PDF (17.5 MB)
Collect
Submit Manuscript
Show Outline
Figures (6)

Research Article | Open Access

Zincophilic and hydrophobic bifunctional PFA-COOH-CNT artificial SEI film for highly stable Zn anode

Lingyao Kuang1,§Bohui Xu2,§Long Zhang3Zheshuai Lin2Xingxing Gu1 ()Xiaolei Ren1Yanglong Hou3,4 ()
Chongqing Key Laboratory of Catalysis and New Environmental Materials, College of Environment and Resources, Chongqing 400067, China
Functional Crystals Lab, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
School of Materials, Shenzhen Campus of Sun Yat-Sen University, Shenzhen 518107, China
Beijing Key Laboratory for Magnetoelectric Materials and Devices (BKL-MMD), School of Materials Science and Engineering, Peking University, Beijing 100871, China

§ Lingyao Kuang and Bohui Xu contributed equally to this work.

Show Author Information

Graphical Abstract

View original image Download original image
A three-dimensional (3D) porous PFA-COOH-CNT artificial solid-electrolyte interface (SEI) film formed by polymerization of furfuryl alcohol (FA) and carboxyl carbon nanotubes (COOH-CNT) with high hydrophobic and zincophilic bi-properties effectively induces Zn2+ uniform deposition and hydrogen evolution reaction (HER) corrosions, contributing to the PFA-COOH-CNT@Zn anode with excellent cycling performances.

Abstract

Aqueous zinc-ion batteries (AZIBs) are regarded as one of the most promising rivals in the upcoming high-energy secondary battery market because of their safety and non-toxicity. However, the zinc dendrites growth and hydrogen evolution corrosion of the Zn anode have seriously restricted the application of AZIBs. Herein, to overcome these constraints, a three-dimensional (3D) porous PFA-COOH-CNT artificial solid electrolyte interface (SEI) film with high hydrophobic and zincophilic properties was constructed on Zn anode surface by in-situ polymerization of furfuryl alcohol (FA) and carboxyl carbon nanotubes (COOH-CNT). A series of in-situ, ex-situ characterizations as well as the density functional theory (DFT) calculations reveal that the formed PFA-COOH-CNT SEI film with an abundant oxygen-containing group can provide abundant zincophilic sites and induce homogeneous deposition of Zn2+, as well as the hydrophobic alkyl and carbon skeleton in PFA-COOH-CNT SEI film can isolate the direct contact of H2O with Zn anode, and inhibit the occurrence of hydrogen evolution reaction (HER). Accordingly, the Zn anode with PFA-COOH-CNT layer can attain an ultra-long cycle life of 2200 h at 1 mA·cm−2, 1 mAh·cm−2. Simultaneously, the assembled PFA-COOH-CNT@Zn||V2O5 full cell can also achieve a high reversible capacity of up to 150.2 mAh·g−1 at 1 A·g−1 after 400 cycles, with a high average coulombic efficiency (CE) of 98.8 %. The designed PFA-COOH-CNT artificial SEI film provides a broad prospect for highly stable zinc anode, and can also be extended to other energy storage systems based on metal anodes.

Electronic Supplementary Material

Download File(s)
7156_ESM.pdf (869.4 KB)

References

[1]

Blanc, L. E.; Kundu, D.; Nazar, L. F. Scientific challenges for the implementation of Zn-ion batteries. Joule 2020, 4, 771–799.

[2]

Li, G. J.; Lou, X. Y.; Peng, C. B.; Liu, C. T.; Chen, W. H. Interface chemistry for sodium metal anodes/batteries: A review. Chem. Synth. 2022, 2, 16.

[3]

Service, R. F. Zinc aims to beat lithium batteries at storing energy. Science, 2021, 372, 890–891.

[4]

Zhang, J. L.; Shi, M. Y.; Gao, H. W.; Ren, X. X.; Cao, J. C.; Li, G. J.; Wang, A. X.; Liu, C. T. Engineering interfaces of zinc metal anode for stable batteries. Chem. Eng. J. 2024, 491, 152050.

[5]

Kundu, D.; Adams, B. D.; Duffort, V.; Vajargah, S. H.; Nazar, L. F. A high-capacity and long-life aqueous rechargeable zinc battery using a metal oxide intercalation cathode. Nat. Energy 2016, 1, 16119.

[6]

Song, M.; Tan, H.; Chao, D. L.; Fan, H. J. Recent advances in Zn-ion batteries. Adv. Funct. Mater. 2018, 28, 1802564.

