogeneous deposition of Zn2+, as well as the hydrophobic alkyl and carbon skeleton in PFA-COOH-CNT SEI film can isolate the direct contact of H2O with Zn anode, and inhibit the occurrence of hydrogen evolution reaction (HER). Accordingly, the Zn anode with PFA-COOH-CNT layer can attain an ultra-long cycle life of 2200 h at 1 mA·cm−2, 1 mAh·cm−2. Simultaneously, the assembled PFA-COOH-CNT@Zn||V2O5 full cell can also achieve a high reversible capacity of up to 150.2 mAh·g−1 at 1 A·g−1 after 400 cycles, with a high average coulombic efficiency (CE) of 98.8 %. The designed PFA-COOH-CNT artificial SEI film provides a broad prospect for highly stable zinc anode, and can also be extended to other energy storage systems based on metal anodes.
Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.
Li, G. J.; Lou, X. Y.; Peng, C. B.; Liu, C. T.; Chen, W. H. Interface chemistry for sodium metal anodes/batteries: A review. Chem. Synth. 2022, 2, 16.
Service, R. F. Zinc aims to beat lithium batteries at storing energy. Science, 2021, 372, 890–891.
Zhang, J. L.; Shi, M. Y.; Gao, H. W.; Ren, X. X.; Cao, J. C.; Li, G. J.; Wang, A. X.; Liu, C. T. Engineering interfaces of zinc metal anode for stable batteries. Chem. Eng. J. 2024, 491, 152050.
Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.
Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.
Zhao, C. H.; Wang, X. L.; Shao, C. L.; Li, G. P.; Wang, J. X.; Liu, D. T.; Dong, X. T. The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: Recent progress and future perspectives. Sustain. Energy Fuels 2021, 5, 332–350.
Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.
Zhang, M. H.; Su, Y.; Li, G. P.; Tang, B. Y.; Zhou, S.; Wang, X. L.; Liu, D. T.; Zhu, G. S. One-Pot preparation of microporous-polymer protected 3D porous Zn anode to enable advanced aqueous zinc batteries. J. Power Sources 2024, 589, 233755.
Yin, Y. B.; Wang, S. N.; Zhang, Q.; Song, Y.; Chang, N. N.; Pan, Y. W.; Zhang, H. M.; Li, X. F. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 2020, 32, 1906803.
Tao, F.; Feng, K. J.; Liu, Y.; Ren, J. Z.; Xiong, Y.; Li, C. B.; Ren, F. Z. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2023, 16, 6789–6797.
Gu, X. X.; Du, Y. X.; Ren, X. L.; Ma, F. C.; Zhang, X. F.; Li, M.; Wang, Q. H.; Zhang, L.; Lai, C.; Zhang, S. Q. Shielding-anchoring double protection tactics of imidazo[1,2-b]pyridazine additive for ultrastable zinc anode. Adv. Funct. Mater. 2024, 34, 2316541.
Yang, X. Z.; Li, W. P.; Lv, J. Z.; Sun, G. J.; Shi, Z. X.; Su, Y. W.; Lian, X. Y.; Shao, Y. Y.; Zhi, A. M.; Tian, X. Z. et al. In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res. 2022, 15, 9785–9791.
Ge, X. S.; Zhang, W. H.; Song, F. C.; Xie, B.; Li, J. D.; Wang, J. Z.; Wang, X. J.; Zhao, J. W.; Cui, G. L. Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 2022, 32, 2200429.
Su, Y.; Wang, X. L.; Zhou, S.; Zou, X. Q.; Sun, H. Z.; Liu, D. T.; Zhu, G. S. A specific free-volume network as synergistic zinc-ion-conductor interface towards stable zinc anode. Energy Storage Mater. 2022, 53, 909–916.
Liu, P. G.; Guo, J.; Chen, X. Y.; Wang, T.; Huang, Y. P.; Gao, S. S.; Wang, T.; Wu, D. L.; Liu, K. Y. A zincophilic molecular brush for a dendrite-free, corrosion-resistant, zinc metal anode with a long life cycle. Nano Res. 2024, 17, 390–396.
Zhang, H.; Jiang, T. T.; Jin, D.; Xie, L. H.; Wu, M. Z. Hydrophobic and zincophilic organic hierarchical nano-membranes with ordered molecular packing for stable zinc metal anodes. Energy Storage Mater. 2024, 70, 103513.
Zhou, X.; Chen, R. P.; Cui, E. H.; Liu, Q.; Zhang, H.; Deng, J. H.; Zhang, N. N.; Xie, C.; Xu, L.; Mai, L. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy Storage Mater. 2023, 55, 538–545.
Zhang, R. C.; Feng, Y.; Ni, Y. X.; Zhong, B. D.; Peng, M. Y.; Sun, T. J.; Chen, S.; Wang, H.; Tao, Z. L.; Zhang, K. Bifunctional interphase with target-distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode. Angew. Chem. 2023, 135, e202304503.
Di, S. L.; Nie, X. Y.; Ma, G. Q.; Yuan, W. T.; Wang, Y. Y.; Liu, Y. C.; Shen, S. G.; Zhang, N. Zinc anode stabilized by an organic–inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021, 43, 375–382.