[7]

Zhao, C. H.; Wang, X. L.; Shao, C. L.; Li, G. P.; Wang, J. X.; Liu, D. T.; Dong, X. T. The strategies of boosting the performance of highly reversible zinc anodes in zinc-ion batteries: Recent progress and future perspectives. Sustain. Energy Fuels 2021, 5, 332–350.

[8]

Xu, C. J.; Li, B. H.; Du, H. D.; Kang, F. Y. Energetic zinc ion chemistry: The rechargeable zinc ion battery. Angew. Chem., Int. Ed. 2012, 51, 933–935.

[9]

Zhang, M. H.; Su, Y.; Li, G. P.; Tang, B. Y.; Zhou, S.; Wang, X. L.; Liu, D. T.; Zhu, G. S. One-Pot preparation of microporous-polymer protected 3D porous Zn anode to enable advanced aqueous zinc batteries. J. Power Sources 2024, 589, 233755.

[10]

Yin, Y. B.; Wang, S. N.; Zhang, Q.; Song, Y.; Chang, N. N.; Pan, Y. W.; Zhang, H. M.; Li, X. F. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv. Mater. 2020, 32, 1906803.

[11]

Tao, F.; Feng, K. J.; Liu, Y.; Ren, J. Z.; Xiong, Y.; Li, C. B.; Ren, F. Z. Suppressing interfacial side reactions of zinc metal anode via isolation effect toward high-performance aqueous zinc-ion batteries. Nano Res. 2023, 16, 6789–6797.

[12]

Gu, X. X.; Du, Y. X.; Ren, X. L.; Ma, F. C.; Zhang, X. F.; Li, M.; Wang, Q. H.; Zhang, L.; Lai, C.; Zhang, S. Q. Shielding-anchoring double protection tactics of imidazo[1,2-b]pyridazine additive for ultrastable zinc anode. Adv. Funct. Mater. 2024, 34, 2316541.

[13]

Yang, X. Z.; Li, W. P.; Lv, J. Z.; Sun, G. J.; Shi, Z. X.; Su, Y. W.; Lian, X. Y.; Shao, Y. Y.; Zhi, A. M.; Tian, X. Z. et al. In situ separator modification via CVD-derived N-doped carbon for highly reversible Zn metal anodes. Nano Res. 2022, 15, 9785–9791.

[14]

Ge, X. S.; Zhang, W. H.; Song, F. C.; Xie, B.; Li, J. D.; Wang, J. Z.; Wang, X. J.; Zhao, J. W.; Cui, G. L. Single-ion-functionalized nanocellulose membranes enable lean-electrolyte and deeply cycled aqueous zinc-metal batteries. Adv. Funct. Mater. 2022, 32, 2200429.

[15]

Su, Y.; Wang, X. L.; Zhou, S.; Zou, X. Q.; Sun, H. Z.; Liu, D. T.; Zhu, G. S. A specific free-volume network as synergistic zinc-ion-conductor interface towards stable zinc anode. Energy Storage Mater. 2022, 53, 909–916.

[16]

Liu, P. G.; Guo, J.; Chen, X. Y.; Wang, T.; Huang, Y. P.; Gao, S. S.; Wang, T.; Wu, D. L.; Liu, K. Y. A zincophilic molecular brush for a dendrite-free, corrosion-resistant, zinc metal anode with a long life cycle. Nano Res. 2024, 17, 390–396.

[17]

Zhang, H.; Jiang, T. T.; Jin, D.; Xie, L. H.; Wu, M. Z. Hydrophobic and zincophilic organic hierarchical nano-membranes with ordered molecular packing for stable zinc metal anodes. Energy Storage Mater. 2024, 70, 103513.

[18]

Zhou, X.; Chen, R. P.; Cui, E. H.; Liu, Q.; Zhang, H.; Deng, J. H.; Zhang, N. N.; Xie, C.; Xu, L.; Mai, L. A novel hydrophobic-zincophilic bifunctional layer for stable Zn metal anodes. Energy Storage Mater. 2023, 55, 538–545.

[19]

Zhang, R. C.; Feng, Y.; Ni, Y. X.; Zhong, B. D.; Peng, M. Y.; Sun, T. J.; Chen, S.; Wang, H.; Tao, Z. L.; Zhang, K. Bifunctional interphase with target-distributed desolvation sites and directionally depositional ion flux for sustainable zinc anode. Angew. Chem. 2023, 135, e202304503.

[20]

Di, S. L.; Nie, X. Y.; Ma, G. Q.; Yuan, W. T.; Wang, Y. Y.; Liu, Y. C.; Shen, S. G.; Zhang, N. Zinc anode stabilized by an organic–inorganic hybrid solid electrolyte interphase. Energy Storage Mater. 2021, 43, 375–382.

[21]

Guo, S. J.; Yang, Q. S.; He, X. Q.; Liew, K. M. Design of 3D carbon nanotube-based nanostructures and prediction of their extra-strong mechanical properties under tension and compression. Comp Mater. Sci. 2014, 85, 324–331.

[22]

Parker, J. F.; Nelson, E. S.; Wattendorf, M. D.; Chervin, C. N.; Long, J. W.; Rolison, D. R. Retaining the 3D framework of zinc sponge anodes upon deep discharge in Zn-air cells. ACS Appl. Mater. Interfaces 2014, 6, 19471–19476.

[23]

Huang, J. Q.; Hou, Z.; Gao, P. S.; Yan, X. F.; Lin, X. Y.; Zhang, B. A freestanding hydroxylated carbon nanotube film boosting the stability of Zn metal anodes. Mater. Today Commun. 2022, 32, 103939.

[24]

Feng, Y. G.; Wang, Y. D.; Sun, L.; Zhang, K. Q.; Liang, J. C.; Zhu, M. F.; Tie, Z.; Jin, Z. Fluorinated interface engineering toward controllable zinc deposition and rapid cation migration of aqueous Zn-Ion batteries. Small 2023, 19, 2302650.

[25]

Liu, C. Z.; Xu, W. W.; Zhang, L.; Zhang, D. T.; Xu, W. N.; Liao, X. B.; Chen, W. M.; Cao, Y. Z.; Li, M. C.; Mei, C. T. et al. Electrochemical hydrophobic tri-layer interface rendered mechanically graded solid electrolyte interface for stable zinc metal anode. Angew. Chem., Int. Ed. 2024, 63, e202318063.

[26]

Clark, S. J.; Segall, M. D.; Pickard, C. J.; Hasnip, P. J.; Probert, M. I. J.; Refson, K.; Payne, M. C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570.

[27]

Pfrommer, B. G.; Côté, M.; Louie, S. G.; Cohen, M. L. Relaxation of crystals with the quasi-newton method. J. Comput. Phys. 1997, 131, 233–240.

[28]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[29]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[30]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[31]
Cochet, M.; Maser, W. K.; Benito, A. M.; Callejas, M. A.; Martínez, M. T.; Benoit, J. M.; Schreiber, J.; Chauvet, O. Synthesis of a new polyaniline/nanotube composite: “In-situ” polymerisation and charge transfer through site-selective interaction. Chem. Commun. 2001, 1450–1451.
[32]

Yao, X.; Wu, H. X.; Wang, J.; Qu, S.; Chen, G. Carbon nanotube/poly(methyl methacrylate) (CNT/PMMA) composite electrode fabricated by in situ polymerization for microchip capillary electrophoresis. Chem.—Eur. J. 2007, 13, 846–853.

[33]

Dante, R. C.; Santamaria, D. A.; Gil, J. M. Crosslinking and thermal stability of thermosets based on novolak and melamine. J. Appl. Polym. Sci. 2009, 114, 4059–4065.

[34]

Noparvar-Qarebagh, A.; Roghani-Mamaqani, H.; Salami-Kalajahi, M. Functionalization of carbon nanotubes by furfuryl alcohol moieties for preparation of novolac phenolic resin composites with high carbon yield values. Colloid Polym. Sci. 2015, 293, 3623–3631.

[35]

Wu, S. X.; Yang, Y. J.; Liu, C. B.; Liu, T. F.; Zhang, Y. P.; Zhang, B. K.; Luo, D.; Pan, F.; Lin, Z. In-situ polymerized binder: A three-in-one design strategy for all-integrated SiO x anode with high mass loading in lithium ion batteries. ACS Energy Lett. 2021, 6, 290–297.

[36]

Guigo, N.; Mija, A.; Vincent, L.; Sbirrazzuoli, N. Chemorheological analysis and model-free kinetics of acid catalysed furfuryl alcohol polymerization. Phys. Chem. Chem. Phys. 2007, 9, 5359–5366.

[37]

Shi, M. Y.; Zhang, J. L.; Tang, G. C.; Wang, B.; Wang, S.; Ren, X. X.; Li, G. J.; Chen, W. H.; Liu, C. T.; Shen, C. Y. Polyzwitterionic cross-linked double network hydrogel electrolyte enabling high-stable Zn anode. Nano Res. 2024, 17, 5278–5287.