Guo, S. J.; Yang, Q. S.; He, X. Q.; Liew, K. M. Design of 3D carbon nanotube-based nanostructures and prediction of their extra-strong mechanical properties under tension and compression. Comp Mater. Sci. 2014, 85, 324–331.
Parker, J. F.; Nelson, E. S.; Wattendorf, M. D.; Chervin, C. N.; Long, J. W.; Rolison, D. R. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells. ACS Appl. Mater. Interfaces 2014, 6, 19471–19476.
Huang, J. Q.; Hou, Z.; Gao, P. S.; Yan, X. F.; Lin, X. Y.; Zhang, B. A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Mater. Today Commun. 2022, 32, 103939.
Feng, Y. G.; Wang, Y. D.; Sun, L.; Zhang, K. Q.; Liang, J. C.; Zhu, M. F.; Tie, Z.; Jin, Z. Fluorinated interface engineering toward controllable zinc deposition and rapid cation migration of aqueous Zn-Ion batteries. Small 2023, 19, 2302650.
Liu, C. Z.; Xu, W. W.; Zhang, L.; Zhang, D. T.; Xu, W. N.; Liao, X. B.; Chen, W. M.; Cao, Y. Z.; Li, M. C.; Mei, C. T. et al. Electrochemical hydrophobic tri-layer interface rendered mechanically graded solid electrolyte interface for stable zinc metal anode. Angew. Chem., Int. Ed. 2024, 63, e202318063.
Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.
Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240.
Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.
Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.
Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.
Yao, X.; Wu, H. X.; Wang, J.; Qu, S.; Chen, G. Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chem.—Eur. J. 2007, 13, 846–853.
Dante, R. C.; Santamaria, D. A.; Gil, J. M. Crosslinking and thermal stability of thermosets based on novolak and melamine. J. Appl. Polym. Sci. 2009, 114, 4059–4065.
Noparvar-Qarebagh, A.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid Polym. Sci. 2015, 293, 3623–3631.
Wu, S. X.; Yang, Y. J.; Liu, C. B.; Liu, T. F.; Zhang, Y. P.; Zhang, B. K.; Luo, D.; Pan, F.; Lin, Z. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiO x anode with high mass loading in lithium ion batteries. ACS Energy Lett. 2021, 6, 290–297.
Guigo, N.; Mija, A.; Vincent, L.; Sbirrazzuoli, N. Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Phys. Chem. Chem. Phys. 2007, 9, 5359–5366.
Shi, M. Y.; Zhang, J. L.; Tang, G. C.; Wang, B.; Wang, S.; Ren, X. X.; Li, G. J.; Chen, W. H.; Liu, C. T.; Shen, C. Y. Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode. Nano Res. 2024, 17, 5278–5287.
Wu, D. X.; Wang, C. Y.; Wu, M. G.; Chao, Y. F.; He, P. B.; Ma, J. M. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J. Energy Chem. 2020, 43, 24–32.
Siddique, A. B.; Pramanick, A. K.; Chatterjee, S.; Ray, M. Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci. Rep. 2018, 8, 9770.
Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.
Li, G. P.; Wang, Y.; Su, Y.; Fu, X. Q.; Wang, X. L.; Wang, J. X.; Lv, S. H.; Yu, W. S.; Dong, X. T.; Liu, D. T. A porous polycaprolactone coating with abundant ester groups for stable Zn metal anodes. J. Energy Storage 2024, 97, 112790.
Liu, X.; Han, Q. G.; Ma, Q. X.; Wang, Y. H.; Liu, C. G. Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free Zn metal anodes. Small 2022, 18, 2203327.
Shi, Z. H.; Yang, M.; Ren, Y. F.; Wang, Y. Z.; Guo, J. H.; Yin, J.; Lai, F. L.; Zhang, W. L.; Chen, S. L.; Alshareef, H. N. et al. Highly reversible Zn anodes achieved by enhancing ion-transport kinetics and modulating Zn (002) deposition. ACS Nano 2023, 17, 21893–21904.
Hu, L. T.; Xiao, P.; Xue, L. L.; Li, H. Q.; Zhai, T. Y. The rising zinc anodes for high-energy aqueous batteries. EnergyChem 2021, 3, 100052.
Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 2020, 30, 1908528.
Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.
Wang, X. Z.; Ding, G.; Ma, Z. P.; Xu, Z. M.; Feng, Y. B.; Gong, W. B.; Liu, C. L.; Tian, K. H.; Yong, Z. Z.; Li, Q. L. Synchronously nucleated inducing deposition of Zn2+ and homogenized electric field endowed by 3D porous host for dendrite-free Zn metal anodes. Chem. Eng. J. 2023, 472, 144996.
Zong, Q.; Zhuang, Y. L.; Liu, C. F.; Kang, Q. L.; Wu, Y. Z.; Zhang, J. J.; Wang, J. Y.; Tao, D. W.; Zhang, Q. L.; Cao, G. Z. Dual effects of metal and organic ions Co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2023, 13, 2301480.
Jiang, H. M.; Zhang, Y. F.; Waqar, M.; Yang, J.; Liu, Y. Y.; Sun, J. J.; Feng, Z. Y.; Sun, J. G.; Pan, Z. H.; Meng, C. G. et al. Anomalous Zn2+ storage behavior in dual-ion-in-sequence reconstructed vanadium oxides. Adv. Funct. Mater. 2023, 33, 2213127.