[38]

Wu, D. X.; Wang, C. Y.; Wu, M. G.; Chao, Y. F.; He, P. B.; Ma, J. M. Porous bowl-shaped VS2 nanosheets/graphene composite for high-rate lithium-ion storage. J. Energy Chem. 2020, 43, 24–32.

[39]

Siddique, A. B.; Pramanick, A. K.; Chatterjee, S.; Ray, M. Amorphous carbon dots and their remarkable ability to detect 2,4,6-trinitrophenol. Sci. Rep. 2018, 8, 9770.

[40]

Xiao, J.; Li, Q. Y.; Bi, Y. J.; Cai, M.; Dunn, B.; Glossmann, T.; Liu, J.; Osaka, T.; Sugiura, R.; Wu, B. B. et al. Understanding and applying coulombic efficiency in lithium metal batteries. Nat. Energy 2020, 5, 561–568.

[41]

Li, G. P.; Wang, Y.; Su, Y.; Fu, X. Q.; Wang, X. L.; Wang, J. X.; Lv, S. H.; Yu, W. S.; Dong, X. T.; Liu, D. T. A porous polycaprolactone coating with abundant ester groups for stable Zn metal anodes. J. Energy Storage 2024, 97, 112790.

[42]

Liu, X.; Han, Q. G.; Ma, Q. X.; Wang, Y. H.; Liu, C. G. Cellulose-acetate coating by integrating ester group with zinc salt for dendrite-free Zn metal anodes. Small 2022, 18, 2203327.

[43]

Shi, Z. H.; Yang, M.; Ren, Y. F.; Wang, Y. Z.; Guo, J. H.; Yin, J.; Lai, F. L.; Zhang, W. L.; Chen, S. L.; Alshareef, H. N. et al. Highly reversible Zn anodes achieved by enhancing ion-transport kinetics and modulating Zn (002) deposition. ACS Nano 2023, 17, 21893–21904.

[44]

Hu, L. T.; Xiao, P.; Xue, L. L.; Li, H. Q.; Zhai, T. Y. The rising zinc anodes for high-energy aqueous batteries. EnergyChem 2021, 3, 100052.

[45]

Liang, P. C.; Yi, J.; Liu, X. Y.; Wu, K.; Wang, Z.; Cui, J.; Liu, Y. Y.; Wang, Y. G.; Xia, Y. Y.; Zhang, J. J. Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv. Funct. Mater. 2020, 30, 1908528.

[46]

Zhang, Q.; Luan, J. Y.; Tang, Y. G.; Ji, X. B.; Wang, H. Y. Interfacial design of dendrite-free zinc anodes for aqueous zinc-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 13180–13191.

[47]

Wang, X. Z.; Ding, G.; Ma, Z. P.; Xu, Z. M.; Feng, Y. B.; Gong, W. B.; Liu, C. L.; Tian, K. H.; Yong, Z. Z.; Li, Q. L. Synchronously nucleated inducing deposition of Zn2+ and homogenized electric field endowed by 3D porous host for dendrite-free Zn metal anodes. Chem. Eng. J. 2023, 472, 144996.

[48]

Zong, Q.; Zhuang, Y. L.; Liu, C. F.; Kang, Q. L.; Wu, Y. Z.; Zhang, J. J.; Wang, J. Y.; Tao, D. W.; Zhang, Q. L.; Cao, G. Z. Dual effects of metal and organic ions Co-intercalation boosting the kinetics and stability of hydrated vanadate cathodes for aqueous zinc-ion batteries. Adv. Energy Mater. 2023, 13, 2301480.

[49]

Jiang, H. M.; Zhang, Y. F.; Waqar, M.; Yang, J.; Liu, Y. Y.; Sun, J. J.; Feng, Z. Y.; Sun, J. G.; Pan, Z. H.; Meng, C. G. et al. Anomalous Zn2+ storage behavior in dual-ion-in-sequence reconstructed vanadium oxides. Adv. Funct. Mater. 2023, 33, 2213127.

Nano Research
Article number: 94907156
Cite this article:
Kuang L, Xu B, Zhang L, et al. Zincophilic and hydrophobic bifunctional PFA-COOH-CNT artificial SEI film for highly stable Zn anode. Nano Research, 2025, 18(2): 94907156. https://doi.org/10.26599/NR.2025.94907156
Topics:
Metrics & Citations  
Article History
Copyright
Rights and Permissions
Return